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Summary. We show that the percentile-t method, and one of the two percen- 
tile methods, have unusually good performance when employed to construct 
bootstrap confidence intervals in a regression setting. In the case of slope 
parameters, percentile-t produces two-sided intervals with coverage error 
n -2, and one-sided intervals with coverage error n -~, where n is sample 
size. The errors are only n-1 in most other problems. One of the percentile 
methods produces critical points which are third-order correct for Efron's 
[11] relatively complex accelerated bias-corrected points. 

1. Introduction 

1.I. Aims and principal results 

In this paper we show that when the bootstrap is used to construct confidence 
intervals in a regression problem, it has several remarkable properties which 
are not seen in other applications of the bootstrap. To explain these properties, 
let us focus attention on the simple linear regression model, 

Yi=e+xifl+ei,  l<_i<_n, (1.1) 

where the ei's are independent and identically distributed errors with zero mean 
and variance 0 -2. Only the pairs (xi, Yi) are observable, and we wish to construct 
"nonparametr ic"  confidence intervals for the slope parameter/~, or for the mean 
c~ + xo/~ of Y given that x = Xo. 

Our main conclusions are listed below. They hold true under moment  condi- 
tions on the design sequence {x~}, and moment  and smoothness conditions 
on the error distribution. In results (i)-(vi) below we assume that slope, /~, is 
the parameter of interest, and that the design variables x~ are fixed (or at least, 
conditioned upon). When considering these points the reader might like to bear 
in mind that asymptotic confidence bounds based on the central limit theorem 
have coverage error O(n -~) in the one-sided case and O(n -1) in the case of 
two-sided intervals. 
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(i) The percentile-t method for constructing two-sided confidence intervals 
for fl results in confidence intervals whose coverage error is O(n-2) as n ~ oe. 
This is most unusual, since coverage error is generally of size n-a when the 
bootstrap (percentile-t or otherwise) is used to set two-sided intervals. 

(ii) Unusually high coverage accuracy is also available for one-sided inter- 
vals. There, percentile-t intervals have coverage error O(n-~), compared to an 
error of size n-a in most other statistical problems. 

(iii) This exemplary performance of percentile-t is not achieved at the expense 
of inaccuracy in position of critical points. Those points retain their property 
of second-order correctness noted in other statistical problems - see e.g. [11]. 
[A critical point is second-order correct if it is correct to order (n-~) 2 = n - a ;  
see Subsection 1.2 for a more detailed definition.] 

(iv) In most statistical problems, both versions of the bootstrap percentile 
method (different from percentile-t) fail to be second-order correct. They usually 
have coverage error of size n -~ when used to construct one-sided confidence 
intervals, and in this sense do little better than the simple normal approximation. 
However in a regression setting, when fl is the parameter of interest, one of 
the two percentile methods is always second-order correct, and yields coverage 
errors of O(n-a), for both one- and two-sided confidence intervals. The other 
percentile method is second-order correct when design points are chosen sym- 
metrically - for example it is second-order correct in the case of regularly spaced 
designs. These results are particularly important in multiple or multivariate 
regression, for there the percentile method can be considerably less numerically 
expensive than percentile-t. 

(v) That percentile method which is always second-order correct (see (iv) 
above) is third-order equivalent to Efron's [11] accelerated bias corrected meth- 
od. This phenomenon is hardly ever observed in other statistical problems. 
The accelerated bias-corrected method yields one-sided and two-sided confi- 
dence intervals with coverage error O(n-1), combared with O(n-~) and O(n -z) 
respectively in the case of percentile-t. See (i) and (ii) above. 

(vi) Properties (i)-(iv) continue to hold for slope parameters in multiple 
regression and multivariate regression. (We exclude property (v) from this state- 
ment because accelerated bias correction is difficult to use in a general multivar- 
iate setting.) They also hold in the so-called random design model, but not 
in the correlation model. 

(vii) These unusual properties evaporate if the intercept, e, or the conditional 
mean, ~+x0/~, is the object of interest. In that circumstance the bootstrap 
behaves very much as it would in other statistical problems. For  example, percen- 
tile-t confidence intervals have coverage error of size n-  1. 

All our conclusions apply to both "parametric" and "nonparametric" forms 
of the bootstrap, although we shall concentrate all our discussion on the "non- 
parametric" case, which we regard as the more important of the two. The "non- 
parametric" bootstrap makes no assumptions about the distribution of the errors 
e~, except that they have zero mean, sufficiently many finite moments, and a 
nonsingular distribution. 
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The reason for outstanding performance of the percentile-t bootstrap when 
estimating slope, is the high degree of symmetry conferred by presence of the 
design variables xi. In the equivalent model Y~ = (~ + 2 [3) + (x~ - 2) [3 + ei, slope 
is multiplied by the factor x ~ - 2  which adds to zero. This is just enough to 
eliminate several crucial error terms which render the bootstrap relatively inaccu- 
rate in other problems. 

Section 2 describes bootstrap confidence intervals for slope, in the case of 
the simple linear model. These results are given under explicit regularity condi- 
tions. Section 3 gives a similar treatment of bootstrap confidence intervals for 
intercepts and conditional means. The multivariate, multiparameter case is treat- 
ed very briefly in Sect. 4, reaching the same conclusions as in the simple linear 
case. Finally, Sect. 5 gives a detailed proof of one of the results from Sect. 2. 

Notable recent work on the bootstrap in regression includes Freedman [-12], 
Bickel and Freedman [8] and Freedman and Peters [,-13]. In Freedman's [12] 
seminal paper, the focus is on consistency of bootstrap estimates under a wide 
variety of regression models. See also Hinkley [,16] and Bickel and Freedman 
[8]. However, our emphasis on explicit calculation of coverage error, and on 
error in position of critical points, rather than simply consistency, makes our 
contributions closer to those of Bickel and Freedman [7], Singh [18], Beran 
[2] and Hall [15] in non-regression contexts. These authors discuss issues such 
as second-order correctness. 

Beran [1] gives a very accessible introduction to theory for bootstrap meth- 
ods, Hinkley and Wei [17] describe advantages of Studentizing (although from 
a viewpoint different from our own), Beran and Miller [3] discuss general confi- 
dence regions for a vector parameter, and Wu [20] gives a detailed treatment 
of the percentile method (not percentile-t) in regression problems. 

In the remainder of the present section we introduce commonly-used versions 
of the bootstrap. By way of notation, rc denotes a probability level, so that 
0 <  rc < 1. Standard normal distribution and density functions are denoted by 

and qS, respectively, and z, is the solution of ~(z~)= n. 

1.2. Nonparametr i c  Boots t rap  

Here we describe bootstrap methods for constructing confidence intervals in 
the case of the simple linear regression model (1.1). The errors ei are assumed 
to be independent and identically distributed with zero mean and variance o-2. 

Put 2 = n-1 ~ xi ' ~ = n-1 ~ y~ and a 2 = n - 1 2  (Xi-- 2)2" Least-squares esti- 
mates of a and fl based on the sample • = {(xi, Y/), 1 __< i_<_ n} are 

~=?-2fl, fl=~2~ -1 ~ (x,-2)(yi- Y'). 
i = 1  

The residuals are gl = Y/-(c~ + xifi'), 1 N i<  n, and the residual-based estimate of 
o -2 is 

d2=n-1  ~, ~/2. 
i = l  
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Observe that E(f i )= fi and var(fi)= a2/nff2. Therefore two standardized ver- 
sions of fl are 

Snl = n~ Ox (fl-- fl)/~, Sn 2 : n�89 (7x (fl-- fi)/~, 

the second being "Studentized". 
Let {e*, ..., e*} denote a random n-sample of the residuals {~1, ..., ~,}, drawn 

with replacement. Define 

Y i * = ~ +  xi f l+g*,  l <_i<_n, 

and let ~*, fl* be least-squares estimates of c~, fl computed from the data set 
Y'*--{(xl, Yff), 1 < i N n } .  The two percentile methods (called percentile(I) and 
percentile(II) below) of constructing a rMevel confidence region ~ (0<re< 1) 
for/3, are as follows. 

(I) Carry out B independent resampling experiments of the type just 
described, and define ~ to be a regular region within which precisely rob of 
the B values of fl* lie. 

(II) Let ~ denote a regular region containing just rob of the B values of 
fl*--/~ and put ~ = f l - 5 ~ = { f l - x :  xeS~}. The latter method is based on the 
supposition that f l * - f l  has a distribution which closely approximates that of 

The percentile-t method runs as follows. Put ~*=Yff-(c2*+xifl*), d ,2 
= n - 1 2  g* 2 and S'2 = n ~ 0-~ (fl* - fi)/d*. Let 5~ denote a regular region containing 

just rob of the B values of S'2, and put 

= f l -  = 

In practice B is of course finite, but as B increases the endpoints of confidence 
intervals converge to the values they would assume in the case B =  oo. The 
latter, "ideal" circumstance is perhaps most easily treated in terms of distribution 
functions, as follows. In addition to Snl , S .2  and Sff2 defined above, put S'1 
= n ~ cr~ (fl* - fl)/& Let 

H (x) = P (S,1 < x), / t  (x) = P (S*, < x ] s 

K (x) = P (S, 2 =< x), /((x) = P (S,'2 =< x I ~). 

