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Summary. A lattice system of interacting diffusion processes is investigated. 
The evolution is attractive and time reversible, the spin satisfies a conserva- 
tion law. It is shown that the rescaled spin field converges in probability 
to the corresponding solution to a nonlinear diffusion equation. 

1. Introduction 

We are going to investigate the hydrodnamic behaviour of interacting diffusion 
processes satisfying a conservation law. The configuration space will be defined 
as a set, f~ of real sequences labelled by the points of the d-dimensional cubic 
lattice, 2g d. If co~(2 and ke2g d then COk~lR denotes the spin at site k. The energy 
of the spin at site k is given by 

Hk(CO)=V(~Ok)+~ ~ (C0i--COk) 2, (1.1) 
[ j - k l = l  

where c~ is a nonnegative constant, while V: IR ~ IR is a convex function having 
three continuous derivatives such that [1-V"(x)l<c for all xe lR with some 
c <  1, and V'" is bounded, too. The evolution is governed by the gradient of 
H, 

OkH=QkH(Co)=V'(COk)+, ~ (O)k--COj), (1.2) 
[ j - k l - 1  

in the following way. Along each oriented bond k ~ j  there is a random current, 
Jkj of the spin, and the temporal evolution is determined by the associated 
conservation law. More exactly, for each positively oriented bond we are given 
a standard Wiener process, Wki, they are independent, and Wk~ + Wjk = 0 by con- 
vention. The currents admit a stochastic differential, 

dJkj = �89 [Ok H(co) -- ~j H(co)] d t + d Wki, (1.3) 
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and the evolution is defined by a system of stochastic differential equations, 

dcok + ~ dJkj=O, keZ d, COk(0)=ak. 
I j - k l = l  

(1.4) 

We are interested in the asymptotic behaviour of the rescaled spin field 

S~(t, ~o, o-~):~ d ~ ~0(~ k) o~k(t/~ 2) 
kETZa 

(1.5) 

as e ~ 0 and the initial configuration, a" approaches some smooth profile, P0: 
IRd ~ IR. We show that S ~ converges in probability to a nontrivial deterministic 
limit, ~ q~ (x) p (t, x) d x, and p, the limiting spin density, satisfies 

0p = div[-D(p) grad p(t, x)], p(O, x)=po(x ), 
Ot 

(1.6) 

where D: IR ~ IR is strictly positive and bounded. 
The first attempt to derive the macroscopic equations of hydrodynamics 

from statistical mechanics is due to Morrey [18], a more general formulation 
of the problem goes back to Dobrushin [-8], see [-3, 4, 9] and the early papers 
[17, 22, 23] on the subject. A survey of some mathematical and physical ideas 
and results is presented in I-6]. The evolution (1.3)-(1.4) is a lattice version 
of the time dependent Ginzburg-Landau equation, sometimes it is called a Cahn- 
Hilliard theory, see Spohn [26] for some further references on the physics litera- 
ture. This paper is a continuation of the project outlined in [12, 13]. The proof 
of [14] is simplified and extended to arbitrary dimensions, we prove a law 
of large numbers for continuous functionals of the conserved field. The determin- 
istic (zero temperature) case was discussed in [,11]. Some related results on 
the one-dimensional, general zero range model were announced by Rost [24]. 
An extension of the law of large numbers to the one-dimensional continuum 
Ginzburg-Landau equation was obtained by Funaki [15]. Equilibrium fluctua- 
tions (the related central limit problem) were described by Spohn [-26]. In a 
recent paper [-16] Guo, Papanicolau and Varadhan [16] propose a new 
approach to the law of large numbers. This method is restricted to finite volumes, 
but it is fairly general in other respects. For example, the convexity of the 
self-potential V implying attractivity of the evolution is not needed. Donsker 
and Varadhan [10] treat the associated large deviation problem by similar meth- 
ods. 

This work was completed during my stay at Center for Mathematical Sci- 
ences Research, Rutgers University. I am indebted to Joel L. Lebowitz for stimu- 
lating discussions and kind hospitality there. 

2. Main Result 

It is very convenient to embed our configuration space into a space of functions 
on IR e , then the configurations will be interpreted as step functions. The topology 
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of this space will be specified by a family of weighted ]L2-norms, [" It, relR. 
The weight functions, Or: lRa~(0,  1] are defined as follows. Let 0: [0, o0) ~ (0, 1] 
be a nonincreasing and twice continuously differentiable function such that 
O(u)=�89 2-" if u>2 ,  0 (u )= l  if u < l ,  while O(u)>e -u and O<-O'(u)<O(u)  
<=leZ-U for all u>0 .  Now O~(x)=EO(Ixl)-I ~ for x s N  a and rMR, and 

I~1~ =~0r(x)IG(x) l  = d x  (2.1) 

whenever a: Na ~ N is measurable. The associated scalar product  will be denoted 
as ( - ,  ")r, the same notation will be used for vector valued functions. Introduce 
now ll,2(N d) as the real Hilbert space of locally integrable 0-: IRa --+IR with norm 
[-1~. Since 0r > 0~ if r < s, we have lL2s c l L  2 in this case. Since 0_ ~ = 1/0,  the spaces 
11- 2 and lL2_r are the duals of each other with respect to the scalar product 
( ' , ' ) 0  of 1L2(NJ)=IL2(~e). Define now IL2 as the locally convex space with 
seminorms 1" [~, r > 0. This simply means that 

1.2= [~ ]L~(Na), (2.2) 
r > 0  

and o-, ~ o- in the (strong) topology of IL 2 iff l o- . -  o-I~ ~ 0 for each r > 0. The 
dual space of 1L 2 is just 

]L2-e = U ]L2-r(]Rd)' (2.3) 
r > 0  

the elements of lL2e are represented as 

~=,~(~)=f~o(x)~(x)dx ,  o~lL2. (2.4) 

The weak topology of 1I? is given by a fundamental system of the neighborhoods 
of 0slL 2, namely 

u,(q0,, ~02, ..., ~o,)= D~IL2: I q~k(~)l <~, k =  1, 2 . . . .  , n], (2.5) 

where ? > 0  and qOkelL2_e . A subset B oflL 2 is called a ball if 

B =  EaelL2: lalr<=br for all r>0 ]  (2.6) 

with some br < oo. It is easy to check that IL 2 is a reflexive space, and its balls 
are weakly compact. If S c I .  2 then G~(Z) and Cw(S) denote the spaces of strongly 
(weakly) continuous and bounded maps of Z into IR. The spaces of weakly 
differentiable 2ML 2 and ~pell,2_~ with partial derivatives belonging to IL2 and 
I"2-e, respectively, will be denoted by H 1 and 1 l U _  e 

The embedding of our process into IL 2 is based on the following correspon- 
dence between sequences and step functions. Let C~(ek) denote the Dirichlet 
cell of e2U centered at ek, e>0 ,  ke7/a. More exactly, if xl and ki denote the 
coordinates of x and k, then 

C~(ek)= [-xeNfl: -e/2<__xi-eki<8/2 , i=  1, 2, ..., d]. (2.7) 
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Moreover, let C~(x)=C~(ek) if x~C~(ek), and define (2~ as the space of co~IL~ 
such that co (x) = co (y) whenever xECt(y). For each e > 0  and co~L 2 there is a 
step function, cot= It co defined by 

I~co(x)=e -d ~ co(y) dy, (2.8) 
C~ (x) 

that is, (2, = It L 2. On the other hand, if co = (cok)k~tga is a sequence indexed by 
7/, d, then co~(X)=cok iff xeC~(ek) defines a step function co~e(2~ for each e>0,  
provided that 

[colt = [ ~, 11 0r(k ) t.~,k, lr ' 'zql /2 < CO (2.9) 
ke~a 

for each r >0.  The space of such sequences will be denoted by (2, and the 
evolution law (1.3) will be considered in this configuration space. Since (2 and 
(21 are essentially identical, we are not going to make a sharp distinction between 
them. 

The existence problem for (1.3) is almost trivial. Let bk=bk(co) denote the 
drift of (1.3), and consider b=(bk(co))k~Zd as a map on (2. It is easy to check 
that for each r e ~  we have 

Ib(co)l, < L ,  Icol,, (2.10) 

Ib(co)-b(rS)l, NL, I co-cS], (2.11) 

for all co, the(2 with some L , <  0o. Since the martingale part of (1.3) does not 
depend on the configuration, the easiest iteration procedure can be used to 
construct continuous solutions in (2, and the very same methods yield smooth 
dependence on initial data. Although no stochastic calculus is needed at this 
point, for convenience we refer to the abstract results of Chapter VII in [5]. 
Let co(t, a) denote the solution to (1.3) with initial condition co(0, tr)= aE(2. The 
solution is a continuous process in (2 for each o-e(2, and we have some constants, 
K, such that for r > 0 

IE[] co(t, a)12] < (I a 12 + K,) exp (Kr t), (2.12) 

see Theorem VII.2.1 in [5]. Moreover, the solution is a differentiable function 
of the initial data, and its derivatives satisfy the linearized equation associated 
with (1.3). For measurable and bounded f :  (2-~IR we define l P t f = P f ( o  -) 
=lE[f(co(t,  o-))]. If f is a bounded cylinder function with continuous and 
bounded first and second derivatives, then lP 'f  is twice differentiable, and 

t 

]P~f(a)=f(a)+ ~ GlPSf(a) ds, (2.13) 
0 

where ~ denotes the formal generator of ~?t, 

k Ij-kl=l 
(2.14) 
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and Ok denotes differentiation with respect to ak; see Theorems VII.3.3 and 
VII.4.1 in [5]. 

