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Summary. Certain nonparametric product experiments ~" can asymptoti- 
cally be approximated by multinomial experiments obtained by a finite inter- 
val partition of the sample space, the real line. For specific families ~ defined 
in terms of bounded Fisher information and monotone likelihood ratios 
with bounded derivatives we study the problem to calculate a partition which 
is optimal in the sense that it minimizes the maximal loss of Fisher informa- 
tion caused by the discretization. This leads to a minimax problem. By con- 
sidering partitions of the sample space into k intervals which have equal 
probability under a density h and then letting k ~ oo we obtain an expansion 
for the quantity "loss of Fisher information" which is of order k -2 under 
regularity conditions. The corresponding minimax problem for the first order 
term of this expansion is shown to be the unique solution of a free boundary 
problem. 

1. Introduction 

We shall study the problem of approximating certain nonparametric experiments 
(models) by finite dimensional (parametric) experiments. The dimension of their 
parameter spaces will have to increase with the desired degree of approximation. 
This provides a possibility to treat questions concerning the behaviour of statisti- 
cal procedures by examining the approximating experiments for which the whole 
theory of parametric inference is available. 

The nonparametric experiments considered here will be families of distribu- 
tions on the real line. Several ways of approximating these experiments are 
possible, we choose to work with multinomial experiments derived by a partition 
of the sample space into intervals. The quality of approximation will be measured 
by the maximal loss of Fisher information. 

By restricting to partitions generated by a continuous probability density 
it is possible to extend methods of Freedman, Diaconis (1981) and thus obtain 
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an analytic expression for the quantity "loss of Fisher information". This further 
enables one to solve the minimax problem mentioned above. Although this 
is only possible for very special nonparametric experiments, the methods devel- 
oped here should be of some independent interest, since approximations of this 
type are common in other areas of statistics. 

We shall start by describing more closely the asymptotic framework. Suppose 
that for n = 1, 2,. . .  we are given a family ~, of probability measures on the 
real line endowed with the field of Borel sets and that each ~, contains a fixed 
nulldistribution Po- Conditions on the families ~, under which the product exper- 
iments ~," = (P": P ~ , )  can be approximated (in the sense of LeCam's deficiency 
distance A) by multinomial experiments d/t, which are generated by a fixed 
interval partition of the sample space were investigated by D.W. Mfiller (I979). 
The experiments Jg, can be obtained as follows. Let co=(A~ . . . .  , Ak) be a parti- 
tion of IR a into k intervals. The set of all such partitions will be denoted by 
J(k). Let i(x) be the index i for which x~A~. If X has distribution P then 
i(X) has distribution P=(P(A1), ..., P(Ak)) on {1, 2 . . . . .  k}. The product experi- 
ments (/5,: p ~ , )  are then equivalent to multinomial experiments Jg,. 

For  describing the conditions on the families N, which guarantee that the 

experiments Jd, and ~," have similar statistical attributes, let h2(P, Q)= ~ (1/~ 
_ ~ / ~ ) 2  and h~(P, Q)= ~ ( ] / / - ~ _ _ ] / / ~ ) 2  d e n o t e  the Hellinger and conditional 

A 
Hellinger distance. Assume 

(1.1) there exists a constant C, such that n h 2 (Po, P) < C for all n and P e ~,. 

Under this condition the product measures Po" and P" (Pe~,) do not completely 
separate as n ~ oe. Further assume that there is no information in rate events: 

(1.2) for every e > 0  there exist 6 > 0  and no such that nhZ(Po, P)<e for all P e ~ ,  
n>no, if Po(A) < 6, 

and that 

(1.3) the likelihood ratio dP/dPo is monotone for P ~ .  

Then (cf. D.W. Mfiller (1979)) for each e > 0  we find a number k and coeJ(k) 
such that A(~,", Jg , )<e  for large n, where J/t, is the multinomial experiment 
associated with co as described above. 