Define inverses of distribution functions in the usual way; for example, 

n -  1 (re) = sup {x:/~(x)__< n}, 0<re<  1. 

Put 

flPERC (1)(g) = fl  -[-/ ' /- ~ O /~  - 1  (?0, flPERC (II)(~) = f l - -  n - �89 O/~  - 1  (1 - -  ~), 

f lPERc:r (re) = f l - -  n - ~  d ' / ~ -~  (1 - -  tO. (1.2) 

In the case B = oo, one-sided bootstrap confidence intervals constructed by the 
two percentile methods and the percentile-t method are respectively 
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All have nominal coverage re, in the sense that the true coverage converges 
to rc as n--. oo. 

This approach leads easily to definitions of Efron's [-10, 11] bias corrected 
confidence intervals, as we now show. Define 

6 ( x ) = P ( O * < x l X ) = • { ( x - O ' ) / d } ,  nS= r  {6(0)}, 

) ( u ) = ~ ( z , + 2 r h )  and pa(rC)=~[th+(N+z~){1-~(~h+z, )} - l ] ,  (1.3) 

where a is the bootstrap estimate of the acceleration constant and is defined 
below. Put 

]~BC (7"C) = ~ -}- n - �89 (~ /~ -  1 (/9), t~ABC(TE)=---]~q-n-�89 (1.4) 

Then one-sided bias corrected and accelerated bias corrected confidence intervals 
are 

( -  oo,/~Bc(~)), ( -  oo,/TABC (~)) 

respectively, with nominal coverage re. 
The acceleration constant may be defined in terms of Edgeworth expansions 

of H and K, which are obtainable from Theorem 2.1 in Sect. 2" 

H(x) = (ib (X) q- r t - � 8 9  (x) ~b(X) q- O ( n  - 1), 

K (x) = e(x)  + n -�89 ql (x) r (x) + O(n-  1), 

where Pl, q~ are polynomials. The acceleration constant is 

a = n -~ x -  2 {Pl (x) + ql (x) -- 2 Pl (0)} (1.5) 

[-15], which does not depend on x. When unknowns in the formula for a are 
replaced by their bootstrap estimates, we obtain the bootstrap estimate a of 
a. 

The exact critical point, flexact (~) =/~-- n - �89 ~ K - 1 (1 -- ~), satisfies 

P {fl < fi~x.ot(~)} =~c. 

We say that a confidence interval ( -  oo, fi(Tz)) is second-order correct [relative 
to the exact confidence interval ( -  oo,/~aot (re))] if the endpoints of these intervals 
agree to second order in n -�89 that is if 

~(70 - -  ~exact (g) = Op (n - ~). (1.6) 

Similarly the two-sided interval (fl(~), f l (1-~)) ,  which has nominal coverage 
1--2 ~, is second-order correct if (1.6) holds for ~ and for 1 - m  

In [15], the two percentile methods percentile(I) and percentile(II) were 
called "backwards"  and "hybr id"  methods, respectively. 
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2. Simple Linear Regression: Slope parameter 

2.1. Introduction 

In this section we develop properties of bootstrap confidence intervals for the 
slope parameter/~ in the simple linear regression model (1.1). Our purpose is 
to compare the different methods - the two percentile methods percentile(I) 
and percentile(II), percentile-t, bias correction and accelerated bias correction, 
all of which were introduced in Subsection 1.2 of Sect. 1. 

The section is structured as follows. Subsection 2.2 introduces notation and 
regularity conditions, and Subsection 2.3 describes Edgeworth expansions and 
Cornish-Fisher expansions. Main results are contained in Subsections 2.4 (where 
we give a formula for Efron's [11] accelerated bias correction), 2.5 (where we 
elucidate coverage properties of one-sided confidence intervals), 2.6 (where we 
describe the unusually virtuous features of two-sided percentile-t confidence 
intervals) and 2.7 (where we treat the case of random design). Each of Subsections 
2.4-2.7 concludes with a list of points which briefly summarize the main conclu- 
sions reached there. 

For  the sake of brevity we do not state each of our results as a formal 
theorem. Nevertheless, all the formulae and expansions given in Subsections 
2.3-2.6 are valid under the assumptions of Theorem 2.1. The most difficult of 
them to derive is stated as Theorem 2.2, and given a detailed proof in Sect. 5. 

2.2. Notation and Regularity Conditions 

In addition to notation introduced in Subsection 1.2, let 7=E(ei/a) 3 and tc 
= E ( ~ / a ) 4 - 3  denote standardized skewness and kurtosis, let f = n  -1~(~i/#)3 

i 

and ~ = n - x ~ ( ~ J d ) 4 - 3  be the sample versions (bootstrap estimates) of 7 and 
i 

•, and put 7x= n- l~ (x . ]ax )  3, 2 ~ = ~  (xi/ax) 4 and ~c~= 2x-3 .  We refer to ~ and 
i i 

~x as the standardized skewness and kurtosis, respectively, of the design points. 
Next we describe our regularity conditions. To keep the discussion reasona- 

bly simple we assume that the common distribution of the errors ez is essentially 
bounded. A more elaborate proof shows that the assumption E([ei[48+6)< o(3 
for any ~ > 0 is sufficient for all our main results, such as (2.6)(2.11) and (2.14)- 
(2.19). A still more complex analysis using techniques developed by Bhattacharya 
and Ghosh [5] allows us to relax that condition to E(18i14~ oo. There is 
every likelihood that the latter condition is considerably more stringent than 
necessary, but we cannot see how to relax it to anything like the "minimal" 
assumption E(e6)< oo. (The term of order n -2 in an Edgeworth expansion of 
coverage error involves E(e6), and so the condition E(e6)< oc can be regarded 
as essential.) 

We further assume that the error distribution has a nontrivial absolutely 
continuous component. In other words, it is nonsingular. 
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We allow the design points x~ to depend on n. That  is, we permit a completely 
new set of points xl(n), ..., x,(n) to be chosen for each n. To control these 
points we assume that 

2 - -  -- 1 2 ( X i - -  •)2 is bounded away from zero as n ~ ~ ,  O - x ~ n  
i=1 

] xl--  x] is bounded uniformly in 1 _< i_< n < oo, and for some 

0 < 6 < 1 the numbers m + of indices i _< n such that _+ ( x i -  if) > 6, 

satisfy m+ > n ~ and m_ > n ~ for all sufficiently large n. 

(2.1) 

The restriction that ] x i - x l  be bounded is roughly analogous to our bound- 
edness assumption about  the error distribution, and for our main results it 
may  be relaxed to n- 1 ~ (x i -  ~)1o < ~ by using longer proofs. 

i 

2.3. Edgeworth and Cornish-Fisher Expansions 

We require Edgeworth expansions of the distribution functions H and K, and 
of their boots t rap  estimates /4 and /C. In the former case these expansions 
may  be established exactly as in Bhat tacharya and Ghosh [5], in the latter 
case exactly as in Hall [-14]. We do not give proofs here, only stating the results. 

Theorem 2.1. Assume that the common error distribution is essentially bounded 
and nonsingular, with zero mean. Suppose the design points xi satisfy (2.1). Then 
there exist polynomials pj, qj of degree 3 j -  1, odd for even j and even for odd 
j, such that for each m >= 1, 

sup H(z)-q~(z)-  ~. n-J/Zpj(z) qS(z) =O(n-(m+l)/2), 
- - ~ < z < ~  j = l  

K ( z )  m r  = sup --Cb(z)-- ~ n-J/2qj(z) O(n-(m+l)/2). 
- -~<z<oo  j = l  

Coefficients of pj, qj are uniformly bounded, and are polynomials in the first j + 2  
standardized cumulants of the error distribution and of the design. In particular, 

--Pa (z) = -- ql (z) = ~77~(z 2 -  1), 

- -  P2 (Z) = Z {2~4/r ( z2 - -  3) -~- ~2 72 72 ( z4 - -  10 z 2 + 15)}, 

_ q z ( z ) = z { 2 + 2 ~ ( ~ : x + 6 ) ( z 2  3)+ 1 .2 w Z 7x ~ ( P -  10 z 2 + 15)}. 
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Define ~,  gtj by replacing cumulants of the error distribution by their sample 
versions (bootstrap estimates) in formulae for p j, qj respectively. Then for each 
re>l, 

sup n(z) -~(z ) -  ~ n-i/~j(z)go(z) = O . ( n - ~ " + l ~ / ~ ) ,  
- a c < z < ~  j = l  

sup g(z) -  4,(z)- ~ n -j/~ O~(z) go(z) = O/n -("+ ~)/~). 
- -oo<z< oo j = l  

Examples of ~ ,  c~j include 

--tOl(Z)----- - - 0 1 ( Z ) = l ~ T x ( Z 2  - -  1), 

- P2 (~) = z  { ~  ~ s  ~ - 3 ) +  ~ ~2 ~ (~ - 10 z ~ + 15)}, 

-- 02 (z) = z {2 + ~ (~ ~ + 6)(z a - 3) + ~ ~z 7~ (z*-- 10 z 2 + 15)}. 