Since (1.3) is a conservation law, we expect that pt  has a whole family of 
stationary measures. Let #4 denote the Gibbs state on f2 with energy H 4 = H  
-~ ' ,  2k ak, where 2eQ is arbitrary. This means that the conditional densities 
of #~ are specified as 

gz (d ak l a j, j + k) = Z [  1 exp [ -  Hk(a ) + 2 k aa] d ak, (2.15) 

where Z k is a normalizing factor depending on 2 k and aj with ] j - k ] = l .  It 
is easy to verify that if 2e~2 then #4 is unique, and gz(~2)= 1, see [14] with 
some further references. In particular, if 2k = V for all ke2g a, then a distinguishing 
notation, #o = #x will be used. Observe that (2.14) implies 

~A (a) G f2 (a) po (d a) 

- + Z  E ~ 
k [ j - k [ = 1  

(2.16) 

for smooth cylinder functions. This Dirichlet form contains the main information 
on F t. For  example, we obtain ytl~fd#4=O for all smooth cylinder functions, 
whenever 2 is a harmonic sequence, i.e. 

1 
2 k = 2 ~  ~ 2~ for all k~Z  a. (2.17) 

[ j - k [=l  

It is not difficult to show that every Gibbs state of this type is in fact a stationary 
measure of IP t. The converse statement is more difficult to prove, the free energy 
method seems to be applicable. A direct calculation yields 2k=~O k H(a)#4(d a) 
suggesting the following expression for the diffusion coefficient D of the limiting 
Eq. (1.6), see [6, 13]. Indeed, if 2 = v '  is a constant, then the mean spin equals 
the derivative, F', of the equilibrium free energy, F as a function of the chemical 
potential v. For  brevity we only define F': IR--, N by 

F' (v) = ~ a~ #~ (d a). (2.18) 

Since #o is translation invariant, F'  does not depend on k. We shall show that 
F'  is strictly increasing, thus 

D(u)= 1/2F"(v) if u=F'(v) (2.19) 

defines D for all uelR. Moreover, D is continuous, and O<c<D(u)<=Cz<OO 
with some constants, consequently (1.6) is uniquely solved in the following sense, 
see Sect. 7. For  every o-~N~ there exists a continuous trajectory, ptelL2e, t > 0  
such that Po = e and for each twice continuously differentiable (p: IR d ~ IR with 
compact  support  we have 

t 

S  o(x) p,(x) ax  o(x) d x +  S q (x) ds, (2.20) 
0 
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where E denotes the inverse function of F', that is, E' = D. 
The problem of hydrodynamic limit can be formulated in terms of a family 

of Markov processes, co~, t>0 ,  e>0 ;  co~ef2~ is defined by CO~(X)=COk(t/e 2) if 
xeC~(ek), where CO=(C0k(t))k~e~ is a strong solution to (1.4). The initial value 
of o~ ~ will usually be denoted by a=co~, the rescaled spin field becomes (0(co~), 
and the associated Markov semigroup is defined as 

(2.21) 

In the traditional formulation of the problem the initial configuration is random, 
it is distributed by a family of local equilibrium states, #~,~, see [6]. The initial 
randomness is certainly necessary in the case of conservative (Hamiltonian) sys- 
tems, this assumption is relevant also for the Guo-Papanicolau-Varadhan 
approach [16]. Due to the convexity of V, our model has very good ergodic 
properties: it seems that local equilibrium is established after time e -2, even 
if the initial distribution is deterministic, but we are not in a position to give 
an exact meaning to this conjecture. We can control the relaxation of our system 
to a local equilibrium only at a level of the law of large numbers. The following 
presentation of the main result is a little bit stronger than that proposed by 
Funaki [15]. 

Theorem 1. Suppose that o3~o converges weakly in IL 2 to some PO~-Pe as e~O,  
then q)(c9~) converges in probability to q)(Pt) for each t > 0  and ~oelH~_e, where 
Pt is specified as the weak solution to (1.6) with initial configuration Po. [] 

One of the most crucial features of our dynamics is the weakly continuous 
dependence of solutions on initial data, this property will be used to reduce 
Theorem 1 to the case of random initial configurations, and then to solve the 
problem. The simplest choice of the local equilibrium distributions is the follow- 
ing one. For e > 0  and 2El[,2e let #z,~=#~, where 2 ~ 2  is defined by 2~=I~ 2(ek) 
Remember that #~,, is originally defined on ~2, but we can project it to fa t 
by means of the usual correspondence a--+a ~ between f2 and f2~, i.e. ~(x)=o- k 
if xeC~(ek). For notational convenience we assume that #~,,~ is defined on the 
Borel field of the whole space IL2; of course, #~,,(f2,)= 1. Observe that #x,, satisfies 
a law of large numbers. We shall show that if qo elLa_e, then 

Sq,(~) #~,~(d~)-------~+o S~O(x) po(x) dx, (2.22) 

where po(x)=F'(2(x)), and ~o(a) converges in probability to qo(po) as e--+ 0. This 
statement is trivial if c~=0, because #z,~ is a product measure in this particular 
case. If e > 0  then the convexity of V implies that #~,, belongs to Dobrushin's 
uniqueness domain, thus it satisfies an exponential decay of correlations, see 
[17]. Therefore #~,~ converges to the b-measure concentrated on in the sense 
that 

Sg(cr) I ~ z , ~ ( d a ) ~ o g ( p o )  if gEIEw(L2). (2.23) 
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Notice that (2.23) fails to hold for strongly continuous functions. The weak 
topology of IL 2 plays a fundamental role in the proofs, and this role is not 
a technical one: the law of large numbers is formulated in a natural way in 
terms of this weak topology. The second version of the main result maintains 
that (2.23) remains in force for positive times, too. 

Theorem 2. I f  g~tEw(]L 2) and 2EII-I 1 then 

lim ~ P~' g (a) #~.,=(d o) = g (Pt), 
E--+O 

where pt is the weak solution to (1.6) with initial condition po=Po(X) 
= F'(2(x)). [] 

The ideas of the proof are outlined in the next section. Following [12] 
we prove Theorem 2 first for a more restricted class of functions, DL(IL~) to 
be defined in Sect. 7. The next step is the tightness of the family of time evolved 
measures, #~,~ ~t, whence the general case follows by the Stone-Weierstrass theo- 
rem. Finally, we derive Theorem 1 from Theorem 2 by means of the weakly 
continuous dependence of solutions on initial data, cf. Funaki El51. 

The methods of this paper work under some more general conditions. The 
case of an external driving force, and a reaction term will be discussed in a 
forthcoming paper with Christian Maes. Systems with random, or macroscopi- 
cally inhomogeneous conductivities can also be treated. The case of configura- 
tion dependent conductivities, that means correlated currents, is more difficult, 
but not absolutely hopeless. 

3. On the Ideas of the Proof 

The framework is fairly general, we want to expose the underlying particular 
structure, too. For each e > 0  we are given a Markov process ~t, and a family 
of initial distributions, kt,.~, 2eA =~Ie*. Let tI~ denote the formal generator of 
~t, and consider the class lI200L2e)Cll2w(IL 2) consisting of functions of type f (a )  
= h(q)1 (o9, @2 (0") . . . . .  q)n (a)), where h: IR"--. IR and ~Ok:~-~ d-'-~ N are twice contin- 
uously differentiable with compact supports. We want to have a statement of 
the following kind. For each ge~o(lL2~) and 2eA there exists a limit 

P~' g(a) #,,~(d a) ,~o ' ]P~ g(2), (3.1) 

and the limit is specified as follows. The map g ~ ~ is given by 

(2) = lim ~ g (a) #~,~ (d a), 
~ 0  

while ~ '  is a semigroup in ~w(A) specified by its formal generator 

(~ f(2) = lim ~ l ~ f ( a )  #~,~(d a). 
g ~ O  

(3.2) 

(3.3) 



298 J. Fritz 

Of course, this loosely formulated statement is too general, there is no theorem 
claiming that (3.2) and (3.3) imply (3.1). Nevertheless, we can go a little bit 
further. We summarize below the main steps of a proof we are going to material- 
ize in the case of the Ginzburg-Landau model (1.3). 