For any probability measure P on IRI define the function ~p.,eL2(Po) by 
~,.,=n~((dP/dPo)~-l) where by convention ~ p . , = - n  ~ on {dPo=0}. If for a 
sequence (P,) ~p . ,  converges to g in L2(Po), we shall call the function g the 
asymptotic direction of the sequence (P,). In this case g determines most of 
the asymptotic behaviour of the binary product experiments (Po", P"); in particu- 
lar 411 g ]l z z = 4 ~ g2 dPo is the Fisher information of the sequence (Po, P'). Similarly 
(cf. D.W. Miiller (1979), Lemma 4) 411~g][~ is the Fisher information of the 
corresponding sequence (Po, P,)- Here rc~o g denotes the orthogonal projection 
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of g onto the linear space spanned by the indicator functions IA, of the intervals 
Ai, i.e. 

k 

7ro~ g = ~', I A~ " ~ g dPo/Po (Ai). 
i=1 Ai 

So for the sequence (P,) the quantity 

4([rgl[ 2 - rr~o glf 2 ) = 4 (rig-rco gl[2 z) 

is the loss of Fisher information due to using ~o. 
For asymptotic purposes we may therefore define the families ~"  to be con- 

sidered by specifying the set of possible asymptotic directions, which will be 
a subset ~ of L 2 (P0). Since 

C 
[~ (p.,dPol < ~ n -~ 

and 

every g s ~  has to satisfy 

(1.4) 

and 

(1.5) 

~ ~g.,dPo <_nh2(po, P)<=C, 

~ g dPo=O 

~g2 dPo <_C 

(or, in other words, the Fisher information is uniformly bounded). Also g should 
be monotone. Here we shall assume 

(1.6) g is nondecreasing. 

We replace the information condition (1.2) by the following stronger condition 
(1.7), which is better tractable mathematically. It was intended not to exclude 
the normal shift model (g'= const). 

(1.7) g is absolutely continuous and g' < M. 

Now define 

(1.8) ~ - =  {geL 2 (P0) [ g fulfills (1.4)-(1.7)}. 

For this model we want to find a partition co~J(k) which minimizes the maximal 
loss of Fisher information, that is we want to solve the minimax problem 

(I.9) inf sup Itg-rc,ogll~. 
oEJ(k) gE~ 

Clearly the size k of the partitions has to be held fixed, because for k ~  oo 
the loss of Fisher information will tend to zero. 
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2. Expansion of the Approximation Error 

In this section we derive an expansion for ][g-~ogH22 when the number of 
intervals of co tends to infinity. Thereby we extend methods of Freedman and 
Diaconis (1981) and Ghurye and Johnson (1980). Proposition 2.7 of the former 
reference treats the case that Po is the Lebesgue measure  21 restricted to the 
unit interval (0, 1), and that ek is the "equidistant" partit ion of (0, 1), i.e., 

(2.1) ek = (Blk . . . .  , Bkk), 

where 
/ i - -1 i \  

(for ease of notation we neglect the points ilk which form a Po-nullset). If g 
is absolutely continuous and g'eL2(Po), we may apply Proposition 2.7 of Freed- 
man and Diaconis (1981) to obtain 

(2.2) 
1 

12 f g'2dPoq-~ IIg-~k gll2 = ~ -  ~ 

as k ~ o% where lk =length of B~k = k-1. In order to give an idea of the proof 
of (2.2), note that we have 

12 i g,2 dPo 
IIg--~kgll2~ = ~  o 

if g' is constant on each of the intervals Bik. (2.2) will follow by approximation. 
We want to generalize (2.2) to the case of general partitions. For  this purpose 

we now assume that h is a probability density on IR 1 and that COke(k ) is defined 
by 

(2.3) O ) k = ( A l k  . . . .  ,Akk), where 

Aik=(Zi_l,zi), --OO=Zo<Zl<...<Zk=OO, 
and each Aik has probability k -1 under the probability measure with 
density h. 

The length lk(X) of the interval Aik which covers x~IR 1 is approximately 
k - t  h(x) -1, so one would expect 

[[g- rco, k g[[~ ~-k1~22 ~ g'2(x) h- 2(x) Po(dx). 

The following proposition shows that this is true for rather arbitrary h and Po. 
We assume that h and COk are given as above and that Po has a density f. 
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Proposition 2.1. Under the following conditions 

(i) ~ g , 2 h - Z f d 2 t < o %  and ~ g2fd2~<oo,  
--o3 --00 

(ii) f and h are continuous and strictly positive, 
(iii) there exists ~ > 0 such that f / h  is nondecreasing on ( -  oo, - ~) and nonin- 

creasing on (~, oo), we have 

k - 2  
I P g - ~ o ~ g l l 2 = ~  - ~ g 'Zh-2 fd2~+o(k-2) .  

