
Probab. Th. Rel. Fields 81, 275-290 (1989) Probabmty 
T h e o l ' y  ~d~,~d r~dd, 
�9 Springer-Verlag 1989 

Laws of Large Numbers for Semimartingales 
with Applications to Stochastic Regression* 

A. Le Breton 1 and M. Musiela 2 
1 University of Grenoble, Laboratoire IMAG-TIM3, BP 68, F-38402 Saint-Martin d'Heres Cedex, 
France 
z University of New South Wales, Department of Statistics, P.O. Box 1, Kensington, 
New South Wales, Australia 

Summary. Strong laws of large numbers for matrix-normalised vector-valued 
local martingales are established. The results are derived from strong laws 
for positive local submartingales and purely discontinuous local martingales 
and a Borel-Cantelli-type lemma for local martingales of finite variation. 
The multivariate strong laws are applied to study strong consistency of esti- 
mates in stochastic linear regression models. 

1. Introduction and Notations 

The general aim of this paper is to establish strong laws of large numbers 
for vector-valued local martingales. This classical problem has received little 
attention since it seems to require only a straightforward extension from the 
one-dimensional case. However, norming by scalars is not appropriate in higher 
dimensions because any such sequence of scalars must have the same order 
of magnitude as the maximum of all the componentwise one-dimensional norm- 
ing scalars. To remedy these difficulties we use matrices for normalisation of 
vector-valued martingales. Typically this is needed in proving strong consistency 
of some estimator of a vector parameter (see e.g., Anderson and Taylor  [1], 
Lai and Wei [17], Novikov [26], Christopeit [4]). 

Section 2 contains auxiliary results. At first the asymptotic behaviour of 
positive local semimartingales is described. Then a strong law of large numbers 
for purely discontinous local martingales and a Borel-Cantelli-type lemma for 
locally integrable increasing processes are proved. 

Section 3 is devoted to the statement and proof  of the main results. We 
consider a vector-valued local martingale N and a matrix-valued right continu- 
ous increasing predictable process F. Sufficient conditions, in terms of F, which 
guarantee convergence to zero of F - I N  are obtained. They improve those of 
Melnikov [23] (see also Kaufmann [16]). 
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Finally Sect. 4 is concerned with applications of the multivariate strong laws 
to study strong consistency of parameter estimates in stochastic linear regression 
models for semimartingales. We strengthen the theorem of Lai and Wei [17]. 
In particular we prove that sufficiently fast convergence of the minimal eigen- 
value of F to infinity (and no restriction on the behaviour of the maximal 
eigenvalue of F) guarantees the strong consistency of the least squares estimate. 

Let us fix some terminology and notations. Let (f2, F, P) be a probability 
space equipped with a filtration (F~:t >0) satisfying the usual conditions and 
F 0 - =  Fo. A real-valued process X based on (s F, P) is said to be a semimar- 
tingale (with respect to the family (Ft)) if it admits a decomposition 

X t = X o + M t + A t ;  t>=O (1) 

where Xo is a Fo-measurable random variable, M=(M, : t>O)  is a cadlag 
(Ft)-local martingale, Mo =0, A =(At: t>0)  is a cadlag (F,)-adapted process of 
finite variation, Ao = 0. The semimartingale X is said to be special if there exists 
a decomposition of type (1) such that A is (Fypredictable. Decomposition (1) 
with A predictable is unique. It is called canonical. A special semimartingale 
X such that the process A in its canonical decomposition is decreasing (resp. 
increasing) is a local supermartingale (resp. submartingale). 

If X is a special semimartingale based on (s F, (F,), P) we denote by #x 
the random measure 

#x (co, d x, d t) = ~ I{Axs, O) g'(JXs, s) (d x, d t), 
s 

where e, is the Dirac measure concentrated at the point a. We write v x for 
the predictable compensator of/~x (cf. e.g. Jacod [13]). We define the increasing 
processes We(X ) and Vv(X ), l<p=<2, by 

We(X)t= ~ min(lAX~]2, lAXslV) = 
O<s<t  

and 

S min (Ixl 2 , Ixf) d~ x, 
(R - {o}) x 10, t] 

v~(x),= Z IAXsl p= I Ixl"d~X, 
O<s<t  ( R -  {0}) x ]0 , t l  

respectively for t > 0  puting zero for t=  0. For details on semimartingales see 
Jacod [13] and Dellacherie and Meyer [7]. 