Introduce the resolvent, IR~,~ for z > 0, g ~ 1120 (IL 2) and a ~ f2~, 

IR~,~ g(a)= ; e - ~ t ~  ~ g(o-) dt. (3.4) 
0 

From (2.13) we obtain that f~ = lRz, ~ g satisfies 

g (o-) = zL  (o-)- ~ f~ (a), o-~ ~2~ (3.5) 

the resolvent equation, whence 

I g(~r) #x,~(d o-) = z ~f~(a) #x,~(d ~ ) - ~  ~f~(~)/~,~ (d o-). (3.6) 

Imagine now that we can use a compactness argument to pass to a limiting 
resolvent equation via (3.2) and (3.3) along some subsequence e, -~ 0. This means 
that each term of (3.6) tends to the corresponding term of 

4 (2) = zy  (2) - (~ j~ (2) (3.7) 

for each 2~A and Z>Zo, where Zo>0 depends only on g. It is very relevant 
here that the subsequence may depend on g and z, but it does not depend 

co 

on 2. Let N~ ~ = ~ e-  zt ~t 4 d t, then 
0 

zlR~ 4-1I~R~g=g,  (3.8) 

i.e., IR~ g solves (3.7). Therefore, if ~ = ) 7  N~ g, then 0t ]~t ~ = list ~ ~ = z ~ h, whence 
l~ t ~= ~e zt. Since IP t is a contraction semigroup, and z > 0, this is possible only 
if h'= 0, consequently 

co 

lim I e-~t ~ ~t g(a)/%~(d a) d t = IR~ 4(2) (3.9) 
e--*O 0 

for all 2~A, gOEo(L 2) and Z>Zo. 
Suppose now that the family h~(t)=~tgd#a,~ is equicontinuous at each 

t > 0 as e ~ 0, at least if 2 and g are fixed. Since h~ is uniformly bounded, by 
the Arzela-Ascoli criterion of compactness we can select a subsequence e, ~ 0 
in such a way that h~, converges uniformly on compact intervals of time to 
some limit, ho. Thus, for z > Zo we have 

co co 

lim ~ e-Zth~,(t) dt -~ ~ e-Ztho(t)dt=Nz4, 
n-~ co 0 0 

(3.10) 

whence ho(t)=~t4 for all t > 0  by the uniqueness of the Laplace transform, 
which implies (3.1). Now we can approximate weakly continuous functions by 
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smooth functions of class IEo(IL 2) via the Stone-Weierstrass theorem on the 
balls of IL2e, thus we can extend (3.1) to geCw(lL 2) by means of the tightness 
of the time evolved measure # z , ~  t. This follows by an a priori bound for 
the mean value of [ (o~ I 2 with some r > 0. 

The crucial step of the proof  is certainly the compactness argument resulting 
in (3.7). Since we need the convergence of each term of (3.6) simultaneously 
for all 2cA, we have to prove an Arzela-Ascoli criterion for f~ as a function 
of the initial configuration. Unfortunately, the strongly compact sets of IL 2 are 
not rich enough to carry the initial distributions, #z,~, thus we have to show 
that some time averages, like f~=iR~,~g are weakly equicontinuous functions 
of the initial data, o-elL 2. The very same continuity property allows us to con- 
clude Theorem 1 from (3.1), cf. Funaki [15]. The proof of this compactness 
criterion reduces to a study of the linearized system of (1.3); its parabolic struc- 
ture is the key of our investigations. Let us remark that (1.3) is attractive in 
a very strong sense, at least if c~=0. Indeed, if O ' k ~  k for all k, then ( o k ( t  , 0") 

N (ok (t, 6) for all k and t > 0. This strong attractivity breaks down if ~ > 0, thus 
we believe that the parabolicity of the linearized system is a useful, general 
condition for continuous spin systems. 

Now we are in a position to enter into some further, more technical details. 
Taking into account (2.16), the Dirichlet form of II~ we can simplify (3.3) in 
a very radical way. We obtain that 

~Gfd#z=  - 1  Z ~ ~(2i--2k)(Ojf--Okf) d#~. 
k ~  d [ j - k [ =  1 

(3.11) 

This fundamental identity scales into 

~ f d # z , . =  - 1 J'J'(V, 2~(x), VflDf(x, a)) dx #.~,~(da), (3.12) 

where )~ = I~ 2, ~ denotes the lattice approximation of the gradient of a function, 
( . , - )  is the usual scalar product  in IR a, and lD f  is the functional derivative 
of f More exactly, let el, e 2 . . . .  , e a denote the unit vectors of our system of 
coordinates in IRe, then 

V~ a(x)=1 ~ ei[a(x + eei)_a(x) ] (3.13) 
i = 1  

if a: IR a ~ IR is a scalar, while 

d 

V* qo(x) = 4  ~ [(Pi(x--gei)--qoi(x)] 
b i = 1  

(3.14) 

if (p = e 1 (p l + e2 q~2 + ... + ea (Pa is a vector field. Notice that V* is a lattice approx- 
imation to - d i v ,  and A~= - V *  V~, that is 

d 

A~ ~o(x)= e -2 ~] [p(x+eei)--2cp(x)+o(x-eei)] .  (3.15) 
i = 1  
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We are using the following notation of functional (variational) derivatives. Let 
Z~11~ denote a convex set and define IDa(Z) as the space o f f :  S ~ N  such 
that if a, ~ ~ Z and 5 = a -  c7, then 

1 

f (a)-- f ( f f )  = ~ ~ 6 (x) IDf(x,  # + q 6) d x d q, (3.16) 
0 

where K)f: S--,lL2_e is strongly continuous. If S is dense in 112 then lDf  is 
uniquely defined. If S=f2~, as in (3.12), then IDf(x,  a)=lDf(y ,  a) if xeC~(y) 
is a natural convention we accept, that is, lDf(x,  a )=e  -~ Of(a)/O~r(x) in this 
case. 

Now we are in a position to identify the limit (3.1). In view of (2.25), F' 
defines a one-to-one map of 1I 2 onto itself by F'(2)(x)=F'(2(x)), and the law 
of large numbers, see (2.23), implies that ~(2)=g(F'(2)) if g~(12w(11~). Similarily, 
if 2~lHe ~ and fe(I;0 (112), then from (3.12) by the chain rule we obtain 

lim ~ ~ f d # ~ , ~  = - 1 ~ (grad 2(x), grad lDf(x,  F' (2))) dx 
~ 0  

D r ( x ,  2), 
= - ~  (grad 2(x), grad ~ ) ) 9  dx. (3.17) 

This means that ~t ~(2) = ~(2~), where 2~ is a continuous trajectory in IL~ satisfying 

2F"(2t(x)) c3t 2t(x) = A )or(x), 20 = 2 (3.18) 

in a weak sense. In view of the correspondence p=F'(2),  the Eqs. (1.6) and 
(3.18) are equivalent. Let us remark that (3.1)-(3.3) extend to some gr 
but ~ + g(F'(2)) in such cases, see 1-13]. Of course, both (2.23) and the solvability 
of (3.18) need a proof, but the crucial step is certainly the compactness argument 
allowing us to pass from (3.6) via (3.12) to (3.7). The basic ideas are exposed 
as follows. 

In the spirit of passing from (3.11) to (3.12), we interpret the rescaled process 
co~ as a trajectory in f2, satisfying 

1 ~ 2 dt+V~* dw~, OJ~o=aef2~, (3.19) dco~=~ A~ V'(oJ~) d t - ~  ~2 A, co~ 

where w~(x)=e~ej_kwkj(t /~ 2) if xsC~(ek), the sum being for j = k + e i ,  
i=  1, 2 . . . . .  d. This means that the current, see (1.3) is considered as a vector. 
The linearized equation (first variational system) of (3.19) is obtained by differen- 
tiating both sides of (3.19) with respect to some parameter of the initial configura- 
tion. We get 

1 - -~  A 2 ut(y), (3.20) ~tu~(y)=~ A~[at(y) ut(y)] 2 

where (3 t = c?/~? t, at(y)= V" (co~(y)). Let Pa = p,(s, x ; t, y), 0 <-_ s < t, x, y elR d denote 
the fundamental solution to (3.20), that is, ut=pa(s, x; t,.) satisfies (3.20) for 
t>-_s with initial condition pa(s, x; s, y)=e-d  if y~C~(x), and pa(s, x; s, y)=0  if 
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yr Since pa is just the functional derivative of co~(y) with respect to co==, 
by the chain rule we obtain a representation for IDIR~,= in terms of p,, namely 
if f==lR=,~g, z >0 ,  then 

where 

IDA(x, o-):E[Y~=(0, x, o-, g)lco~:a], o~Q~, g~lDb(Q=), 

oO 

eZS-Zt Y~=(s,x,a,g)= ~ ~pa(s,x;t,y) Dg(y, co~)dydt. 
S 

x~lR a, (3.21) 

(3.22) 

In view of (3.16) and (3.22), the compactness criteria we need for f= and V=IDf= 
can be reduced to some regularity properties of the fundamental solution, p,. 
The very same estimates are sufficient to prove the equicontinuity of S ~t g d#a,~ 
as a function of t >0.  In the next two sections we prove some a priori bounds 
for Y2 that do not depend on e > 0 and the Wiener processes w~, as well. Since 
(3.20) is a parabolic equation, we do not need too much information on its 
coefficient, measurability of at and the obvious bound [1-at(y)[  < c <  1 will do. 
The methods of [12-14] are simplified by using the backward equation associat- 
ed with (3.20) and the perturbative treatment of the problem will be combined 
with interpolation of operators in a sense of M. Riesz and Stein. 