These  Edgewor th  expans ions  are readily inverted,  yielding the following Cor -  
n ish-Fisher  expansions,  valid for each m__> 1 : 

m 
x,=H-l(zc)=z~+ ~ n-J/2pjl(z,)+O(n-(m+l)/2), 

j = l  

y~ = K - 1 (gr , )  = Zrc  -Jr- ~ n - j/2 q11 (Z~) + 0 (n - (" + 1)/2), 
j = l  

.~=/~- l (g)=Zrc-k-  ~' n-i/Z~jl(Z~)+Op(n-(m+l)/Z), (2.2) 
j = l  

.9,~ = / ( -  1 (~z) : z~ + ~ n-j/2 Oil (z,~) + Op (n-(m + 1)/2). (2.3) 
j : l  

Here,  Pjl and  qjl are po lynomia l s  given s imply in te rms of the p / s  and  qSs, 
respectively. They  are even funct ion for odd  j and  odd  funct ions for even j. 
F o r  example ,  

Pl (Y)= qx (Y) =-~ 7 7x(Y 2 -- 1), 

P21 (Y) = Y {~4 ~c 2x (y2 _ 3) -- 1 72 72 (2 y2 _ 5)}, 

q21 (Y) = Y { 2 + ~ (~c K• + 6)(y2 _ 3) - 3A6 7 z 7x z (2 y2 _ 5)}. 
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A little algebra, starting from the Edgeworth expansions in Theorem 2.1, shows 
that under the conditions of Theorem 2.1 the above Cornish-Fisher expansions 
(with remainders of the stated orders of magnitude) are valid uniformly in 
r~(6, 1 - 6 )  for each 0 < 6 < � 8 9  

2.4. Bootstrap critical points 

We now derive expansions for the various bootstrap critical points introduced 
in Sect. 1, Subsection 1.2. The expansions developed here are all valid under 
the conditions in Theorem 2.1 - indeed under weaker conditions, as discussed 
in Subsection 2.2. For the sake of brevity we shall not state the expansions 
as formal theorems. 

We begin with formulae for quantiles in bias corrected critical points. The 
Edgeworth expansion o f / ~  is identical to that of H, except of course that 
and ~ replace 7 and ~c in polynomials. Therefore 

~, = ~ - 1  { d  (/~)} = ~ - ~  {n (0 ) }  = ~ - 1  {�89 + n - ~  ~ .  4 ( 0 ) +  OAn-~)}  

= n - ~ , ~  + O,(n-~). 

Defining r = ~(z~+2rh) we see that z~=z~+2rh,  and so by (2.2), 

-21 ^ n - 1  1 ^ ^~ 3 
. ~ = z ~ - - k n - { P l l ( Z ~ ) - t - l ~ 7 x } - b  { J 0 z l ( Z ~ ) b ~ x P l l ( Z n ) } q - O p ( n - 2 ) .  (2.4) 

To derive a similar formula for the accelerated bias corrected quantile 2~,, 
note that the polynomials pa and ql in the order n -~ terms of Edgeworth 
expansions of H and K are pl(y)=ql(y)=-~-y7~(y2-1); see Theorem 2.1. 
According to Definition (1.5) in Subsection 1.2, this means that the acceleration 
constant is 

a=n-�89 = --n-~177~. 

_1 ^ 
Its bootstrap estimate is 3=  - n  ~-~o,~, and we define 3/ / 'x~  

C~=,~+(,h+z~){1-a(m+z~)} -~ 
--�89 ^ 2 - - 1 1 ^ 2  2 / 2 3 =z~+n ~yx(1--z~)+n ~y 7~z~tz~-l)+Op(n-~). 

The adjusted probability level for the accelerated bias corrected critical point 
is r = ~(~'~); see Definition (1.3). Therefore z~~ ~'~, and by (2.2), 

~ p ~  + n - ~ { p l l ( z ~ ) +  1 ~ 2 ~ 7 ~ x ( 1 - z ~ ) }  

+ n - 1 { ~ 2 1 ( z ~ ) + 1 ~ x (  1 _  ~ ~, 1^~ ~ z~)P11 ( Z ~ ) - b ~ 7  ?x  Z~(  z2  - -  1)} -b O r ( n - X  ). (2.5) 

Define the re-level percentile critical points ~PERC(I)(TC) and ~PERC(ii)(g), percen- 
tile-t point flPERC_T(TZ), bias corrected point flBc(~) and accelerated bias corrected 
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point flaBc(rC) as in Subsection 1.2; see Definitions (1.2) and (1.4). Then by (2.2}- 
(2.5), 

PPERC~,~(~)= ~+ n-~ o;1 ~ 

f i + n - ~ a ; 1  ^ - ~ 1  2 = a[z,~+n ~gTx(z~-- 1) 
- 1  1 2 1 2 2 2 - 2  + n  z . {~6x(z~ - -3 ) - -y6 f f  y~(2z , - -5 )}]+Op(n  ), (2.6) 

G~Rc~,~ (~) = P -  n-~ ~;1 ~ 1  -~ 

= fi + n-~  ~r; 1 6 E z ~ - n - ~  + y7~(z 2 - 1 )  
- 1  1 2 1 ^2 2 2 - 2  + n  z ~ { ~ G ( z ~ - 3 ) - ~  ~(2z~-5)}]+OAn ), (2.7) 

f l P E R C -  T (7~) = f l - -  n - � 8 9  O"x 1 aS~ 1 - I t  

f i + n - ~ a ; l a [ z ~  -§ 2 

- 1  1 ^ 2 1 ^2 2 2 + n  z . { 2 + ~ z ( x t % + 6 ) ( z . - 3 ) - ~  ~ ( 2 z ~ - 5 ) } ]  

+Op(n-2),  (2.8) 

flnc(~) = f i+ n -~ 0 ;  1 ~2~t~ 

= ^ + n  ~y~(z~ + 1) 

+ n -1 z~ { ~  k6~(zZ~ - 3)-~6 9/Y~z( 2 z2 - 9)}] + Op(n-2), (2.9) 

- ~ 1  2 = - n  ~ 7 ~ ( z ~ - - 1 )  

- 1  1 2 1 ^2 2 2 - 2  +n z ~ ( ~ z ~ 6 ~ ( z ~ - 3 ) - ~ 7  y~ (2z~ -5 ) } ]+Op(n  ). (2.10) 

A much simpler argument shows that the "ideal" critical point, fi.~a~t(rc)=fl 
- n-  ~ o-; 1 ~ Yl - ~, satisfies 

=l~+n-~rr ;1  ^ -~1 z r r [ z , - n  gyy~(z~- 1) 

+ n - l z , { Z + ~ ( x x ~ + 6 ) ( z 2 _  1 2 2 z 3 ) - ~ y  y~ (2z~- 5)}] 

+ Op(n- 2). (2.11) 

The most important conclusions to be drawn from these formulae are the 
following. In interpreting (ii) and (iii) below, notice that ~ = 7 + Op(n-}) �9 

(i) Percentile(II) and accelerated bias corrected critical points are identical 
3 

up to and including terms of order n -~. That is to say, those points are third-order 
equivalent. This is unusual; see [-15] for more typical results. 

(ii) fl~ERC(n), fiPZRC-T and fi~BC agree with fl . . . .  t in terms of order n-  1. That 
is, flP~C~n), flP~RC-T and fiaBc are second-order correct. This is to be expected 
for fl~'ERC-T and flanc, but is unusual for fl~ERC{II); compare [15]. 
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(iii) /~PERC(1) a n d  flnc are generally not second-order correct; this is the norm 
for those points. However, if 7~= O(n -~) then even flPERC(I) and flsc are second- 
order correct. We often have 7~=O(n -x) for equally spaced design points; for 
example, that is the case if x~ = c i n - 1 +  d, for fixed c and variable d,. 

2.5. Coverage Probabilities 

The expansions developed here may all be established rigorously under the 
conditions of Theorem 2.1. To save space we do not state the results as theorems. 
The proofs are no more than variants of an argument which we shall give 
in Sect. 5, and so we shall only sketch the main ideas. 