If X is real valued process based on (s F, P) and if aeR  u {-- o% oo}, then 
{X~_ =a} denotes the set of those elementary events co in ~2 for which Xt(co) 
converges to a when t tends to oo. Moreover {X ~ } stands for ~ {Xoo- ---a}. 

A function g: [0, oo[ ~ ]0 ,  oo[ is said to belong to the class G if it is continuous 
increasing and such that 

; g - l (u )du<oo.  For geGle t  G(x)= ~ g - l ( u ) d u ,  x>O. 
0 x 

We use the somewhat misleading but convenient notation writing g-1 for the 
function 1/g and also g-1 (A) for the process 1/g(A). 
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2. Auxiliary results 

2.1. Asymptotic Behaviour of Positive local Submartingales 

The almost sure asymptotic behaviour of semimartingales and associated laws 
of large numbers have been extensively studied (see recent papers by L6pingle 
[20], Kabanov, Liptser and Shiryaev [14], Lenglart [19]. Liptser [21]). We 
investigate the behaviour of positive local submartingales. 

Our first technical lemma is in the spirit of Neveu [25] p. 168 (see also 
Dubins and Freedman [8] and Kallenberg [15]). 

Lemma 1. Let X be a positive local submartingale and X = X o + M + A its canoni- 
cal decomposition. Let g belong to G. Then the process Z = g - I ( A ) X  +G(A) is 
a positive local supermartingale. Moreover the local martingale part of the canoni- 
cal decomposition of Z is nothing but the stochastic integral g - 1 (A). M. 

Proof. Since the process g (A) is predictable increasing, by use of the integration 
by parts formula ([7]) p. 343) we get 

g - l ( A ) X t = g - t ( O ) X o +  ~ g-l(A)~dMs+ ~ g-t(A)~dA~ 
]o, t] 1o, t] 

-- ~ X~-g-l(A)~-g-l(A)sdg(A)s �9 
1o, t] 

(2) 

The function G is convex and its derivative G'= - g - 1  is continous increasing. 
Therefore since for every t > 0 

(G'(A~)-G'(A~_))dA~= ~" (G'(A~)-G'(A~_))AA~ 
]0,t] O < s < t  

the Ito formula ([7] p. 353) provides 

G(At)=G(O ) -  ~ g-l(As)dA~+ ~ (G(A~)-G(A~_)+g-I(A~)AAs). (3) 
]O,t] O < s < t  

Taking into account identities (2) and (3) and setting Co = 0, 

As 

Ct= ~ Xg- l (A)s-g- l (A)sdg(A)s+ ~' ~ (g-a(u) -g- l (As) )du ,  t>O 
10, t] O < s < t  A s -  

we get 

Zt = Zo + g -  1 (A). Mr-- Ct. 

Since C is predictable increasing, C O =0,  then Z is a positive local supermar- 
tingale with g-1 (A). M and C as terms of its canonical decomposition. 

Now we are able to prove the following result. Note  that the first assertion 
is well-known (see e.g. [7], and also [22]). 
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Lemma 2. Let X be a positive local submartingale with X o > 0 a.s. and let X = Xo 
+ M + A be the canonical decomposition of X .  Then we have 

(i) {A~_ < oo} = {X--* } ~ { M + }  a.s., 

(ii) for every g e G  

{A~ _ = ~ } = {g- I(A) X oo - = 0} (~ {g- I(A) Moo _ = 0 }  a . s . .  

Proof. From Lemma 1 we get that Zo + g-1 (A). M is a positive local martingale. 
Then we have 

P {g- I (A). M ~ } = I (4) 

and since G(A) is a positive decreasing process we have also 

p {g-1 (A) X ~ } = 1. (5) 

Assertion (i) follows immediately from (5). Applying the Kronecker lemma for 
local martingales (cf. e.g. [-20]) and equality (4) we obtain 

{A~_ = ~ }  = {g- I(A) Moo_ =0} a.s.. (6) 