4. The Energy Inequality 

In this section we are going to develop 1L2-estimates for a backward equation 
associated with (3.20). Suppose that we are given two continuous trajectories 
in f2=, a= and hs, s>O, such that [as(x)-l[<c for every x and s with some 
c < 1 ; z > 0, e > 0, e > 0 are arbitrary constants. We are interested in the following 
equation, 

-O=u=+ zu==l asA=u=-2 e2 AZ u= + h=, (4.1) 

the reason is very simple. Our fundamental quantity, Y~ satisfies (4.1) with as(x) 
= V"(c0] (x)) and hs(x) = I13 g (x, co==). 

We start with some elementary vector calculus on the lattice. Remember 
that if u and v are vector fields, then 

( u, v ), = ~ O,(x) ( u(x), v(x) ) ,ix, (4.2) 

and ]u[ 2 = (u, u)~. In the forthcoming calculations the following properties of 
our weight function 0r will be exploited. Since -O'(x)<O(x) for every x > 0 ,  
we have 

[grad 0~(x) l <[r l  Or(x), (4.3) 

0r (y) = 0r (x) exp (I r x -  r y 1) (4.4) 
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for every x, yelR ~ and r~N,  whence 

I O~(x)-Or(y)l <_ [ r x - r y l  e x p ( l r x - r y l )  O~/2(x) O~/2(y). (4.5) 

The energy inequality for (4.1) can be localized by means of the following three 
lemmas. 

Lemma 1. I f  lerl<__l and lulr<oo, Ivlr<oe with some r~lR, where u: ~a--~Rd 
is a vector field, while v~lL 2 is a scalar, then for every b >O we have 

1 2 2 I(u,V.v).-(V*u,v)rl<=glul~+3clbr IvlL [] 

Proof Let ul, u 2, . . . ,  U d denote the coordinates of u. Since V* is the formal 
adjoint of V~ with respect to the usual scalar product ( -," )o, an easy calculation 
yields 

(u, V~ v)r = I V* E0~(x) u(x)] v(x) dx 

= (V* u, v)~ + _1 ~ ~ [0, (x - e ei) - Or (x)] ui (x) v (x) d x, 
8 . 

whence by (4.3), (4.5) and by the Schwarz inequality we obtain 

d 
I(u, V ~ v ) , - ( V * u ,  v),l<=3r ~ luilr Ivlr, 

i = 1  

which completes the proof as 2 u v < u2/b + b V 2. [] 

Lemma 2. I f  ler[ < 1 and u, wlI~(Na), then for every b>O, 

(bI, A ~ V ) r S ( A e u ,  V)r-~- ~ lul2 +9b(rd/e) 2 Ivl 2. [] 

Proof Since A s is a symmetric operator, we have 

(u, A.v)~=I d~[O~(x) u(x)l v(x) dx 

= ( A~u, v)~+e -2 Y' ~[O,(x + eeO-O~(x)] u(x + eei) v(x) dx 
i = 1  

d 

+ e -2 ~ ~ [ O~(x- e eO-- Or(x) ] u(x - e ei) v(x) d x, 
i = l  

whence by (4.3), (4.5) and by the Schwarz inequality we get 

(u, A~v)r<(A~u, v ) r+6d  Jr[ a -1 lulr Ivl~, 

which implies the statement by a direct calculation. [] 
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Lemma 3. Let u and v be vector fields such that lull< o% Iris< o% and [ e r l < l ,  
then for each b > 0 we have 

(u, V~V*v),<(V~V*u, V)r+17 - ]u]~ + 36b(rd/e) 2 ]vl 2. []  
0 

Proof In a very similar way as above, we obtain 

<u, v:  v>r = [Or(x) u(x)], dx 
d d 

= e - 2  Z Z IOr(x-l-cej--~ei) ui(x+eej--eei) vj(x) dx 
i=1  j = l  

d d 

- e  -2 ~ ~ ~O~(x-ee~) u~(x-ee3 vj(x) dx 
i = l  j = l  

d d 

- e  -a ~ ~ SOr(x+eej) ui(x+eej) v#(x) dx 
i = l  j = l  

d d 

+ : 2  Z Z Ior(x) u,(x)  j(x) dx 
i=1  j = l  

d d 

_-< (V~ V* u, v) +12  -r ~ ~]u l i l vb  
s 

i=1  j = l  

where ui and vj are the coordinates of u and v, respectively, which completes 
the proof. []  

Now we define the current of a configuration, that is, an inverse operator 
of the discrete divergence. 

Lemma 4. To every aeg2~ there corresponds a vector field, v=N~a ,  such that 
the coordinates of v belong to f2~, - V * I K ~ a = a  is an identity, and I lK~lr  
<Krlalr/2difr>O, lre[<=l, whereKrdependsonlyonrandd.  [] 

Proof In view of the additivity of I(~, we may, and do assume that a vanishes 
outside of an octant, say 

0~ + = [x~lRd: (x, eq)> --e/2, q = l ,  2, ..., d3. 

We define v in terms of a directed random walk, Xn, on Z d being a Markov 
chain such that P [ X n + l = j J X n = k l = l / d  if j=k+eq,  q = l ,  2 . . . .  ,d, all other 
jumps are excluded. Let i, ke]gd, j = k + eq and denote pi(k, j) denote the probabili- 
ty that our walk, started from i, hits both k and j ;  if (k, j) is a negatively oriented 
bond, i.e. j = k-eq ,  then pi(k, j)= -Pi(J, k) by convention. Observe that 

k ( 0  if i=t=k 
2 Pi(,J) = 

j : l j_k[=l  ~ 1 if i=k '  
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therefore K ,  a = v defined by 

d 
v(x)=e  ~ e o ~ a(ei) pi(k, k+eq) if xsC,(ek)  

q = 1 i e Z  a 

satisfies --V* v = a. On the other hand, pi(k, j ) =  0 if k - i ~  0 +, and if q~ (k) denotes 
the sum of the coordinate of k e Z  d, then 

while 

d 
~ p i (k ,k+eq)=l  for ~p(i)<=m, 

q = l  (p (k)  = m 

d 
Z P,(k, k + eq) <__ 1 + go (k), 

�9 + 

q =  1 ~ 0 ~  

thus the Cauchy inequality implies the statement by a direct calculation. 

The main information on the dynamics is contained in 

Lemma 5. Suppose that a~f2~, ] a ( x ) -  1] < c <  1 for all x, and let 

[]  

l L a v = - z v - ~ g ~ ( a V  ~ v) §  ~2 Ve Ae V~* v, 

where z_>0, c~_>0, 5>0  and v: ~d ~ N J  is a vector field. There exists a constant, 
C, depending only on c, d, c~ such that 

2 (v, lLav§ Veh)r§ 2z Ivl2 § IV*vl2 ~2Cr z Ivl2 § C Ihl~ 

whenever h E f2~ and I e r I < 1. [] 

Proof. Lemma 1 and Lemma 3 imply that 

2(v, L a v +  V~h)r+ 2z Iv[~ 

- ( l - c )  IVy* vl2-~e 2 IV~W vlZ+2(V*v, h} 

+ ( l+c )b?  1 Ivl~+3r2(l+e)dba IV*vl~+b; 1 Ivl~ 

+ 3dr2b2 IhlZ §  ~ Iv12 + 36~dZrZ b3 [V, W v l  2 

<[(l  +c)b~l  + 2b;~ +eeZb31] [vlZ +[b4~ +6drZb2] [hi 2 

+ [3(1 +c)  dr z b 1 + b 4 - ( 1  - c ) ]  IV* v[~ z 

+ [ 3 6 e d 2 r 2 b 3 - e e  2] ]V~ V* vl 2, 

where bl, b2, b3, b 4 a r e  arbitrary positive numbers. The statement follows by 
setting b 4 = (1 - c)2/2, b3 = (e/6 r d) 2, b 2 = 1/r 2 and b 1 -- (1 - c) 2 [6 (1 
+ c) d r2] -1. [] 
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Suppose now that u, satisfies (4.1) for s_< T_< o% and z_z_> '>Zr= Cr 2, ]er] =< 1, 
then Lemma 5 implies immediately that 

T 

Ig~uolff +c(1-c)  f. exp(2z~s-2z'  s) IA~usl 2 ds 
0 

T 

<exp(2GT--2z '  T) ]V~ UT] 2 + C ~ exp(2 z, t - -2z '  t) [ht]~ dr. 
0 

(4.6) 

Multiplying (4.1) by 2 u~, from Lemma 2 we obtain 

- G  lu~12 + 2z lUs[2<=( 1 +c) lug IA~ u~l~+2 lul~ [h~l~ 

2 0~ 2 
--O;g 2 IZleUsl r "q-~ g [u,12 + 9b~(rd) 2 ]A~u~[ 2, 

whence by (4.6) 

lUolff <=exp(2z, T-- 2z ' T)Ulu~lff +lV~ u~123 
T 

+ 2 C  ~ exp (2z~ t -  2z' t)[h~] 2 dt. 
0 

(4.7) 