Any one of the bootstrap critical points/~(Tz) whose Cornish-Fisher expan- 
sions we have just derived may be written in the form 

7Cx +n-~cz+Op(n-~)} ,  (2.12) 

where c~ and c2 are nonrandom and depend on re. A little algebra shows that 
= 7 + n-  ~ U + O; (n- 1), where, with ~i = e~/o-, 

n 

U = n - ~  ~ (r n-~  ( ~ - -  1) - 3 n - ~  ~i. 
i=1 i=1 i=1 

Therefore the exact coverage of the interval ( -  ~ ,  fl(rc)] equals 

P {/3 =< fl(~z)} = P {n ~ ( f l -  fi) o-x/a >= - (z= + n-  ~ ~ Cl + n-2 c2) + 0 v (n- 5)} 

= P(S + n -1 U cl > - y=) + O(n-  ~), (2.13) 

where S,2=n~ax([~-f i ) /#  and y==z=+n-~?Cl + n - l c 2 .  
To evaluate the last-written probability we need an Edgeworth expansion 

of the distribution of T= S,2 + n-~ UCl. We claim that this expansion3is identical 
to that of the distribution of S,2, up to a remainder of order n-~. It is this 
fact which enables the unusual accuracy of percentile-t confidence intervals. 
To verify our claim, write S = S,2 and notice that 

E(T) = E(S), E(T2)=E(S2)+ 2 n -  l Cl E(SU)+O(n-  2), 

E( T 3) = E(S3)  + 3 n -1 cj E(S 2 U) + O(n -2) = E(S3)  + O(n-3), 

E(T4)=E(S4)+4n-~c~ E(S 3 U) + O(n  -2 )  

= E ( S  4) + 12 n - 1 c~ E ( S  2 ) E(SU) + 0 (n - 2). 

Now, S = S' + Op (n- ~), where S' = n-  ~ o- 21 ~ (x~- 2) ~;  and E (S' U) = 0. Therefore 
i 

E(SU)=O(n-~) .  (In fact, it equals O(n-~).) In consequence, the first four 
moments of T agree with their counterparts for S up to remainders of order 
n-5, implying that the first four cumulants of S and T agree in the same sense. 
Since the n -~ and n-  a terms in Edgeworth expansions of S and T depend 
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only on the first four cumulants, this verifies our claim about Edgeworth expan- 
sions. 

Returning to formula (2.13) we now see that if fl(7:) is the critical point 
defined at (2.12) then 

P {fl ~ fi(u)} - -P (S>  -- y,) + O(n - ~) 

1 2 n - - 1  =g+r l -~{Tc1+g77x(Z~- -1 ) }  q~ (zu) + Ec2- �89 

- I - 1 7 2 7 x C 1  z ~ ( N - - z 2 ) - - Z = { 2 + ~ ( ~ x + 6 ) ( Z 2 - - 3 )  

1 2 2 4 3 + w 7  7~(z~- lOz~+ 15)}3 ~(z , )+O(n-~) ,  

using the Edgeworth expansion of the distribution of S given in Theorem 2.1. 
Noting the versions of c1 and ca for the various bootstrap critical points (see 
(2.6)-(2.10)), we obtain the following expansion of coverage probability: 

P {fi --< flP~RC(n)(U)} = 

P {fl ~ ~PERC_T(7~) } = 

P {fl < fi ,  c( ' )}  = 

_ -~1 2 {2---~ (K--2)(z~ z --3) P {fi ~_~ flPERC(I)(7~)} - -  7~-~ n ~ 7 x ( Z g  - -  1) ~)(Z~)--  n - 1  z= 

_}_172 2 4 2 3 7, (z= - 4 z= + 3)} ~b (z=) + O (n-~), (2.14) 

= - n-~ z. {2 --~ (~ - 2)(z~ z - 3)} 4) (z,) + O (n- ~-) 

P { fi <= ~A,C (U)} + O (n--~), (2.15) 

3 
u +O(n-~),  (2.16) 

~z+n-r189 7~z 2 0(z~)-- n -  l z~ {2--~(K--  2)(z~-- 3) 

..~_1_~72 2 4 2 3 7~(z . -  2 z.)} (~(z,~)+O(n-~). (2.17) 

Under the condition of Theorem 2.1, all these expansions are available uniformly 
in 0 < n < 1. Sect. 5 describes the manner of proof. 

The main conclusions to be drawn from these formulae are the following. 

(i) The percentile-t coverage error is only O(n-~), for one-sided confidence 
intervals. At first sight this is surprising, since BPERC-T(n) is not third-order cor- 
rect. 

(ii) Percentile(II) and accelerated bias corrected intervals have coverage 
errors of order n -1, and those errors agree up to remainders of order n-~. 
In the light of results in Subsection 2.4, this is to be expected, since percentile (II) 
and accelerated bias corrected critical points are second-order correct and third- 
order equivalent. However, one-sided percentile(II) method intervals have cover- 
age error only of order n --~ in most non-regression problems; see [15]. 

(iii) Percentile(I) and ordinary bias corrected intervals have coverage errors 
of order n -~. This is to be expected since those intervals are only first-order 
correct. However the errors are order n -1 if 7x=O(n-~), which is often the 
case when the design points are equally spaced; see remark (iii) at the end 
of Subsection 2.4. 
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2.6. Two-sided Confidence Intervals 

Again, all the expansions studied here may be given rigorous proofs under 
the conditions of Theorem 2.1. To economise on space we state only one of 
those expansions as a formal theorem, whose proof is given in Sect. 5. The 
main idea behind the proofs is outlined below. 

Assume 0 < 7c < �89 The equal-tailed, two-sided bootstrap confidence interval 
with nominal coverage 1 - 2  ~, based on the critical point fl(rc), is of course 
I (1 - 2 re) = [fl(rc), fl(1 -- rc)]. Its length is/(1 - 2 re) =/~(1 - ~) -/~(~), and its exact 
coverage is 

P(1 - 2 u) = P {fl(u) __< fi__< fl(1 - re)} = P {fl__< fl(1 - re)} - P {fl < fl(rQ}. 

To appreciate properties of these quantities, observe that in general 

and 

{ 3 } 
/~(~)-~-]~--/--n-�89 Zu"~ 2 n-J/2 ~j(Zrc)-l-OP("- 2) 

j= l  

3 
P = + Z n -  j/2 (z.) + o (n-  2), 

j= l  

where the ~j's are polynomials with random coefficients, the tfs are polynomials 
with nonrandom coefficients, and odd/even indexed polynomials are even/odd 
functions respectively. For j =  1 and 2, formulae for ~j follow from (2.6~(2.10) 
and formulae for tj follow from (2.14)-(2.17). (We could have taken longer series 
expansions, but those above suffice for our purposes.) Therefore 

and 
/(1 - 2 re)= 2 n-~ a~ -1 d{z=+n -a ~2(z~)+Op(n-2)} 

P ( 1 - 2 = ) =  1 - 2 n  + 2 n - a  t2 (z=) O(z=)+O(n-2). 

(2.18) 

(2.19) 

The polynomial tz is identically zero in the case of percentile-t (see (2.16)), and 
so we have P ( 1 - 2 r c ) = l - 2 ~ + O ( n  -2) in that circumstance. Since this case 
is so important we have chosen to make it the subject of our formal theorem. 

Theorem 2.2. Assume the conditions of Theorem 2.1. Then in the percentile-t case, 
P ( 1 - 2  7~)= 1 - 2 ~ +  O(n -2) uniformly in 0 < ~ < � 8 9  

We may draw several conclusions from formulae (2.18) and (2.19). 

(i) Owing to symmetry properties of Edgeworth expansions, coverage errors 
for two-sided confidence intervals are generally of order n-1, or smaller, even 
for the normal approximation method. This means that techniques such as 
percentile (I) and bias corrected, which have large coverage errors (of order n-a-) 
in the case of one-sided intervals, do not have such serious coverage problems 
in the case of two-sided intervals. 

(ii) Only in the case of percentile-t is the polynomial t2 in (2.19) identically 
zero. Therefore percentile-t stands head and shoulders above the other methods 
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in terms of coverage accuracy, since it guarantees a coverage error of order 
n-2; the others give order n-  1. 

(iii) Second-order correctness of percentile(II) and accelerated bias corrected 
critical points shows up in the polynomial t2, by dictating that t2 contain no 
contribution from skewness of either the error distribution of the design points. 
See formulae (2.14)(2.17) for values of rE. 

(iv) Percentile-t has advantages other than reduced coverage error. We al- 
ready know that flP~RC_T(n) is particularly close to the exact critical point, 
/~exact(n); see remark (ii) at the end of Subsection 2.4. In consequence, lengths 
of confidence intervals based on percentile-t critical points are particularly close 
to lengths of intervals based on exact critical points. Indeed, let ~2 be the polyno- 
mial appearing in (2.18) in the case where fl(n)=flP~RC_T(n), and let s2 be the 
version of s2 for the case fl(n)=flexaot(n ). Then ~2 is obtained from s2 by simply 
replacing 7 by p and • by ~; compare (2.7) and (2.11). In consequence, E(#~2) 
=E(#)sz+O(n-1), from which it follows via (2.18) that E{/P~RC_T(1--2n)} 
=E{l .... t(1--2n)} + O(n-~-). This formula is not valid for intervals constructed 
from the second-order correct points ~PERC(II) and flABC, where the difference 
between E {/(1--2 n)} and E {l . . . .  t ( 1 -  2 re)} is generally of order n-L 

(v) To take maximum advantage of the accuracy of the percentile-t approxi- 
mation we may construct "shortest"  or "likelihood based" bootstrap confidence 
intervals. The argument runs as follows. For each y such that /(  (y) >__ l - 2 n, 
choose z=z(y) such that ~ ( y ) - ~ ( - z )  is as close as possible to 1 - 2 n .  Take 
(~, v~) to be that pair (y, z) which minimizes y + z. Then the "shortest" percentile-t 
confidence interval with nominal coverage 1 - 2  n is 

/SHORT = [ f l - -  n - ~ O'x I e ~, fl-}- n - �89 0-2 1 (~ 1~]. 