Moreover, defining a( t )=in f{s :As>t} ,  noting that t<Aa(t) (cf. [7] p. 131) and 
using the Lebesgue lemma on the transformation of Stieltjes integrals (cf. [7] 
p. 132]) we get 

cO 

g- l (A~)dA~< ~ g - l (A , ( t ) )d t<  ;g -~ ( t )d t=G(O) .  
]o , t ]  o o 

So P {g- 1 (A)- A ~ )  = 1 and applying the usual Kronecker lemma we obtain 

{A o~ - = ~ } = {g-1 (A) a ~  _ = 0} a.s.. (7) 

Therefore taking into account (6) and (7) we see that the inclusion c in (ii) 
holds. Finally, from the assumption Xo > 0 a.s. and the inclusion 

{g-X (A) Xo0 - = 0} (~ {g- '  (A) Mo~ - -- 0} = {(g-a (A) Xo)oo - = 0} a.s. 

we get that assertion (ii) holds. 

Remark 1. Note that it is possible to derive the strong law of large numbers 
for locally square integrable local martingales (cf. e.g. [20]) from assertion (ii) 
in Lemma 2. More generally let N be a local martingale which is locally in 
LP(p >_ 1) and let A (p) denote the predictable increasing process of the canonical 
decomposition of the positive local submartingale IN[ p (e.g., A (z) = ( N ) ,  predict- 
able quadratic variation of N). Lemma 2 (ii) asserts that for every g e G  we 
have 

{A~ )- = ~}  = {g- 1/"(a(")) Noo - =0} a.s.. 
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2.2. A Law of Large Numbers for Purely Discontinuous Local Martingales 

While the strong law of large numbers for locally square integrable local mar- 
tingales is well understood (see e.g. L6pingle [20], Liptser [21]) there is a much 
less definite theory in the case of local martingales which are locally in L v. 
Discrete time martingales were studied by Chow [6] (see also Stout [29], Elton 
[9]). Laws concerning stochastic integrals with respect to a stable motion were 
recently established by Rosifiski and Woyczyfiski [27]. We deal with purely 
discontinuous local martingales. 

Let, for a cadlag special semimartingale X, the increasing process Wp(X) 
and Vp(X), l__<p=<2, be defined as in Sect. 1. Note  that the process WI(X ) is 
locally integrable. 

Lemma 3. Let M, M o = 0 ,  be a purely discontinous local martingale and let A, 
A o = l ,  be a predictable increasing process. Choose pe[1,  2] for which Wp(M) 
is locally integrable and denote by 7Vp(M) the predictable dual projection of Wp(M). 
Then 

{ A ~ _ = o o ,  ~ A - V d ~ / p ( M ) < o o } ~ { A - 1 M o o _ = 0 ) a . s . .  
0 

Proof. The stochastic integral m = A -  1. M is a local martingale. Moreover 

and 

wl (m), = 
(R-  {0}) x ]0,t] 

(R -(0}) x ]0,tl 

min ([A-1 xl 2, ]A-lxl)dlt  ~t 

min ([A - 1 x12, [A - 1 x[) dv ~t. 

But for 1 < p < 2 and A > 1 we have 

min ([A- 1 x[2, [A- 1 x[)=< min([A- 1 x[2,  IN- lxlp)~ A -P min ([x[ z, [x[P). 

This implies that 

W~(m),<= ~ A-Pmin(lxJZ, lxf)dv~t= ~ A-VdWp(M). 
(R -{o}) x ]o,t] ]o,t] 

Now since {IT~l(m)~_ <oo}={m-- .}  a.s. (cf. Jacod [13]) the Kronecker lemma 
for stochastic integrals (cf. L6pingle [20]) finishes the proof. 

Remark 2. Note that when M is a locally square integrable purely discontinuous 
local martingale one can choose p=2 .  Then the process 17VE(M) is nothing but 
the predictable quadratic variation (M> of M. Note also that Lemma 3 extends 
to continuous time a result by Chow I-6]. 