(4.6) and (4.7) yield a priori bounds for f~, Df~, V~lDf~ and ~?t~tgd#~,~. The 
weak equicontinuity off~ is based on 

Lemma 6. Let B denote a ball of IL 2. For every B, and for each f l>0,  r > 0  
and K <  oo there exists a weak neighborhood of  0 in IL 2, U~(~ol, qo 2 . . . .  , (p,), such 
that 1~o(6)l<fl whenever ~o~2~, I~ol_~+lV~ol_~<K and 
aeBc~ U,(~Ol, q,~ . . . .  , ~o,). [] 

Proof Let H~(K) denote the set of ~o~lL2~ such that ~0~2~ for some e > 0  and 
[V~o[_~+l~ol_~<K. Since II~o-lr<[o-I, this definition makes sense. In view of 
the F. Riesz criterion of compactness, the set H~(K) is precompact in the strong 
topology of IL2(IRa), and hence also in that of ILL~/2(Na). Indeed, estimating 
~O_,/2(x) ~02(x)dx separately in the ball [xMRa: Ixl<=2n/r], and outside of it, 
since e -" < 0 (u) < 5 e-", we obtain that 

[qol2r/2~e" Icp[2 +Y/2 e-" Iqol2-r~2K Y/4 I~010 

if qo~Hr(K). Therefore, for each 7 '>0  we can select a finite sequence, 
~01, q)2, --., % from Lz_r/2 in such a way that ]q)-q)k]-~/2<7' for each q)EHr(K ) 
with some k = l ,  2 . . . . .  n. Let 6 e B n  U~., then 

I q~(6)[ ~ I q o ( 6 ) -  qok(6) l + I q~k(6) l ~ / +  ~,' sup I ~ I-r/2, 
o'~B 

which completes the proof. [] 
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To prove the equicontinuity of V~IDf,, we have to compare two solutions, 
u~ and zi~ to (4.1) with different a~, h~ and d,, ff~ corresponding to different initial 
configurations, a and 6. Since 

a~ As u~-- d~ A ~ ~ = (a~- d~) A ~ Us + d~ A~(u~- u~), 

from (4.6) 

IV~uo-V, Uol~<C l e - e t l h ~ - K t l 2 d s + C  e-eSl(a~-a~)A~u~12ds (4.8) 
0 0 

where 0_< ~ < 2 z -  2 z, and I e r I ---- 1. For  the second term we need an IY-bound 
with some q > 2. 

5. Singular Integrals and Interpolation 

In this section we investigate an integral operator,  P~,~, 

oo 

P,,z h(s, x )=  ~ e~S-~t~pa(s, x; t, y) h(t, y) dy dr, 
0 

(5.1) 

where z > 0  and p, denotes the fundamental solution of (3.20). Remember that 
P,.~ depends also on e > 0, we need bounds that do not depend on e. Let Rd+ 

[0, oo) x IR d, and introduce q = ILr(~+) as the space of locally integrable h: Rd+ 
IR with norm 

oo 

IUr(N:+) into itself, at least We want to prove that A~P~,~ is a bounded map of q d 
if q > 2 is small enough. 

Lemma 7. For each q > 2 we have a constant, Cq such that Cq --, 2 as q ~ 2 and 

IA~Pl,ohlo,q<Cq Ihlo,q /f heLgo(Rd+). []  

Proof. The main problem is that of the boundedness of A~P1, o, that is the point 
where singular integrals enter the stage, see the Appendix of [29]. Following 
this approach, the statement has been verified if d =  1, see Lemma 5 in [14], 
but Pa factorizes if a = 1" 

d 

pl(s, x; t, y)=  I~J~(s, xl; t, Yi), 
i = 1  

where xi and Yi denote the coordinates of x, y~Na, and J~ is the associated 
one-dimensional kernel. Since the functions of type 

d 

h(t, y)= ~p(t) 1-[ cp(yi) 
i = 1  
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are obviously dense in IL~(IRe+), the above factorization property reduces the 
statement to the one-dimensional case by a direct calculation. 

In view of the Riesz-Thorin interpolation theorem, see [28], the proof  is 
completed by showing that C2--2 may be assumed. Since P~,oh satisfies (4.1) 
with as = 1 and z = 0, we have 

- o s  IV~ u~l 2=  - Id~u~12-~  ~ ~ IV~A~us[2--2~A~u~, h~)o, 

whence ]A~ul0,2__<2 [h[o,2 by the Schwarz inequality. [] 

Now we are in a position to prove the main tool of the compactness argu- 
ment. 

Lemma 8. Suppose that as is a continuous trajectory in f2~ satisfying [as (x ) - i I  
< c < 1, and let C and Cq, q > 2 denote the constants of  Lemma 5 and Lemma 7, 
respectively. I f  c Cq < 2  then we have a constant, Mq, depending only on q and 
c such that 

IA~P~,zhl~,q<:Mq [h[~,q for heL~(Ra+), z>:Cr 2, [ e r [ = l .  []  

Proof The bounds (4.6), (4.7) imply that (4.1) is uniquely solved in 11. 2 whenever 
h~lL2(Na+), Ira[ < 1, z >  Cr  2, and the solution is given by us(x)= Pa,z h(s, x). Since 
f2~ ~IL~(N a) consists of bounded functions if r <0,  this uniqueness result extends 
to all q > 2 and r __< 0. In particular, as a~ = 1 + (a~- 1), we have 

P~,zh=P~,zh+�89 P~,~(a-1) A~P~,~h, (5.3) 

where a - 1  = as (x ) -1  is acting as a multiplication operator, whence 

Ie~,~ hlr,q ~ Cq Ihlroq+lcCq IP~,= hit,q, (5.4) 

at least if r = z = 0, see Lemma 7. Letting q go to two, we obtain the statement 
in this particular case, the general case follows by interpolation. Indeed, replacing 
dt dx  by e -zt dt Or(x)dx, and using the Stein interpolation theorem, see Theo- 
rem 4.1 in [-27] or Theorem 2.11 in [26], we can extend Lemma 7 to all z > 0  
and r~lR with the same Cq, which completes the proof. []  

Now we are in a position to start the proof  of Theorem 2. 

6. The Compactness Criteria 

This section summarizes the final information on the microscopic dynamics. 
Just as before, co7 and c5~ are different strong solutions to (3.19) with identical 
Wiener trajectories, at = at(y) = V"(ogT(y)), I a t ( y ) -  1[< c < 1, Pa denotes the funda- 
mental solution to (4.1), and Kr and C are some universal constants, see Lemma 4 
and Lemma 5. 



308 J. Fritz 

We  shall p rove  T h e o r e m  2 first for some funct ions of  class ID> Let  Z c 1L 2 
be convex,  and  denote  DL(X ) the space of g e D , ( S )  for which we have  some 
r > 0 and  q > 2 such tha t  

IIg[I =sup Ig(cr)l < m, I/Dgll_~=sup IIDg(', ~r)l_,< oo, (6.1) 
o ' ~  v o'~-Y' 

L~(Dg)= sup IlDg(., o-)-Dg(- ,  ~)l-~(Io-- ~13-* < oo, 

IIDgll _~,q = s u p  [~  O_~(x) I El g(x, a) l ~ dx]l /q< o0. 

(6.2) 

(6.3) 

T h e o r e m  1 can be extended to funct ions of  class I D ' ( Z )  defined as the set of  
weakly  con t inuous  gelDs(S)  such tha t  besides (6.1), with the same r > 0 ,  we 
have  

IIV~IDgll _~= sup IV~IDg(., o-)1 _r< c~. (6.4) 

Finally,  let g, (o-) - g(CO,) if eo~ = o-, and  

xi(a,  g)= j e -=' g(coT)at, (6.5) 
0 

then D g t ( x ,  a )=Spa(0 ,  x; t, y) D g ( y ,  (ot) dy, and Yf(0, x, a, g ) = I D X ~ ( x ,  a, g), 
see (3.22). 

L e m m a  9. Let  r < 0, ] r ~ I < 1, z > C r 2 and g E ID s (0~), then 
(i) ~ 2 ~ 2 < 2 HIDgtllr + ]lVeDg, llr = e x p ( C r  t)[HE)gllr2+2 LIV~Dgllff], 

(ii) ][IDX~(., . ,  g)[]2+ ] [VeDX~( ' , ' ,  g ) [ ]2< -C(z -Cr2 ) - i  []Dg[I 2. [ ]  

Proof. Both  s ta tements  are direct consequences  of  (4.6) and (4.7). In  the case 
of  (i) we choose  z = 0 ,  T = t  and h = 0 ,  while T = o o  and h , ( y ) = D g ( y ,  COl) for 
(ii). [ ]  

The  following l e m m a  is based  on L e m m a  4. 