Arguments summarized in [15, Subsections 2.5 and 4.6] may be adapted to 
show that in the present circumstances, /SNORT is shorter than the equal-tailed 
interval by an amount  of order n -~, and that it has coverage error of order 

- 2  n 

2.7. Random Design Points 

Here we take the design points xi to be random, and write them as Xi to 
indicate this distinction. The work in this subsection is at an heuristic level. 

If the assumption is only that E(Y~IXi)=a+flX ~ and that the pairs (X i, Y/) 
are independent and identically distributed, then the pairs rather than the residu- 
als should be resampled. Techniques developed earlier in this section may be 
used to analyze that case. It is found that percentile-t again performs well, 
particularly in the senses described in remarks (iv) and (v) at the end of the 
previous section. However, coverage errors of two-sided intervals are generally 
of order n -1, not n -2. To appreciate why, put e~= Y~-(a+Xifl) and recall from 
the argument following (2.13) that our proof that coverage error is of order 
n-2 depended crucially on identities such as 

X i - -  g ~ O ,  

i = l  J 
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or at least equals O(n-~). On the present occasion the left-hand side should 
be replaced by 

n -~ ~ E{(X~-Jf)e~}---E(X~ e ~ ) - E ( X , ) E ( ~ ) + O ( n - l ) ,  
i=1 

whose value depends on the relationship between X 1 and I11. 
In the remainder of this section we discuss the percentile-t interval in the 

case where the variables X~, e~ . . . . .  X,,  e, are assumed totally independent, the 
Xi's have a common distribution and the e{s have a common distribution with 
zero mean. Of course, Yi is defined by Yii:o~-]-Xifl-~i. Put o-2=E(e2), a ]  
=n-~ y ~ ( X , - X ) t  ~= Y-XI~,  / ~ = n - ~ ; 2 E ( X ~ - X ) ( ~ - Y ) ,  ~i=~-(~+X~/~3 

i i 

and ~2 = n-2 ~ g~. Given the sample of pairs {(X~, I11) . . . .  , (X,, Y~)}, conduct 

two totally independent resampling operations in which a random sample 
{X*, ... X*} is drawn with replacement from {Xi, ..., X,} and a random sample 
{e* . . . . .  e*} is drawn with replacement from {gl . . . . .  g,}. Define Y~*=~+X*fl 

~, xy~ l V X *  ~.2 i z ~ * =  ~ * - 2 "  + ~ ,  ~* = n -  ~*, X ~* = n -  ~ ~, = n -  (x~*-  X~*)t /~*, 
i i i 

[~* = a } - z z ( x  * - X~*)(Y~ * - Y*), ~* = Y~* - (4*  +x*fl*) and ~,2 =n-X ~ , 2 .  Let 
i i 

�89 * * ^* K a n d / (  denote the distribution functions of n ~ ax(fl-fl)/# and n ax(fl -fl~)/a , 
respectively, and put y~ = K -  ~ (~) and ~, = / ( -  ~ (~). The percentile-t critical point 

--• - 1  is /~ERC_T(~)=fl--n ~aX #~a-, ,  and the exact critical point is fl . . . .  ,(~)=/~ 
-n - ia ; :~ay~_ , .  Arguments similar to those in Subsections 2.3 and 2.5 may 
be employed to show that [ / ~ . c . ~ ( ~ ) - - / ~ a o t ( ~ ) l = O v ( n - ~ ) ( s o  that /~P,~RC-T(~) 
is second-order correct), and for 0 < ~ < �89 

P {~ERC-T  (TZ) ~ fl ~_ ~ERC-T  (1 -- ~)} = 1 -- 2 ~z + O (n- 2) 

(so that the percentile-t interval has coverage error O (n-2)). 
The main conclusions to be drawn from these arguments are as follows. 

(i) In the random design case, where the Xi's and ei's are assumed totally 
independent, the virtues of percentile-t and percentile(II) described earlier for 
the fixed design case, continue to hold. 

(ii) In the correlation model, where it is assumed only that the pairs (Xi, Yi) 
are independent and identically distributed, the aforementioned virtues may 
evaporate. Then, the various bootstrap methods enjoy only the properties which 
they do in more usual circumstances. 

3. Simple Linear Regression: Intercept Parameter and Means 

3.I. Introduction 

In this section we describe versions of results in Sect. 2 for the case of estimating 
the intercept parameter ~ or the mean ~ + x0 fi of Y given that x = Xo. Of course 
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the former is just a special case of the latter, and so we may confine attention 
to the problem of setting confidence intervals for Yo - e + Xo fi, where xo is fixed. 
In this context the bootstrap behaves in a manner which typifies its performance 
in most statistical applications, where the exceptional properties noted in Sect. 2 
are seldom evidenced. Therefore our account will be particularly brief. Sufficient 
regularity conditions for all our results are those in Theorem 2.1. 

3.2. Notation 

In addition to notation introduced in Subsections 1.2 and 2.2, put ~o = ~ + Xo/~ 
and 29"=~*+x0/~*. Let yi=~X2{(Xo-~)(xi-~)+a2}, a,-2-n-t~y~=l 

i 

+ o-~- 2 (Xo - 2)1, 7r = n-  1 ~ y~, 2r = n-  t ~ y~ and ~cr = 2 y -  3. Redefine H, /~, K 
i i 

. . . .  _I ^ _I ~ ^ ^ _I ^ 

and K to be distribution functions of n=(yo-Yo)/(aay), n~(29o-Yo)/(aay), n~(yo 
-yo)/(d~y) and n~-(~9*-3~o)/(d* o-y), respectively. (In the case o f /~  and /s  condi- 
tion on the sample Y '={(xl ,  I11), ..., (x,, Y,)}. Incidentally, note that n~0~o 
-yo)/(aay) has zero mean and unit variance.) 

3.3. Edgeworth and Cornish-Fisher Expansions 

Since we have new definitions of H, K, /~ and /(, we require corresponding 
new definitions of the polynomials p j, q j, /~j and 0j. Excepting this obvious 
change, Theorem 2.1 holds exactly as before, under the same regularity condi- 
tions. Likewise, Cornish-Fisher expansions such as (2.2) and (2.3) are valid as 
before. The new versions of polynomials include 

_pl(z)=~77,(z2_l), _ q l ( z  ) 1 -1 2 t =~7(Ty-3o-r  ) z - ~ 7 7 r ,  

- p2  (z)  = z { ~  ~ 4 ,  (z  2 - 3) + ~ 7 2 7 ,  ~ (z  4 - 10  z 2 + 15)} ,  

-q2(z)= z[2 + a~- z72 + ~ {~c ~cr + 6 -  8 72 a~- a (7,-  3 a21) } (z2- 3) 

+ ~ 72 (Ty - 3 a~- 1)2 (z 4 _ 10 z 2 + 15)]. 

Polynomials i01, 01, P2, 02 are obtained from these expressions on replacing 
7, ~c by ~, ~ respectively. 

3.4. Bootstrap Critical Points 

Edgeworth expansions of H and K are described above. From these, and formula 
(1.5) for the acceleration constant, we may deduce that the bootstrap estimate 
of the acceleration constant is 
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This is required for constructing Efron's [11] accelerated bias corrected critical 
point. In the present case the various critical points are 3)OPERCm(re)=;~0 

-~ ^ ^ - a  _ ^  - � 8 9  ^ ^ - *  ^ _ ^  
-}-n tTytTH ( re ) ,  ~0PERC(ii)--y0--/~ % i f / /  ( l - g ) ,  Y0PERC_T(Tg)--y0 

--i ^ --1 ^ ^ -- �89 ^ ~-1 ^ ^ ^ . n  ~ aya/~ (1--re), Yo,c=Yo+n ayaH (p! and 3 Y O A B C - = Y o  
-�89 + n  %#/~-1(r , where with rh=cI)-l{fi~(O)}=n-:197,+Op(n-~), we have 

~ =  ~b(z= + 2 rh) and 

po=~E~,+(~+~){1-a(~+zO}-q. 
Since the polynomials Pl and ql appearing in Edgeworth expansions of 

H and K are not identical (see Subsection 3.3), then the percentile(I) critical 
point is not second-order correct. Neither is the percentile (II) point or the bias 
corrected point. However the percentile-t and accelerated bias corrected points 
are second-order correct. 