Lemma 4. Let B, Bo = 0  be a cadlag (Ft)-adapted process of locally integrable 
variation and let B be its predictable dual projection. Moreover, let pe[1,  2] 
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be such that Vp (B) is locally integrable and let A, A o = 1, be a predictable increasing 
process. Then 

{A~_ =0% ; A-P dL(B)< c~}c{A-I(B--B)~_ =0} a.s.. 
0 

Proof. First note that M = B - / 3  is a purely discontinuous local martingale and 
that rain (]AMI 2, JAM] p) < [AMIP< 2(lAB[P+ IA/71P). Consequently Wp(M) is local- 
ly integrable and by Lemma 3 it is sufficient to prove that ~Vp(M) is a.s. absolutely 
continuous with respect to Vp(B) with a bounded density. But the locally integr- 
able process 2 Vp(B)+ 2 Vp.(B)--Wp(M) is increasing and so is its predictable dual 
projection 2 ~(B) + 2 Vp(B)- Wp(M). This implies that 17Vp(M) is a.s. absolutely 
continuous with respect to Vp(B)+ Vp(/3) with a bounded density. Finally, since 
for every t > 0 

[ABtIP=IE (ABt] F,- )IP_~ E(IABtIP[ Ft-)  a.s. 

i.e., A Vp(/3)__< A F'p(B) a.s., Vp(B)is a.s. absolutely continuous with respect to Vp(B) 
with a bounded density and so is 17Vv(M ). 

Remark 3. Let B be a real process which is adapted to the family (Ft) , zero 
at 0, increasing, purely discontinuous and such that AB<=I. Since AV2(B) 
=IAB[2<AB=AVa(B) and F'~ (B)=/3, then 

{A~_=o% ; A-ZdB<oo}c{A-l(B-P)oo_=O}a.s. 
0 

where A is a predictable increasing process, A 0 = 1. In particular one can take 
A = l + / 3 .  

2.3. A Borel-Cantelli Lemma 

Dubins and Freedman [8] proved a theorem which sharpens and unifies two 
results by P. L6vy: his conditional form of a Borel-Cantelli lemma and his mar- 
tingale strong law of large numbers. Various generatlizations of this result were 
later obtained by Freedman [10], L6pingle [20], Chen [3], Liptser [21], Hill 
[12] and recently by Bouzar [2]. In this section another version of L6vy's condi- 
tional form of the Borel-Cantelli lemma is established. 

Let B be an adapted increasing cad process which is locally integrable, B o = 0, 
and let B be its predictable dual projection. Moreover let A be a predictable 
increasing process, Ao = 1, and f be a positive increasing function. Assume that 
one of the following conditions (a) and (b) hold: 

(a) A =>/3 and f ~  G 
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(b) For  some p~[1, 2] ~'v(B) is a.s. absolutely continuous with respect to 
A and sup h - t  (AT)d ~/p(B)t/dA ~ < oo a.s., where h is a positive increasing function 

t > 0  

such that h - i f  PeG. 
Then from Lemmas 2 and 4 respectively, it comes that 

{A oo - = oe } c { f - 1  (A) (B -/J)~o - = 0} a.s.. (8) 

The following result provides another set of sufficient conditions for (8) to hold. 

Lemma 5. Let B and B be an adapted increasing locally integrable process and 
its predictable dual projection, respectively. Let A be a predictable increasing 
process such that A > B and f and h be positive increasing functions. I f  h - i f  2 
belongs to G and E sup h- l(At) ABt < o% then (8) holds. 

t>=o 

Proof. Let us define the local martingale m = (mr; t__> 0) by 

mo=0,  m,= ~ f-l(A~)d(B--B)~,t>O. 
1o, t] 

The optional quadratic variation process I-m] = ([m]t ; t  > 0) of m is given by 

[m]o=O,[m~7 = ~ f 2(A)~(AB-AB)Z~,t>O. 
O<s<t  

Therefore we have 

[rn]~o_ < 2  ~ f-2(A)t(AB,)2+2 ~ f-2(A)t(ABt) z 
t > 0  7 > 0  

< 2 (sup h- ~(A) ABt) Z g- I(A)7 ABt q- 2 (sup h- ~(A) ABt) Z g- I(A)tABT, 
7 > 0  7 > 0  t > 0  t > 0  

where g stands for h-~ f  2. Since A>/~  and g-1 decreases we get 

CJO 

[m]oo_<=2(suph-l(A)ABt) ; g-l(B)tdBt+2(suph I(A)A/3t)~ g - l ( B ) t d B  t .  
t > 0  0 t > 0  0 