L e m m a  10. Let  r > 0, r e __< 1, z > C r 2 and g ~ IDs (~) ,  then 

oo -s t  e 2 21a 2 5 (i) c 0 - c )  5 e E[-[COt[r ICO~--o'] d t < K ~  l~/2a+=(2d/r) a, 
0 Z 

o9 

(ii) c ( 1 - c )  ~ e -et ~ -e 2 2 (.Tje 2 ]OJt--(Dt]r dt<-Kr ] m e -  ]~/2d, 
0 

oo 

(iii) c ( 1 - c )  5 e -~ '  [SDg t (x ,  a) A e 2 ( x ) d x l ) d t < l V ~ 2 1 2  IIDgll2-r. [ ]  
0 

Proof. In t roduce  the current ,  vt of  CO~ by v~ = IK~ a and  

1 ~ 2 
d vf (y) = ~ V~ [at (y) o~ t (y)] d t - ~- e V e A e CO~ (y) d t -- d w t (y), 
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where at(y)= [V' (co~(y))-V'(O)]/co~(y), thus co~ = -  V* v~, and the drift of v~ exp( 
- z t )  turns out to be ]Lay ~, thus the Ito lemma, Lemma 5 and Lemma 4 imply 
(i) by a direct calculation. The proof of (ii) is quite similar, but even simpler; 
the current of (co~- o5~)e-~t satisfies ~t v = ]L~ v with 

a~(y) = EV'(og~(y))- V'(o3~(y))] EeoC(y)- ~(y)3 -~ 

To prove (iii), let 

ut(y ) =~pa(O, X; t, y) A s }~(X) dx,  

and let vt denote the solution to Ot vt=lL~ vt with initial condition Vo = V~ 2, then 
- V* vt = ut e- ~t, whence by Lemma 5 

c ( 1 - c )  ~e-er - 2 
0 

which completes the proof of (iii) by the Schwarz inequality. [] 

The problems of weak equicontinuity reduce to Lemma 6; remember that 
Cq denotes the constant of Lemma 7. 

Lemma 11. For each/3>0, r<0 ,  K < o o ,  q > 2  such that cCq<2, and for every 
ball BcIL~ there exists a weak neighborhood U= U~(q~l, qo2, ..., %) of OelL 2 such 
that if [ r ~ q l < q -  2, z > 2 C r 2, g MD~((2~), cr, # e Q~, g? = ~ -  #, then 6 ~ B c~ U implies 

(i) IX~(a, g)--X~(#, g)l <fl  whenever I[lDglrr<=K, 
(ii) ]g~(o-)-gf(#)l <fi  if t +  IllDgllr+ IIV~lDgllr<K, 

(iii) IIDX~(', o-, g ) - IDXw #, g)l~ + [V~IDXg(', o-, g ) -V~DX~( . ,  ~, g)[~<B 
whenever IIIDgHr+ L~(g)+ ]]~)gllqr,q<=K. [] 

Proof In view of the definition of functional derivatives, we have 

1 

X~ (or, g)-- X~ (#, g) = ~ 6 (x) f ~)X~ (x, ~ + u 6, g) d u d x, 
0 

thus (ii) of Lemma 9 implies the conditions of Lemma 6, which proves (i). Similar- 
ily, 

1 

g~(~)--g~(#)=S 6(x) ~ ID g~(x, #+ugh) du dx, 
0 

whence (ii) follows in the same way. The proof of (iii) is a little bit more involved. 
Using a decomposition aA~u-dA~gt=(a-g t )A~u+dA~(u-~) ,  from (4.6) and 
(4.7) we obtain that the left hand side of (iii) is bounded by 3 C J1 + (3 C/4)J2, 
where 

J1 ~ e -et ]IDg(-, co~)--IDg(-, -~ = cot) k2 dt, 
0 

oo 

J2 = ~ e - ~s S 0r (x) I a~(x) - as (x) [2 [A~ P~.~ h (s, x)] 2 d x d s, 
0 
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~= 2 z -  2 C r 2, a,(x)= V" (e)~(x)), 8~(x)= V" ((5~(x)), h(t, y)= lD g(y, cot). In view of 
(6.2), the estimation of./1 reduces to that of J3, 

oo 
j 3 ~ _  I e - Z t  e -e  2 Ico,-co, l_r dt  

0 

=~6(x) ~ e-~t~p~(O, x; t, y) k(t, y)dy dt dx, 
0 

where k(t, y)=O_r(x)[cot(y)-cS~(y)], r < 0 ,  and a is the same as in the proof 
of Lemma 10. From (ii) of Lemma 10 we obtain that k is uniformly bounded 
in IL2_r(IR~+), (4.6) and (4.7) imply the conditions of Lemma 6, that is, J3 is small 
if 6sBc~ U. 

The second term, J2 can be estimated by means of Lemma 7 and Lemma 8. 
Using O,(x)=O2~(x)O_~(x) and the H61der inequality with powers q/(q-2) and 
q/2, we can bound J2 by a product of two factors such that the second factor 
is controlled by Lemma 8, while the first one turns out to be a power, 1 -  2/q, 
of J4, 

0o 

e - ~ t  0 J4 = ~ I ~'(Y)la,(Y)-a,(Y)12"/"-edY dt 
0 

=~6(x) ~e-e'~p~(O, x; t, y) h(t, y)dy dt dx, 
0 

where a and ~ are the same as above, r '=  - r  q/(q-2)> 0, and 

h (t, y) = 0 r, (y) ] V" (o) t (y)) - V" (ch~ (y)) [2 q/q -- 2 [-(D~ (y) -- e3 t (y)] - 1 

Since V'" is bounded by assumption, this h is uniformly bounded in IL~,(Nfl+), 
thus the proof of (iii) can be completed by repeating the argument above. [] 

The results of this section are sufficient to select a uniformly convergent 
subsequence from f~, IDf~ and from V~ IDf~, too. 

7. The Initial Distribution and the Limiting Equation 

The a priori bounds summarized in the previous section allow us to select 
convergent subsequences from f~ and V~ lDf~ as e ~ 0, thus (3.2), the law of large 
numbers for #~,~, is sufficient to pass to the limiting resolvent Eq. (3.7). The 
final identification of limit points of the resolvent, see (3.8) and (3.9), reduces 
then to the existence of the semigroup ~t defined by the limiting hydrodynamic 
Eq. (1.6). 

The study of the inhomogeneous Gibbs states #~ will be based on an auxiliary 
dynamics having /~z as its only stationary state. For each 2~f2 and aef2 we 
define a Markov process R(t) in f2 as the strong solution to 

dRk=�89 Rk(0)=ak, kE2g a, (7.1) 
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where Wk, ke2g ~ is a family of independent standard Wiener processes. Solutions 
to (7.1) can be constructed in the same, well known way, as to (1.4), see [5]. 
It is more remarkable that (7.1) is just the stochastic gradient dynamics associat- 
ed with the energy function H a =  H ( a ) - ~ ,  2k ak, thus #;. is a stationary measure 
of (7.1), provided that #;. does exist as a Gibbs state on t2. 

Since V is convex, it is quite easy to derive a priori bounds for (7.1). Using 
2 z ( x - 2 z  + y)<=x2-2z2 + y 2 we obtain 

dR~<2kRkdt--(1--c)R2dt+ 2 ~ (R2--R~)dt+dt+2Rkdwk 
I j - k l = l  

<=(2_2c)-2 2~dt_[c(l_c)+~d-1 2 Rk dt 

0~ 
+ ~  • R~.dt+dt+2Rkdw k. (7.2) 

I . / -kl= 1 

We also have a fairly effective coupling for (7.1). Let /~  denote another solution 
with initial configuration #~s and profile 2~s while the Wiener trajectories 
are the very same for both realizations. Like above, we obtain that 6k = (Rk--/~k) 2 
satisfies 

9~ 
d6k/dt<(2--2c)-2(2k--Xk)2--[c(1--c)+7d]6k+= ~, 6j. 

= 2 ij_k] = 1 
(7.3) 

In a stationary regime the left hand sides of (7.2) and (7.3) vanish in the mean, 
thus the following lemma can be used. 

Lemma 12. Suppose that 0 < b <  1/2d, and u, vsf2 satisfy 

(i) Uk <--_Vk+b ~, Uj for ke7Z. d, 
l j-kl=l 

then Uk < ~ Jk_jVj for all k, where Jk>-_O vanishes exponentially as Ikl~oo; J 
je2~a 

is given by (7.4). [] 

Proof. Since both uk and v k increase slower than any exponential rate, iterating 
(i) infinitely many times we obtain (ii) with 

d 1 -  1 Jk = (2 ~) -d S 1--2b ~, c~176 ei) cos@), k) dco. (7.4) 
C2~(0) i = 1 

The positivity of J is a direct consequence of its iterative construction, an expo- 
nential bound follows by integrating by parts. [] 

All the information we need about #~ is summarized in 
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Proposition 1. For every 2e(2 there exists a unique Gibbs state, l~z, specified 
by (2.15) as a Borel probability on s such that 

(i) ~a21~.(da)<-- K Z Jk-j(l+2]), 
I j - k ] = l  

where K depends only on c, ~, d, and b = e [ - 2 c ( 1 - c ) + 2 a d ]  -1. For 2, Ze(2 we 
have a joint distribution, #~,~ on g2 x f2 such that 

(ii) S~(ak--8k) 2 #zA(da, d~)<=K ~, Jk_j(2j--Z#) 2. 
Ij-k[=~ 

Consequently, if p~ = S ak g z (d a), then 

(iii) Ip~-F'(~k)12~K ~, Jk_j(2k--~j) 2, 
lJ k[= 1 

(iv) ~[ ~ (pk(ak--Pak)] 2 #z(da)<=K Z q~" 
k~Za k~l{ d 

Finally, F' admits a Lipschitz continuous derivative, F" is bounded, and it is 
bounded away from zero. [] 

Proof The basic idea is easy: since V is convex, each #~, 2el2 belongs to the 
domain of Dobrushin uniqueness, cf. [-7, 18]. In fact, we can follow a completely 
elementary argument. Suppose first that P4 has been defined already as a Gibbs 
state on ~2, and let I1~ ~ denote the generator of our auxiliary process, (7.1). 
The associated Dirichlet form can be written as 

ke,~a 

(7.5) 

Therefore, #~ is a stationary state of(7.1), thus (i) follows from (7.2) by Lemma 12. 
To prove (ii) we construct/~z,~ first as a stationary state of the coupled evolution, 
then (ii) follows from (7.3) via Lemma 12. Since /~x is certainly well defined 
if 2 equals a constant outside of a finite volume, (i) and (ii) extend by continuity 
to all 2 eQ  involving also the existence and uniqueness of #z. 