Arguments leading to Edgeworth expansions of coverage probabilities in 
Subsection 2.4 may be pursued as before, the main change being that versions 
of S and T for the argument following (2.13) no longer have identical Edgeworth 
expansions. To appreciate why, observe that on the present occasion 

S = n}(~o -yo)/(0%)= n -~ a71 L Y, ~,* + O(n-}) 
i=1 

where {i = ejo-, and T = S + n -  1 U c 1 where c a is a constant and U is as in Subsec- 
tion 2.4. This entails 

E(SU):a~ 1 n -1 yiE(~.a,)--~yn -1 ~ yiE(g~)--3n -1 y~E(g +O(n -1) 
i=1 i=1 i=1 

=~fl(~c-~7~)+O(n-1), (3.1) 
whereas the right-hand side had been O(n -~) in the earlier case. It may be 
deduced from (3.1) that the one-sided percentile-t interval ( - o o ,  290P~RC_T0Z)] 
has coverage probability 

p{yo<~OPERC_T(re)}=re__n-*l 3 2 ~(K--~7 )z~{(~,-- 3a21)z2--~,} 4(z~)+O(n-~), 
(3.2) 

and so has coverage error of order n -  1. The accelerated bias corrected one-sided 
interval also has coverage error of order n -1, whereas one-sided percentile(I), 

-�89 
percentile(II) and bias corrected intervals have coverage error of order n . 
Formulae such as (3.2) are available uniformly in 0 < re < 1, under the conditions 
of Theorem 2.1. 

4 .  M u l t i v a r i a t e ,  M u l t i p a r a m e t e r  R e g r e s s i o n  

4.1. Introduction 

In this section we take a quick look at the multivariate, multiparameter case, 
represented by the model 

Yi=~t +x~fl+ ~i, l<_i<_n. 
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Here, Yi, �9 and ~i are p x 1 vectors, fl is a q x  1 vector, x, is a p x q  matrix, 
and the errors ~i are assumed to be independent and identically distributed 
with zero mean and p x p variance matrix 2;. Our aim is to give heuristic argu- 
ments which generalize results in Sects. 2 and 3. The arguments may be made 
rigorous, assuming sufficient moment  and smoothness conditions on the errors 
~ and the design points x,, but at considerable algebraic expense. The trick 
in handling Edgeworth expansions for multivariate nonparametric bootstrap 
statistics is to smooth each resampled observation by adding to it an independent 
N(0, n-CI) random variable, where c is fixed and arbitrarily large. The resulting 
statistic has a proper density function. Edgeworth expansions of this density 
may be developed. 

Subsection 4.2 introduces notation, and Subsection 4.3 describes the boot- 
strap in a multivariate setting. Subsection 4.4 argues that the terms of order 
n -�89 in Edgeworth expansions of the non-Studentized statistic S,1 and the Stu- 
dentized statistic S,2 are identical. This means that the multivariate version 
of the percentile(II) method produces confidence regions whose boundaries are 
second-order correct. Subsection 4.5 summarizes our main conclusions, which 
are multivariate versions of those reached for simple linear regression in Sect. 2. 

4.2. Notation 

Define : ~ = n - l Z x , ,  Y i = n - l ~ Y i ,  ~x=n-12(Xi--YDT(xi--Y[), ~:~l[--Xfl, 

i = 1  i=1 i = 1  

- ~ ) r I 2 ( x i - ~ ) ,  9 = n  -1 ~ (x i -~ ) r27(x i -~ ) .  The variance estimate I2 is biased 
i=1 

for I2 by an amount  n-1. We could correct for all or part of that bias by 
adjusting the factor n-1, but to do so would not qualitatively affect our conclu- 
sions. If we were to assume that I; was a diagonal matrix then our estimate 
would be a little different from 12 but our conclusions would remain unchanged. 

Note that E(fl')=fl and var(f l j=n -1 • x  1 V X x  1. Therefore two standardized 
versions of fl are 

l -- ! --1 ^ 
S n l = n Z ( ~ x  1 V 1 2 x l ) - � 8 9  , S n 2 = n Z ( ~ x  V ] ~ x l ) - � 8 9  

the second being "Studentized". 

4.3. Nonparametric Bootstrap 

The bootstrap argument described in paragraphs 3 and 4 of Subsection 1.2 
may be applied without change in the present context, provided quantities are 
interpreted in a vector setting. Let {~* . . . .  ,5*} denote a resample drawn with 
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replacement from the residuals {~i, ..., g,}, put Y * = ~ + x i f l + , * ,  define $*, fl* 
on replacing (xi, Y~) by (xi, Y*) in formulae for $, fl, and let ~* = Y * -  ( i * +  xifl*), 

i~. =n-~ ~ ~, ~,r. V* =n -1 ~ (xi-N)T ~*(xi--x). 
i = 1  i = 1  

The vector version of S* 2 is S'2 = n~(Z2 ~ 9* 221)-~(f l ._  fl). Percentile(II) and 
percentile-t regions are f l - ~ ,  f l - n - ~ Z ~  & respectively, where 5~, J -  are regu- 
lar regions containing just ~B of B simulated values of f l*-f l ,  S*2 respectively. 
Both have nominal coverage equal to re. Percentile-t requires more numerical 
effort than either percentile method, since it involves computation of the inverse 
and square root of a new matrix for each resample. 

Bootstrap confidence intervals for individual components of fl may be 
described in terms of distribution functions, as follows. If 0, 0 denote f t h  compo- 
nents of fl, fl respectively, then E(O)=O and v a r ( 0 ) = n - i o  -2, where o .2 is the 
(j,j)'th component of 12; 1 V12~-a. Let 0 be the f t h  component of fl, and d2, 
~.2 be respectively the (j,j)'th components of I22 1 V12x 1, ~x 1 V*12x 1. Write 
G, H and K for distribution functions of 0, n~(O - O)/o. and n~(O - 0)/~, respective- 
ly, and G , / t  a n d / (  for distribution functions of 0", n~(O * -0)/~ and n~(O * -0)/~*, 
conditional on X in each of the last three cases. If we change fl to 0 in formulae 
(1.2) and (1.4), we have formulae for endpoints 0(re) of one-sided bootstrap confi- 
dence intervals having nominal coverage ~. 

4.4. Terms of Order n -~ in Edgeworth Expansions 

We begin by outlining theory for Edgeworth expansions of multivariate densities. 
Let S, denote either S,1 or S,2 (both vectors of length q), let v=(v (1) . . . . .  v(q)) T 

be a q-vector of nonnegative integers, let x = (x ~a) . . . .  , x(q)) r be a general q-vector, 
and define Iv[--~lr Ilxll=(~x~J~2)~, v!=I](r xV=I~(x(J~) v(j' and D" 

J J J J 
=~[(~/Ox(J)) ~(j~. Moments #~=E(S~) and cumulants Z~ (both scalars) are deter- 

J 

mined by the formulae 

~(t) = E  {exp(itr S,)} ~,#v(it)~/v!,  log~(t)~)c~(it)~/v!. 
v v 

In the regression case, cumulants enjoy the expansions 

Zv ~nlvl/2 2 avJ n-j, [v[=l ,  
j>=lv[-1 

where avo = 0  if Ivl = 1. (Compare Withers [-19].) The fact that S, has been stan- 
dardized to have identity asymptotic variance matrix means that when Iv I--2, 
avl = 1 if one component of v equals 2 and a~l = 0  otherwise. Thus, 

0 ( t )=exp ( - - l l l t [ j 2 ) [ l+n -~{  ~ avl(i t)v+ ~ av3(it)~/v!}+O(n-~)]. 
Ivl=l Ivl=3 
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Inversion of this Fourier transform indicates that the density fn of S, satisfies 

f,(x)=cb(x){l +n-~r(x)}+O(n-1), 

where the polynomial r is given by 

r(x) = av,/-/v(x) + F av2 Hv(x)/v!. 
Ivl=l 1~l=3 

(4.1) 

(The generalized Hermite polynomial Hv, defined by Hv(x)~b(x)=(-D) v q$(x), 
has Fourier transform (it) v exp ( -  �89 IIt [I 2).) 

It may be proved after lengthy algebra that the same polynomial r emerges 
from formula (4.1) in both the cases S, = S, 1 and S, = S,2. This is a multivariate, 
density version of the fact that pl=ql in Theorem2.1. That result was the 
key to good performance of the percentile (II) method in simple linear regression, 
and the fact that it persists in a multivariate setting indicates that percentile (II) 
will perform well here, too. 

4.5. Properties of Bootstrap Confidence Intervals 

For the sake of simplicity we shall confine attention to confidence intervals 
for individual components of slope or of vector means. 

(i) Percentile(II) confidence intervals for components o f / l  are second-order 
correct. Furthermore, one-sided percentile(II) intervals have coverage error 
O(n-1), compared to O(n -~) in most other statistical problems. These results 
may be proved from the fact that Edgeworth expansions for S,1 and S,2 agree 
in terms of order n -~ - see the end of the previous section. As in the case 
of simple linear regression discussed in Sect. 2, two-sided percentile(II) confi- 
dence interval have coverage error O(n-1). 

(ii) Percentile-t confidence intervals for components o f / l  are second-order 
correct. They have coverage error O(n -~) in the one-sided case, and O(n -2) 
in the two-sided case. These results may be proved very much as in Subsections 
2.5 and 2.6. The arguments are more tedious in the present multivariate setting, 
but not conceptually more difficult. 