Setting j(t) = inf {s:/~ > t} we also have 

g-l(B)tdBT< ~ g-l(Bj(t))dt<= ; g-t(t) dt=G(O). 
0 0 0 

(9) 

Consequently we get 

[m] ~ 2_ < sup h -1 (A) A Bt + S g - 1 (/~)t d Bt + (2 G (0)) 1/2(sup h - 1 (A) A BT) 1/2. (10) 
t > 0  0 t > 0  



282 A.  L e  B r e t o n  a n d  M.  M u s i e l a  

Moreover, since/~ is the compensator of B, we have 

E S g-l(B)tdBt=E S g-l(/~)tdBt~G(O ) 
0 0 

(11) 

where the last inequality comes from (9). 
Since h- I (A)AB is the predictable projection of h-I(A)AB, from Lemma 

6 below, we obtain 

E (sup h-  1 (At) ABt) 1/2 <= 3 (E sup h - 1 (At) ABt) ~/2. 
t > O  t > O  

(12) 

Taking into account (10), (11) and (12) we obtain the following inequality 

Elm] 122_ <4(E sup h- 1(At) ABt+ G(0)). 
t > 0  

Therefore, since I d mr12 --~__ [ m ]  o~ - < O0 for t > 0, we get 

E sup IAmlt<E[m]~2< o0. 
t > O  

Hence (cf. [13] p. 168) we have P {m ~ } = 1 and the use of the Kronecker lemma 
for local martingales (cf. [20]) leads to the assertion in the lemma. 

Lemma 6. Let Y be a positive measurable process and let PY be its predictable 
projection. I f  E sup Y~ < oe then 

t > 0  

E (sup py~)l/2 < 3(E sup Yt) 1/2. 
t > O  t > O  

Proof. Note that for every bounded predictable stopping time T 

EPYT=EE(YrlFT_)=EYT<E sup Y~. 
t > o  

Hence, considering the constant E sup Y, to be a positive increasing predictable 
t>_o 

process, from domination inequalities (cf. [7] p. 198), it follows that for any n 

E ( sup PYt)I/2<3(E sup Yt) 1/2. 

O < t < n  t>O 

Then, letting n ~ oo, we get the statement in the lemma. 

Remark 4. Note that choosing A=/~, g(t)= i + t  and h(t)= 1 in Lemma 5 we 
obtain the following well-known Borel-Cantelli type result (cf. [20]): 

if e s u p A B t < ~  then { / ~ o ~ _ = ~ } c { / ~ - ' B o ~ _ = l ) a . s . .  
t > O  
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3. Laws of Large Numbers for Vector-Valued Local Martingales 

In the present section N stands for a R"-valued local martingale, N o =0, and 
F denotes a positive symmetric n x n matrix valued cad increasing predictable 
process such that Fo is non singular. The problem of the a.s. convergence to 
zero of N normalized from the left by the inverse of F (i.e., F -  a N) is investigated 
on the basis of the results from the previous sections. Such a problem arises 
in proving strong consistency of vector parameter estimates in stochastic linear 
regression models (see Section 4 below). 

Throughout, for the vector (matrix) x, the symbols Ixl and x* stand for 
the Euclidian norm and the transpose of x respectively. Moreover, trx, det x, 
21(x) and 2,(x) stand for the trace, the determinant, the smallest eigenvalue 
and the largest eigenvalue of a symmetric n x n matrix x respectively. Finally 
I denotes the n x n identity matrix. 

Lemma 7. Let N and F be as above and let IN] be the optional tensor quadratic 
variation of N. Then 

(i) the semimartingale decomposition of N* F-  1N is given by 

N * F - 1 N t = 2  ~ N~*-F~-ldNs+tr ~ F~-ld[N]s 
]0,tl lO,t] 

--( ~ Ns*_F~-IdF~F~-'Ns_+ ~ [F~-I/2AF~F~-'N~_I2), (13) 
]0,t] O < s < t  

(ii) the predictable process log det F - t r  ~ F~- ~ dF~ is increasing and 
1o,.] 

l o g d e t F , - t r  j" F~ -1 dF~= ~ (A logdetFstrF~-~AFA. (14) 
10,t] O < s < t  

Proof. Assertion (i) follows from a straightforward application of stochastic inte- 
gration rules (cf. [7]). Applying the Ito formula to the function x ~ log det x 

and using the fact that ~ l o g d e t x = x -  one gets (14) in assertion (ii). Now, 

since eigenvalues of F-1AF belong to [0, 1], it comes that d e t ( I - F - 1 A F )  
< exp (-- tr F - 1AF) and also that tr F - 1AF < A log det F. Therefore, using (14), 
we obtain the first statement in (ii). 