Suppose now that ~o: O--.IR vanishes at an exponential rate, and let q~(a) 
= ~ q)k ak, F~ (v) = log ~ exp (v qo (a)) #;~(d a), then 

F~(v) = ~ q~(a) exp(v cp(a)-- Fq,(v)) d #z = ~ ~o(a) d pz + v~o, (7.6) 

Fo (0) = 5 [ Y  ek - 2 (d (7.7) 

thus (ii) implies (iii), (iv), the uniform Lipschitz continuity of F' and the Lipschitz 
continuity of F" by a direct calculation. To obtain a lower bound for F ' ,  let 
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R. = ~ (Rk -- F' (v)), 0 lq. = ~ (Ok H -- v), where both sums are over C2. (0) c~ Z e, and 
observe that 

F"(v)= lim (2 n +  1)-d~ [ ~ (~rk-- F'(V))] 2 (7.8) 
n--~ oO k ~ C 2 n ( O ) Z d  

d R 2 = - R ,  OH, d t +  ~ 2R,  d w k + ( 2 n + l ) e d t .  (7.9) 
k E C 2 n ( O ) Z  d 

Starting (7.1) with initial distribution/~o, we obtain that ~/~ 0/7, d# ~ = (1 + 2 n) ~. 
Integrating by parts, we obtain an identity 

{ 0 d if ] j - k [ > l  
~ ( O k H - V ) ( O s H - v ) d p ~  2 +~V"(ak) d# ~ i f j = k  (7.10) 

- i f  I j - k ] =  1, 

consequently 

d#v _-> H.  d/~v o 2 S e . O & d # O _ i - 2  o 

> 2(2 n + 1)e-(1 +c+2c~d)(2n+ 1)d+ 2ed(2  n -  1) e, 

which proves F"(v) > 1 - c. []  

Now we turn to the existence problem of the limiting semigroup. In fact, 
we have two equations, 

Ot Pt = div [D (p,) grad Pt], (7.11) 

2F"(2t) 0t )or = A 2,, (7.12) 

they are related to each other by pt(x)= F' (2t(x)) and D (u)= 1/2F" (v) if u = F' (v). 
Suppose that Pt and 2t are classical solutions, and 0 < c~ < D < c 2, then 

at ]ptlZ~ < - - 2 q  Igradp,12 + 2rc2 Iptl~ [gradp, l~ 
< - c a  Igradp,] 2 +'(rc2/cl) 2 Ip, I if, 

whence for all r >__ 0 we obtain an energy inequality, 

Ip~lff + c ,  5 exp(% t - c 3 s  ) Igradpsl 2 d s < e x p ( %  t)]Pole, (7.13) 
0 

where c3 =(r  cScO 2. The equation for grad 2t is also self-adjoint, thus we have 
a second energy inequality, namely 

t 

]grad2tl~+c 1 ~exp(%t -c3s ) lA2~12ds<exp(c3 t ) Igrad2o l  2. (7.14) 
o 

Proposition 2. For each 2~1I-I } there exists a continuous trajectory, ptelL 2, t >O 
satisfying (2.20) with initial condition Po= d e v i l  given by a(x)=F'(2(x)).  More- 
over, if 2t=2t(x)=E(pt(x)),  where E is the inverse function of F', then )otelH~, 
I grad 2t] 2 _-< I grad 2o 12 exp(% t) for all t > O, r > O, and there is no other weak solu- 
tion having such properties. [] 
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Proof For smooth initial data one can construct classical solutions by means 
of a Galerkin approximation, see [19]. If 2o varies in a bounded set of ~I~ 
then (7.13), (7.14) and the Riesz criterion of compactness show that Pt remains 
in a strongly compact set of IL 2 for finite time. From (7.14) we see that p, 
is an equicontinuous function of time, thus the Arzela-Ascoli theorem implies 
the existence of weak solutions satisfying the desired lilt-bound, see (7.13) and 
(7.14). 

Suppose now that Pt and fit are weak solutions in the above sense, and 
Po = fo. Let 6t = P t -  f i t ,  and introduce co t by 

co t = 1 i grad [E(ps) - E (f,)] d s. (7.15) 
0 

Observe that div cot = at in the weak sense. Indeed, for smooth q) 

t 

(grad qo, cot) d x = �89 5 5 (grad q~, grad [E (Ps)- E (fs)]) d x d s 
0 

= - �89 i S [A q)] [E (p~) -  ~ (fs)] d x d s = - S ~o (x) ~t (x) d x, 
0 

see (2.20), consequently 

et [cot ] 2 = ~ 0~ (x) (cot, grad [E (Pt) - -  E (flit)I) d x 

____ - 2 q  16tl?+2czr Icot[~ 16~1~_-<(cJ2)Icot[~, 

whence cot = 6t = 0 by the Gronwall lemma. [] 

Now we are in a position to complete the proof of the main result. Consider 
first the scaled distributions #z,, corresponding to #z with 2k=I~ )~(~k). (iii) of 
Proposition 1 implies (2.22), while (iv) and the Markov inequality show that 
q~(a) converges also in probability to ~ cp(x)po(x)dx. In view of (i), #),,~ is tight 
in the weak topology of 1I:~, thus (2.23) extends from ~o(]L~) even to I12~,(S) 
by the Stone-Weierstrass approximation theorem, where Z is a union of the 
increasing balls B, CLZe such that #z,~(B,)~ 1 uniformly in e >0  as n ~  oo; thus 
we have (3.2), (3.3), and we can also pass to (3.7). The uniqueness of the limiting 
resolvent Eq. (3.7) follows from the existence of IP t as a strongly continuous 
contraction semigroup in IE~(~Ie~), see Proposition 2. Some more technical details 
of the proof are given in the next section. 

8. Proof of Theorems 1 and 2 

First we prove a variant of Theorem 2. 

Theorem 3. Suppose that 2~I-I~ and g%lDL(f2~)for each e > 0 such that the norms 
(6.1)(6.3) remain bounded as ~ ~ O. I f  we have some geE)s(lL 2) such that 

(i) liturgY(or) #~,~(da)=~(2) for 2elliS, 
~ 0  
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and Pt~-Pe, t > 0 solves (2.20) with Po (x)= F' (2 (x)), then 

(ii) lira ~ ~* g~ (a) #~,~(d a) = ~(2,), 
e--+O 

where 2,~Lz~ is defined by p,(x)=F'(2,(x)). [] 

Proof In view of (i) of Proposition 1, for every increasing sequence of balls 
B, of IL 2 we have another sequence of balls, B, c IL~ such that if Z = U B,, Z = U B,, 
then 2eE implies #~,~(~)= 1 for all e> 0. The convention g~(a)=g~(I~ a) extends 
g~ to ]Lie in a trivial way. Consider the functions f~: 11, 2 x (0, c~) --, IR, 

f~(o', z)= ~e -~ t~  t g*(a) dt, 
0 

lDf~: IL 2 x (0, co) --. IL 2_ e and V~ Df~: LZe X (0, O0) ~ IL z_ e" Lemma 9 and Lemma 11 
imply that each of them is a bounded and equicontinuous function of (a, z)~B 
x [Zl, z2] if B is a ball of 1L 2, and 0 < z l < z 2 < o o ;  therefore the Arzela-Ascoli 

theorem applies. We can select a subsequence, e, ~ 0 such that s z)---,f(a, z), 
Df~(' ,  a, z) -+hl( ' ,  a, z), V~Df~(-, a, z)-+h2(',  a, z) along ~. for each a c Z  and 
z>0 ,  and the convergence is uniform on compacts of type / ~  x [z~, z2]; Df~ 
and V~Df~ converge in the topology oflL2e . Moreover, f hx and h 2 are continu- 
ous on each compact /3., x [z~, z2], consequently the definition of functional 
derivatives implies that feID~(Z) and hl=]Df  Similarily, as Df~ and V~Df~ 
converge simultaneously, we see that ha is weakly differentiable, and h2 = grad h,. 
Since V~ )~ converges strongly to grad 2, Proposition 1 yields 

lim ~f,.(a, z) #a,~.(da)=f(po, z) if z>O, 2eZ, (8.1) 
n ~ o o  

where Po (x) = F' (2 (x)), while 

lira SS (v~. 2(x), v~ IDf~,(x, a, z)) dx #a,~.(d a) 
n ~ r l 0  

=~(grad  2(x), grad lD f (x, Po, z) ) dx (8.2) 

for all z > 0 and 2~ Z c~ IH 1. This means that we can pass to the limiting resolvent 
Eq. (3.7), thus the uniqueness of solutions to (7.3)-(7.4) implies that 

co 

f(Po, z)= ~ e -zt ~(2t) dt; 
0 

thus (iii) of Lemma 10 implies the equicontinuity of ~tgedlot~, ~ as a function 
of time, which completes the proof. [] 