(iii) In the case of confidence interval for components of vector means or 
for intercepts, rather than for slope, the above virtuous properties of percenti- 
le(II) and percentile-t evaporate. Percentile(II) intervals fail to be second-order 
correct, and percentile-t intervals have coverage error O (n- 1). 

5. Proof of Theorem 2.2 

We shall need the following notation, in addition to that introduced in Sects. 1 
and 2. Use superscripts to denote elements of vectors. For d-vectors x, write 
IIx]l =(~xO)2)+; for d-vectors v with nonnegative integer components, write Jv[ 

i 
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=~lCJ>l and D~=I-I(~/~3r "'j' (a differential operator); let qS.,~ and q).,E be 
J J 

the density and distribution function of the bivariate N(p, I;) distribution; and 
let C, C: ,  C2 . . . .  denote positive generic constants. Put vj=a21(x~-2), U) ~) 
=r U j ( 2 ) = / ) j r  U j  ( 3 ) -  2 " r r ( 1 )  1 Z  - r  U j = t ~ j  , U) 2), U)3)) T and U = n -  Uj. 

Observe that J 

S = nr ( f i - /~)a~/O = n~ G (2~ (1 + t7 ( ~ -  O"~ = -  U (~) ~)-~.  

Techniques similar to those employed by Bhattacharya and Ghosh [4], although 
requiring a little elaboration because the summands comprising the mean U 
are weighted i.i.d, vectors with different weights, show that under the conditions 
of Theorem 2.1, 

3 

P(S <=z)= ~(z)+ ~ n -j/2 qj(z) (o(z)+ O(n -2) (5.1) 
j = l  

uniformly in - ~  < z  < oo, where - q l ( z ) =  17 ])x( Z2-1) and q2, q3 are polyno- 
mials whose coefficients depend on the first five moments of the error distribution 
and of the sequence of design points. Polynomial qj is of degree 3 j - 1 ,  and 
odd/even indexed qj's are even/odd functions respectively. 

Define U*m = Y "* = e * / ' ~ 3  ..~j j / v ,  Uj*(2)  - -  v j  ~ , .  _ "JJ/-f*(3) _ f i ,  2 _  ..~j - -  1, U* 
=(Uff (1), U7(2) Uff(3)) r and U* = n-  1 ~ U*. Observe that 

J 

Let 0j(1 < j < 3 )  denote the version of qj in which moments of the form E(~]) 
(3 < k < 5) appearing in coefficients are replaced by n - 1 ~  (~j/8)k. Our first goal 

J 
is to establish a bootstrap version of (5.1). Let cg=cg, denote the class of all 
possible samples 5 f=  {(xl, Y1), ..., (x,, Y,)}, given the design points x l ,  ..., x,. 
If g~_cg, write P(g)  for p(s Put 

A(z)= P(S* < z [ f ) - - { ~ ( z ) +  .~ n - j/a Oj(z) 49(z) t .  
3 = 1  

Theorem 5.1. Under the conditions of Theorem 2.2, there exists E~cg with P(8) 
= 1 + 0 ( n -  2) and such that 

sup sup [A, (z) [ < C n-  2. 
~r~,~ -- oo < z <  oo 

We shall prove Theorem 5.1 via an Edgeworth expansion for the trivariate 
distribution of n ~ fS*. The next paragraph defines that expansion. 
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Given a 3-vector v of nonnegative integers, let 2~,j be the v'th cumulant 
and 9~ the variance matrix of U*, both conditional on ~ .  Put 

1 o r 
2 , = n - ~ i 2 , , , ,  and I ~ = n - l / I t ~ l j =  0 1 0 (5.2) 

j=l j=l 9 0 ~ + 2  

Let Ps ( -~o ,9 :  {)~}) denote the signed measure whose density is Pj(-q~o,,~: {)~}), 
defined by Bhattacharya and Rao [6, pp. 53-54]. Write Q, for the random 
measure induced on N 3 by n�89 *, conditional on ~ .  For  any real number 
z, let 5e(z) denote that set of values (u (1), u (2), u{a))ell 3 such that 

u ( 2 ) ( l + n - � 8 9  u ( 3 ) _ n -  1 u ( 1 ) 2 n -  a U(2)2)--�89 

and the left-hand side is real-valued. The major step in proving Theorem 5.1 
is deriving: 

Proposition5.2. Under the conditions of Theorem4.1, there exists gc_cg with 
P(N) = 1 + 0 (n-2) and such that 

sup Z ~ d Q , - q ~ o , * -  ~, n-J/2pj(--~o,*:  {)?~}) <Cn-Z .  
~qe~-oo<z<m ,9 ~ j =  l 

Proof of  Proposition 5.2. Let #k = E(e]) be the k'th moment of the error distribu- 
tion, put it k = n -1 ~ (gjd)k = n-1 #-k  ~ (e i _ ~_  Vj n -1 ~ v~ ei)k, and let g101) be the 

) j i 
set of all samples Y" such that [/t k -  #k[_--< q for 1 _< k_< 12. Using the boundedness 
of the errors ej we may prove that P{gl(q)} = 1 +O(n  -2) (in fact, 1 +O(n -~) 
for each 2 > 0) for each t/> 0. Let V be the 3 x 3 matrix with 1, 1, tc + 2 down 
the main diagonal, 7 in the top left- and bot tom right-hand corners, and zeros 
elsewhere; compare gr defined at (5.2). The determinant of V equals ~c+ 2 - 7 2  
= E ( ~ I )  2 E {(~2 _ 1 ) 2 }  _ [E { ~  ((2 _ 1 ) } ] 2  > 0, using the Cauchy-Schwarz inequali- 
ty and the fact that the distribution of ~ is nonsingular. Therefore all the 
eigenvalues of V lie in an interval (2 ~- 1, �89 () for some 2 < ( < oe. If t/is sufficiently 
small and Y'eE~ (t/) then all eigenvalues of gr lie within ((-x, (). 

Put 

C 9 - ~ U  * if 1lg-~U*ll <n~ 
uJ* =~0 J = otherwise, 

UJ = U ~ t - E ( U ~  * [s and UJ = n - l Z U ~ .  Let )~,j be the v'th cumulant and ~r] 
J 

~̂" n - 1  V~ the variance matrix of U~, both conditional on W. Set Zv = ~ ~v,j and 
J 

= n-  1 Z V;- Then ~* ~ I in probability, and it may be proved that if ~ is small 
J 

and n large then ~ ,  has all its eigenvalues within (�89 2) whenever Wegl  (~)- 
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Write Q,* for the random measure induced on N 3 by n�89 t, conditional 
on X. Put 

4 4 

H . = Q , -  Z n-J/2pj(-ePo,*: {)~v}),H,t =Q-  * -  ~ n-J/2PJ(--cPo,**" {~;})" 
j = 0  1 = 0  

Let 5e(z) be as in the statement of Proposition 5.2, and 5e*(z) equal the set 
{ 9 - * x - n - ~ E ( U ~ * l X ) : x e S e ( z ) } .  If each []V-~U*[I<n -~ then the event 

J 

n ~ tJ*~ 6 ~ (z) is equivalent to n ~ l i t  ~Sa* (z). If X e g  a (q) and q is small then condi- 
tional on X, the chance that ]lg-~U*l[ >n~ for some 1 <j<n is less than Cn -2. 
From this observation, and arguing as in [-5, pp. 208-209], we deduce that 
if n is large, t/is small and Xega  (t/) then 

sup ~ d H , -  ~ dH*, ~ C n -  2 
- o o < z < o o  Se(z) Y~t(z) 

Therefore Proposition 5.2 will follow if we prove that for a collection E___U 
with P (~)=  1 + O(n- 2), 

where 

sup s,(X) < Cn -2 (5.3) 
~ e o  o 

s.(X) = - sup ] ~ dH*.l. 
-- oo < Z <  oo SPt (z) 

Derivation of (5.3) is along lines in [6, pp. 210-214]. We give only an outline. 
Assuming X eSa (q) for small q, and using Theorem 9.11 of Bhattacharya and 
Rao [-6] in place of Theorem 9.10 in a derivation of an analogue of their (20.21), 
their argument is straightforward to the foot of page 211. Thus we deduce the 
existence of a probability measure L on R3, with support confined to the closed 
sphere of unit radius centred at the origin, and whose Fourier-Stieltjes transform 
l satisfies [(OVl)(t)] < C exp(-- Iltl[ ~) for all te]R 3 and all 3-vectors v with nonnega- 
tive integer components satisfying I vl =< 10. Given 0 < 6 < 1, put La(E ) = L(6- a E) 
for Borel sets E, and let lo be the Fourier-Stieltjes transform of La. Let q,* 
be the characteristic function associated with measure Q,*. Then if X~gl(q)  
and t/is small, 

7 

s,(X)< sup Y', n-J/z ~ IPA-r {2~})(y)Idy 
- oo < z < o o  j=O {05~*(z)} 2~ 

+ Ca max t, (~, #) + Ca n-  2, (5.4) 
o__<~_</~,1~1< ao 

where C1 does not depend on 6 and 

t,(~, f l )= .~ ] {D" - "  q,* (t)} {D" ha(t)} [ dt. 
I[ti[ >C2n4 

Next we select 6, and bound t,(~, fl). 
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Lemma 5.3. Take O=n -2. There exists r ~_(~ with P(o~2) = 1 -~ 0( / ' / -2)  and 

sup sup t,(~t, f l ) N C n  - 2. 
~ 2 0 ~ = # , [ # l ~  10 

Proof  o f  Lemma 5.3. Put 

q.j(t) = E {exp (n- ~ it T UJ) I Y'}. 