Now let N be locally square integrable and let ( N )  be its predictable tensor 
quadratic variation i.e. ( N ) =  I-N]. The following conditions (C) and (C*) will 
play a central role in the next statements: 

(C) (resp. (C*)) there exists a positive finite a.s. random variable ~ such that 
the process ~ F -  ( N )  is positive a.s. (resp. is positive and moreover has increas- 
ing paths a.s.). 

We are able to prove the following consequence of Lemma 2. 

Theorem 1. Let N and F be as above and let condition (C) be satisfied. Then, 
for every function g ~ G, the following holds: 

{21 (F)~o - = o% sup 2~ -~ (/7)g (log (1 + 2.(~)) < oe} c { r -1  Woe - = 0 }  a . s . .  
t>o  
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Proof. Consider the semimartingale X = N * ( I + < N > ) - I N .  Applying (13) and 
(14) it is easy to see that X is a positive special semimartingale and that the 
predictable process appearing in its canonical decomposition can be written 
as log det (I + <N))- -D,  where D is a predictable increasing process, D o =0. 
Therefore X + D is a positive local submartingale and Lemma 2 asserts that 

{2,((N>)~_ < or} = { X ~ }  a.s. (15) 
and 

{2,(<N>Lo_ = oo)c(g  -10og( l+2 , (<N>) ) )Xo~_=O}  a.s. (16) 

for every gr  
Define the stopping time T = i n f { t > 0 :  2 1 ( ~ > 1 }  and note that, on the set 

{21(F)~_ =oo} for t > T  

N* F - 2 N < t r  F - 2 ( I  + <g) )  Xt < r/2[ -1 (r) Xt 

where r /=2n  max (1, 0.  Then also 

N* F -  2 Nt _-< 7/(sup Rt) g-1 (log (1 + 2,(<N>))) X t 
t>=0 

g (log (1 + 2,((N>t))) g -  1(lo8 (1 + 2, (F~))) 

where R t = 2 ~-1(~ g (log (1 + 2, (Q)). Therefore the assertion follows from (15) and 
(16). 

Using Lemmas 4, 5 and 7 we are able to prove the following statement. 

Theorem 2. Let N and F be as above and let condition (C*) be satisfied. Then 

{21(F)oo_ =o% S t r F t - l t r ( F t - l d I ~ < o o } c { F - l N ~ _ = O }  a.s.. (17) 
0 

Moreover (17) can be strengthened into 

{ 2 1 ( F ) ~ - = ~ 1 7 6  t r F - ~ t r  I F t - l d ~ - = O } ~ { F - 1 N o o - = O }  a's" 
10,.1 

if in addition to (C*) one of the two following conditions (D) and (E) holds: 

(D) 

(E) 

(18) 

for B = tr S Ft- 1 d [N]t and some p > 1, the process Vp(B) is locally integrable 
]o , . l  

and Vp(B) is a.s. absolutely continuous with respect to tr S Ft -1 dE with 
a bounded density. 1o,.] 
for  some p c [ l ,  2[, E sup 2~ -p (F)IANI z < oo. 

t > 0  

Proof. Note that the stochastic integral m = N* F - 1 .  N is a locally square inte- 
grable local martingale and that sup (mr-  (2 4)- 1 <m>t ) = 0~ < 0(3 a.s.. 