To conclude Theorem 2 from Theorem 3, we have to show that the family 
of time evolved measures, #z,, ~t, e > 0, is a tight one. 
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Proof of Theorem 2. Let h ( t ) - - ~  t IGl~ ~,~(d ~), then 

h' (t)= 2 ~ S (A~ 2(x)) p~(O, x; t, y) O~(y) ~o~ (y) d y dx d #~,~, 

where a(t, y)= V"(co~(y)). Lemma 10, Proposition 1 and the Schwarz inequality 
imply that if r > 0 and r e __< 1 then 

t + l  

[h(t)+(h'(t)) 2] dt<C~(2, t), t>O, 
t 

where the bound does not depend on e > 0. Therefore, again by the Schwarz 
inequality, h(t) < h(s) + C~/2 if t < s < t + 1, thus 

IE [I ~o~ I~ I o~o = ~] nz,~( d ~) < C~( 2, t) + C)/~ (,~, t). (8.3) 

This means that we can select a ball, Bz,t such that /lz,~t(Bz,t) is arbitrarily 
close to one for all e >0,  which completes the proof  by the Stone-Weierstrass 
theorem. []  

The following statement is slightly stronger than Theorem 1. 
Theorem 4. Let gelD~(L 2) and suppose that ~O~o~f2~ converges weakly on IL 2 to 
some po~FIle, then ~t g(e)~o)_..g(pt) as e~O, for each t>0 ,  where Pt solves (2.20) 
with initial condition Po. [] 

Proof. In view of (ii) of Lemma 11, for every ball B, and for each fi > 0 there 
exist a 7 > 0  and a finite sequence, (Pl, q~2, ..., (P, from lLZ_e such that 

I~tg(a)-~tg(I~po)l<fi  if a~O~, a - p o 6 B ,  I~0k(O-)--qok(po)l<7 (8.4) 

for k =  1, 2 . . . .  , n. Suppose first that po=F'(2) ,  and a is distributed by/~,~; by 
the law of large numbers, see Proposition 1, it follows that 

lim [S ~t  g (a) #,~,~ (d a) - ~t  g (I~ Po)] = 0. 
e-+O 

(8.5) 

On the other hand, if a=co~, then (P(o~)--'cP(Po)for each q)EL2e, thus co S 
is bounded in IL~, consequently 

lim [-~t g ( o ~ ) _  ~t  g (i t Po)] = 0, (8.6) 
e--~O 

which reduces the problem to Theorem 2. []  
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Remark. The weak equicontinuity property expressed by (8.4) allows us to extend 
both Theorem 2 and Theorem 4 to all initial data, po=F'(2) such that (2.20) 
is uniquely solved. It is not really interesting, but it seems to be nontrivial 
to decide if g~lD" could be replaced by g~tI;w in Theorem 4. 

References 

1. Aronson, D.G.: Bounds for the fundamental solution of a parabolic equation. Bull. Am. Math. 
Soc. 73, 890-896 (1967) 

2. Aronson, D.G., Serrin, J.: Local behaviour of solutions of quasilinear parabolic equations. Arch. 
Rational Mech. Anal. 25, 81-122 (1967) 

3. Boldrighini, C., Dobrushin, R.L, Suhov, Yu.M.: The hydrodynamic limit of a degenerate model 
of statistical physics. Usp. Mat. Nauk. 35.4.152 (1980 short communication, in Russian) 

4. Boldrighini, C., Dobrushin, R.L., Suhov, Yu.M.: One-dimensional hard rod caricature of hydrody- 
namics. J. Stat. Phys. 31, 577-616 (1983) 

5. Daleckii, Yu.L., Fomin, S.V.: Measures and differential equations in infinite dimensional spaces 
(in Russian). Moscow: Nauka 1983 

6. De Masi, A., Ianiro, N., Pellegrinotti, S., Presutti, E.: A survey of the hydrodynamical behaviour 
of many-particle systems. In: Lebowitz, J.L., Montroll, E.W. (eds.) Nonequilibrium phenomena 
II: from stochastics to hydrodynamics. Stud. Stat. Mech., pp. 123 294. Amsterdam: North-Holland 
1984 

7. Dobrushin, R.L.: Prescribing a system of random variables by the help of conditional distributions. 
Theory Probab. Appl. 15, 469M97 (1970) 

8. Dobrushin, R.L.: On the derivation of the equations of hydrodynamics. Lecture, Budapest 1978 
9. Dobrushin, R.L., Siegmund-Schultze, R.: The hydrodynamic limit for systems of particles with 

independent evolution. Math. Nachr. 105, 199-244 (1982) 
10. Donsker, M.D., Varadhan, S.R.S.: In preparation (1987) 
i1. Fritz, J.: Local stability and hydrodynamical limit of Spitzer's lattice model. Commun. Math. 

Phys. 86, 363-373 (1983) 
12. Fritz, J.: The Euler equation for the stochastic dynamics of a one-dimensional continuous spin 

system. Heidelberg: Preprint 1986 
13. Fritz, J.: On the hydrodynamic limit of a scalar Ginzburg-Landau lattice model: The resolvent 

approach. In: IMA Volumes in mathematics, vol. 9. Hydrodynamic behaviour and interacting 
particle systems. New York Berlin Heidelberg: Springer 1987 

14. Fritz, J.: On the hydrodynamic limit of a one-dimensional Ginzburg-Landau lattice model: The 
a priori bounds. J. Stat. Phys. 47, 551-572 (1987) 

15. Funaki, T.: Derivation of the hydrodynamical equation for a 1-dimensional Ginzburg-Landau 
model. Nagoya University: Preprint 1987 

16. Guo, M.Z., Papanicolau, G.C., Varadhan, S.R.S.: In preparation (1987) 
17. Kipnis, C., Marchioro, C., Presutti, E.: Heat flow in an exactly solvable model. J. Stat. Phys. 

27, 65-74 (1982) 
18. Kfinsch, H.-R.: Decay of correlations under Dobrushin's uniqueness condition. Commun. Math. 

Phys. 84, 20-222 (1982) 
19. Ladyzenskaya, O.A., Solonnikov, V.A., Ural'ceva, N.N.: Linear and quasilinear equations of para- 

bolic type. AMS Translations of Mathematical Monographs, No. 23. Providence: AMS 1968 
20. Morrey, C.: On the derivation of the equations of hydrodynamics from statistical mechanics. 

Commun. Pure. Appl. Math. 8, 279-327 (1955) 
21. Papanicolau, G.C., Varadhan, S.R.S.: Boundary value problems with rapidly oscillating coeffi- 

cients. In: Fritz, J., Lebowitz, J.L., Szfisz, D. (eds.) Random fields, vol. II, pp. 835-853. Amsterdam: 
B61yai Mathematical Society and North Holland 1981 

22. Presutti, E., Spohn, H.: Hydrodynamics of the voter model. Ann. Probab. 11, 867-875 (1983) 
23. Rost, H.: Non-equilibrium behaviour of a many particle system. Density profile and local equilibri- 

um. Z. Wahrscheinlichkeitstheor. Verw. Geb. 58, 41-55 (1981) 
24. Rost, H.: The Euler equation for the one-dimensional zero range process. Lecture, Minneapolis 

1986 



318 J. Fritz 

25. Sinai, Ya.G.: Evolution of local equilibrium Gibbs states and the Euler equation. The one-dimen- 
sional case, (in Russian) (1986) 

26. Spohn, H.: Equilibrium fluctuations for some stochastic particle systems. In: Fritz, J., Jaffe, A., 
Sz/tsz, D. (eds.) Statistical physics and dynamical systems, pp. 67-81. Basel Boston: Birkh/iuser 
1985 

27. Stein, E.M., Weiss, G.: Interpolation of operators with change of measures. Trans. Am. Math. 
Soc. 87, 159-172 (1958) 

28. Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean spaces. Princeton: Princeton 
University Press 1971 

29. Stroock, D., Varadhan, S.R.S.: Multidimensional diffusion processes. Berlin Heidelberg New York: 
Springer 1979 

30. Yoshida, K.: Functional analysis. Berlin Heidelberg New York: Springer 1980 

Received September 12, 1987; in revised form August 1, 1988 