Then q* = I-[ q,~, from which it follows that for large n and all t, 
J 

]D' q~ (t)]< n I'1 ~(Irl)r(t;jx, ... ,Jl,I), 

where r (. ; j l ,  . . . ,  Jk) denotes the product of [ q,~ [ over all values 1 < j  < n excluding 
Jl . . . . .  Jk, and ~r denotes summation over distinct k-tuNes Jl ,  ..., Jk with each 
1 <=Ji <- n. (Note that II UJ II ---- 2 n�89 Therefore if 0__< �9 =< fl and I/ll < 10, 

tn(O~,fl)<--<-C3nl~ (t~ S r( t ; j l ,  . . . , J lo )exp( - l lOt l l~ )d t ,  (5.5) 
Iltll >C2n�89 

Since P(ll~-~U*lt >n~l~r )NC4  n -1  uniformly in 1 N j < n  and ~regl(q), for 
small t/, then ]q,i(t) l <la , j (n  -~ 9 -~ t)] + C4 n-  1, where 

a,~(t) = E {exp (it r U~) [ X}. 

Therefore if cl (t; Jl ,  .. . ,  Jk) denotes the product of [a,i(t) l + C4 n-  1 over 1 < j  < n 
excluding Jl ,  ... ,Jk, then the right-hand side of (5.5) is not greater than 

C 5 n 1 ~  (1~ ~ e l ( n - ~ t ; j x  . . . .  ,jlo) e x p ( - C 7  lt6tll~) dr, 
Iltll >C6n 4r 

provided ~'~ ~1 (r/) and r/is small. But 

I a,j(t) I = [bn {(t ~ 1)+ vj t (2)) t7 - 1, tt3) t~- 2} l, 

where b, (tl, t2) = n-  1 ~ exp (i tl ~k + i t2 ~2). Hence 
k 

t , ( ~ , [ J ) < u , = C s n l ~  ~1~ S cl(n--~t;Jl ,  "" ,J lo)exp(-C9l l f t [ I -~)  dt, 
llt[I >Cane 

where c( t ; j l  . . . . .  Jk) denotes the product of Ib , ( t t l )+v j t  (z), Ca) ) l+C4n-1  over 
1 < j  < n excluding Jl ,  ..., Jk. 

Let g3 denote the class of all samples ~r such that u, < n-  2. We shall complete 
the proof  of Lemma 5.3 by demonstrating that P(ga)=  O(n-2) .  For that it suf- 
fices, by Markov's  inequality, to show that E(u,)= O(n-4). Now, the series ~(lO) 
has O(n 1~ different summands. Let (kl . . . .  , klo) denote that value of (j~ . . . .  ,Jlo) 
for which the summand has largest expectation. We must prove that 

rt24 I E { e ( n - ~ t ;  k~ . . . . .  k~o)} e x p ( -  C 9116tll ~) d t =  O(1). (5.6) 
Iltll >Cane 



Unusual Properties of Bootstrap Confidence Intervals 271 

Let b(tl, t2)=E{exp(itlel+itze~)}, bj(t)=b(t(X)+vjt (2), t (3)) and b,j(t) 
=b,(tm+vst(2), t(z)). Fix A e(0, �89 put I j ( t )= 1 if both [b,j(t)-bs(t)l<A and 
I bfit) [ -<_ 1 - 2 A, Is(t ) = 0 otherwise, and N(t) = ~ Is(t ). Then 

J 

C ( t ; j l ,  ... ,Jlo) =< C1 o exp { -- Cl l  N(t)} 

for all t, all Jl ,  "" , J lo  and all samples Y'. Recall that for some 0 < ~ < 1  and 
all large n, the number of j 's such that vs> ( is ___ n ;, as is the number of j 's 
such that v j < - ~ .  Therefore if Iltll > c8  then the number of indices j such that 
either [t(1)+vjt<Z)l>C12=(Cs/3�89 or [tt3)l>Cs/3�89 , is >nq Then if ]lt[]>c8, the 
set f ( t )  of indices j such that (r + v s r + r > C~2 has > n ~ elements. Since 
the distribution of el is nonsingular then if we define A by 

1 - - 2 A =  sup Ib(tl,t2)l, 
t2+t2>C2 1 2 = 12 

we have 0 < A < � 8 9  Let K j ( t ) = l  if [b,j(t)-bj(t)l<A, and Kj ( t )=0  otherwise. 
Put M ( t ) =  ~ Ks(t ). Then M(t )<N(t ) ,  so (5.6) will follow if 

j E ] ( t )  

n26 I E [ e x p { - C l t  M(t)}]exp(-C9116n~tll�89 �9 
I[tll >Cs 

(5.7) 

It may be proved via Markov's inequality, and after lengthy algebra, that 

sup P{[b.(tl, t2)-b(t~, t2)[ >A}  = O(n -z) 
( t l ,  t 2 )  E ]~  2 

for all 2 > 0. This implies that 

P{M(t)<�89 ~} <P1- ~, {1--Kj(t)}__>�89 ~3 
jeJ(t) 

<2n-~ 2 E{1--Kj(t)}=O(n-~) 
j ~ a q ( t )  

for all 2 > 0, uniformly in [[tF] > Ca. Result (5.7) is immediate. []  

Lemma 5.3 takes care of the second term on the right-hand side of (5.4). 
To accommodate the first term, use an argument based on formulae (9.12) and 
(14.74) of [-6, pp. 72 and 133] to deduce that the quantity is dominated by 

w j, where 
0 = < j = < 7  

WJ =C1 I (1 + Ilxl133 exp { - X x r ( V * ) - '  x} dx" 
{ 0 ,~,a i" (Z)}2 6 
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After considerable algebra we may deduce that if 5leg(q) and q is sufficiently 
small then for some C > 0, 

wj<=C2 ~ exp(--C3 [[xll2)dx+C2 n-2 
{0o~(z)}~ 

C 4 n - 2 ( 5 . 8 )  

remembering that 6 = n  -2. Taking g = r  with ~2 as in Lemma 5.3, we 
may deduce (5.3) from (5.8) and Lemma 5.3, completing the proof of Proposi- 
tion 5.2. []  

The transition from Proposition 5.2 to Theorem 5.1 is relatively straightfor- 
ward, being made as on pages 443-444 of Bhattacharya and Ghosh [4]. Having 
derived Theorem 5.1, use arguments in steps (ii)-(vi) of the proof of Theorem 2.1 
of [14] to obtain the present Theorem 2.2. In outline, that argument first inverts 
the Edgeworth expansion in Theorem 5.1 to obtain a Cornish-Fisher expansion: 
for some g___qf with P(N)= 1 +O(n-2), and some 6>0 ,  

sup sup /~WRC-T(g)-- + n ~ a x ff z~r + n -1/2 ~i(z. 
.q~" e ~ n-Z-'5--<r~--<- i --n - 2 - ' ~  1 = 1  

5 
< Cn-L (5.9) 

Here ~j(z) is the bootstrap version of the polynomial sj appearing in a Cornish- 
Fisher expansion of the exact quantile flex,or(re); for example, ~l=tI l (Z)= 
- l ~ y x ( z 2 - 1 ) ,  see (2.7). The cases rc<n -2 -a  and re> 1 - n  -2-~ are easily dis- 
posed of; see step (v) of [14]. 

In view of (5.9), 

P {fl <=flPERC-T(TZ)} 

[ { }] <P f l < f l + n - ~ r 2 ~  z~+ ~ n-J/2~j(z~)+Cln -2 +C2n -2 
j = l  

=P n~(l~-~)Gx/e+ Y, n-J/2~i(z~)>=-(~+C~n -~) +C~n -~ 
j = l  

3 
= rc + ~ n-i/2 tj(z~) ~9 (z~) + 0 (n- 2), (5.10) 

1 = 1  

where tj is a polynomial, even for odd j and odd for even j. Similarly, the last 
line of (5.10) is also a lower bound to the left-hand side of (5.10). Identification 
of the polynomials tl and t2 is via the argument leading to (2.15), which shows 
that both are identically zero. Coverage probability of the interval 
[-~PERC_T(~), flPERC_T(1--7~)] is now seen to equal 1 - - 2 7 z + 2 n - 1 t 2 ( z n ) + O ( n  -2)  
= 1 - - 2 r c q - O ( n - 2 ) ;  compare (2.19). []  
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