Hence (13) leads to t~o 

N * F - ~ N t < : 2 ~ + t r  ~ ~ - l d [ N ] ~ .  
]0,t]  
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Moreover since 

{ ~ftrFt-ttr(Ft-adI~)<oo}~{~trFt-~tr(Ft-ld[N]t)<oo}a.s. 
0 

N* F - 2 N t <  tr Ft -1 (2~+ t r  

and 
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l]s -1  d [ N ] s  ) (19) 
]o,t] 

the Kronecker lemma gives (17). 
Now assume that (D) holds together with (C*). From (19) it follows that 

N*F-2N~=<trFt - '  (2~+~ tr y F~ -1 dF~+B,--B,). (20) 
]O,t] 

But, on the set appearing in the left hand side of (18) 

(tr F~ - ~)p d Vp (B)t < (tr Fo- 1)p ~p(B)s 
0 

+C ~o( ~ trF~-ldF~)-Ptr(Ft-ld/~) (21) 
S ]0,t] 

where S is such that for t > S 

trF~-l<( j" t rF - ldF~)  -1. 
]o,t] 

Then, since p > 1, the integral in the right hand side of (21) is finite. This combined 
with Lemma 4 and (20) shows that (18) holds. 

Finally, if (C*) and (E) are satisfied, applying Lemma 5 to tr F - I ( B - / ~ )  
in (20), (18) follows easily. 

4. Applications to Stochastic Regression 

In recent years several authors investigated the strong consistency of least 
squares estimates in stochastic multiple linear regression models. For contribu- 
tions see e.g. Anderson and Taylor [1], Christopeit and Helmes [5], Lai and 
Wei [17] and Solo [28] in discrete time and Novikov [26], Christopeit [4-1, 
Le Breton and Musiela [18], Melnikov [23] in continuous time models. 

The m-dimensional response process Y of a continuous time linear regression 
model is a special semimartingale with a canonical decomposition of the form: 

Y t = Y o + M t +  5 H*OdTs, t>0 .  (22) 
]o,t] 
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Here 0=(01, . . . ,0,)* is an unknown parameter in R",H=(H~,s>O) is an 
observed n x m matrix valued locally bounded predictable design process and 
Y = (7s, s > 0) is a given predictable cad increasing "weight" process in R +. More- 
over M=(Ms,  s>0), Mo=0 ,  is a R"-valued cadlag local martingale standing 
for an unobservable error process. 

Note that model (22) covers in particular the usual discrete time model 
as well as the continuous time Ito and Skorohod equations (see e.g. [4] and 
Example 2 below). 

For  t > 0 such that the matrix 

A~= I HH*dT~ (23) 
]0,31 

is nonsingular the least squares estimate 03 of 0 based on the observation 
(Y~:0<sN t) is given by 

Ot=A~ -1 ~ HsdY~. (24) 
]0,31 

Then for such a t > 0 

Or- 0 = A21 N (25) 

where N = (Nt ; t => 0) is a R"-valued local martingale given by 

Nt = ~ H~dMs, t>0 ,  No=0. (26) 
10,t] 

Consequently, (25) shows that the strong consistency of Ot is equivalent to the 
a.s. convergence to zero of A - t  N. Theorems 1 and 2 lead to the following 
statement (compare with [26], Theorem 1). 

Corollary 1. Let the local martingale M in (22) be locally square integrable. Assume 
that: 

(F) tr <M> is absolutely continuous with respect to ? and 

sup (d tr <M>/dy)t < oea.s.. 
t>O 

Let A be as in (23), then the estimate Ot of O given in (24) satisfies 

{21 (A)| _ = o% sup (1 + 21 (A0) -1 g (log (1 + 2, (At))) < oo} c {0~ _ = 0} a.s. (27) 
t_>_0 

for any g~G, and also 

{21(A)~- =0% ~ tr (I+A,)  -1 t r ( ( I+At) - ldAt)<oo}c{O~_ =0} a.s.. 
0 

(28) 

Proof. Let us set F =  I + A  and look at F - 1 N  where N is given by (26). First 
note that a.s. <M> is absolutely continuous with respect to tr <M> and the 
density d <M>/d tr <M> is positive symmetric with trace equal to 1 (cf. Metivier 
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[24] p. 141). Therefore d ( M ) d t r ( M ) < = I  and since ( N ) , =  ~ Hsd(M)~H~ 
]o,t] 

and sup(d tr (M) /d2 ) t=~< oe a.s. we get that ~ A - ( N )  is a positive (raw) 
t>=0 

increasing process and so is ~F- - (N) .  Then condition (C*) is satisfied for N 
and F. Finally, since [F-1Nt[2<=4n[F-1Nt[ 2 for t such that 21(At)> 1, the state- 
ment in the theorem follows from Theorem 1 and the first assertion in Theorem 
2. 

Corollary 2. Let the local martingale M in (22) be locally in L 2p for some p> 1. 
Assume that condition (F) holds and also 

(G) V2,CM), where Vzp(M)= ~ JAMI2~ ;, isa.s. 
O<s~ 

absolutely continuous with respect to 7 with 

(H) sup (tr H* (I + A)-  1 H)~ - 1 (d V2p(M)/dT)t < ooa.s. 
t>O 

where A is given by (23). 
Then the estimate Ot of O given by (24) satisfies 

{21 (A)oo- = o% (tr (I + A ) - I  ~ tr ((I + A)-I dA))~_ = 0} c {00o - = 0} a.s. (29) 
]o,.] 

and also 

{21(A)~_ =oo,(1+21(A)) -1 log(l+)o,))oo- =0}c{0oo =0} a,s.. (30) 

Proof. Taking into account the second assertion in Theorem 2 (14) and the 
proof of Corollary 1, it remains to show that (D) is satisfied for 

But, since 

B,=t r  ~ F~-IH, d[M]sH *, Bo=0, and F = I + A .  
]0,t] 

AB= AM* H* F - 1 H A M  < tr H* F-1HIAM[ 2, 

~(B) is a.s. absolutely continuous with respect to 

(tr H* F-1H)F d l/2v(M)t. 
]0,.1 

Therefore, from (F), (G) and (H), we get that Vp(B) is also a.s. absolutely continu- 
ous with respect to tr y F~ -1 dF~ with a bounded density. This means that 

10,.1 

(D) holds and finishes the proof. 
Let us now look at some examples. 

Example 1. Let the local martingale M in model (22) be continuous. Then 
assumptions (G) and (H) in Corollary 3 are both satisfied. Therefore 0~o-= 0 
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a.s. under (F), 21(A)oo_ = ooa.s, and 21(A)=o (log(1 +2,(A))) a.s.. This could 
have been obtained directly from (14) and the assertion in Theorem 5 saying 
that (18) holds under (E) since if M is continuous then N given by (26) is 
continuous too and (E) is satisfied. Note that for instance (F) holds in the 
case when in (22) 2 = tr ( m >  (see also [18]). 

Example 2. The usual discrete time stochastic multiple linear regression model 
can be embedded into model (22) by setting 

Mr= ~ AMk, t>O, Mo=O, andyt=[t], t>O (seee.g.,[4]). 
O<k<t 

k 

Let A k = 2 Hj H*. Corollary 1 states that if 
j = l  

(F') sup E(] AMkl 2 IF k_ 1) < (z) a.s. 
k > l  

then 

{2a(A)o ~_ =0% ~ tr(I+A)~ -1 tr(I+A)k -1HgH*<oo}c{Ooo_  =0}  a.s.. (31) 
k = l  

Since tr H* (I + A) - 1 Hk = tr (I + A) - a AAk < n, Corollary 2 states that if (F') is 
strengthened into 

(H') sup E(I AMk] 2v [Fk- 1) < oo a.s. for some p > 1 
k > t  

then (31) can be strengthened into 

{21(A)~_=o%(tr(I+A) -~ ~ tr(I+Aj)-iHjH*)~o_ = 0 } c { 0 ~ _ = 0 }  a.s.. (32) 
INj~ 

Finally, note that since 

tr (I + A)[ ~ Hk H* N n min (1, A log det (I + A)k, tr (I + A)~- ~ tr Hk H~) 

then under assumption (F') (resp. (/-/')) (31) (resp. 32)) sharpens Corollary 3 
(resp. Theorem 1) of Lai and Wei [17]. In particular, under (F'), if either 21 (A)k 
>ck ~ a.s. for some e > l  or 21(A)k>CU a.s. for some ~>1/2 and sup trHkH* 

k_>_l 

< oo a.s., then O k is strongly consistent by (31). Moreover, under (H'), if either 
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21(A)k>Ck ( log k) ~ a.s. for  s o m e  e > 0  o r  21(A)k>C~-k(logk) ~ a.s. for  s o m e  e > 0  

a n d  sup  tr  Hk H* < o% a.s., then Ok converges a.s. to 0 by (32). 
k> l  
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