- - c O  

Proof Let H be the distribution function of h. By Definition (2.3) H(zi)=i/k 
and therefore the image of c~ k under the map H: ] R ~ ( 0 ,  1) is the equidistant 
partition e k: H(Aik) = Bik. Therefore if we substitute z = H -  ~ (t) in the integral 

Fig- Tco~ gll ~ : f (g(z)-  rG~ g(z)) z Po(dz) 
we obtain 

(2.4) Pig-- ~,o~ gllz z=  rlg--G, grl z 2, Q, 

where g( t )=goH-l( t ) ,  Q is the image measure of Po under the map H and 
~ is the orthogonal projection of L2(Q) onto the linear span of {IB,, [ i = 1, . . . ,  k}. 
One easily verifies that Q has density q = f o H - 1 / h o H  -~ with respect to 21 and 
that geL2 (Po) if and only if ~eL2(Q). Let 

k - 2  1 

~(k)= I1~- G ~ l l ~ , e - ~  Y g,2 dO. 
o 

We are going to show 

(2.5) 3 (k) = o (k- 2); 

1 

since ~ g '2dQ= ; g '2h-2fd2~,  this will prove the proposition. 
0 - - cO 

Now we have an equidistant partition, but since Q need not be the Lebesgue 
measure, the methods of Freedman and Diaconis (1981) which we want to use 
have to be modified for our purpose. With the abbreviations 

k - 2  
mik= y (~(t)-fc,~(t))ZQ(dt) and n i k = ~ - y  #,'2dQ 

B i k  B i k  

k 
(2.6) A(k)= ~ mik--nig , 

/=1 
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and writing 

(2.7) 

we get 

~.(t) = + ~.'(u) du 
" i - 1  

( 1 )2 
rn,,=,,~5 ~(t) Q(-B,O ~!~. ~(s) O(ds) O(dt) 

(! ~'(~) du 
Bik i 1 

1 ~ ~,'(u) duQ(ds) Q(dt) 
Q(Bu,) ~,~ i-t 

' T -  

(~, ) ( ! ~ , ) 2 .  t 2 1 ~ g'(u) du Q(dt) 
= ~ ~.'(u) du Q(dt) Q(Bik) .  i-1 

Bik i 1 -y- --f- 

Now 

(t )2 
.,k ~ x ~ ~ ~,'(u)du Q(dt)=B,~ B,~ ~ 5 g'(u)g,'(v)I[~-lk k ']t~(u)I(L~-'O(v)dudvQ(dt) 

---f- 

= ~ ~ ~,'(u)~'(v) ~ 1{i_ 1 t](u)I{,_ 1 t](v) Q(dt)dudv 

and 

(( = f I g'(u)~,'(v)Q uv~,  dud~, 
Bik Bik 

5 i ~'(u)duQ(dt)= ~ 5 ~.'(u)I{i_l ~(u)duO(dt) 

= ~'(u)Q u,~ du, 
B~k 

and therefore 

Q U, l), 

(2.s) m,~= f j" ~'(u)~'(v) uv~,  

= 5S ~'(u) ~,'(v) q(u) �89 q(v) ~ ~IK(U, V) du dv 

where 

~qk(U, V)=(q(u) q(v))-~ [Q(( u 

dudv 

v~,~))~ Q((u'~((v'~))] 
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It is necessary to examine the tail behaviour of the approximation.  Let fi = 
H ( - e ) ;  according to (iii) q is nondecreasing on (0, fl) and nonincreasing on 
(1- f l ,  1). Let 0<f i*  <fi  and split the sum in (2.6) into three parts: 

[k fl*] + 1 k -- [k fl*] -- 1 k 

A (k) = Z (mik-- hie) + Z (mik-- ni,) + Z (mik-- nik) 
i = 1 i = [kfl*] + 2 i = k - [kfl*] 

=, ~ (mik-- nik) + ~ (mik -- nik) + ~ (mik-- nik) 
i~I(l)(fl * ) iE[(k2)(fl* ) i~l(k3) (fl*) 

(here [x] denotes the integral part of x). 
Consider the third sum. If ieI~k a) = I(ka)(fl*), then i > k -  [k fl*] and 

--i-l->lk - [k f l*]+l>l- f l*k  = - ~ > l - f l l  

if k is large, and therefore q is nonincreasing on Bik. Thus for u, veBik and 
ieltk 3), 

Also 

) Q uvv ,  q(uvv) ~ - u v v  k - ~ [ q ( u v v ) ~ < k - 1  
<--  < 

(q(u) q(v)) ~ = (q(u) q(v)) ~ \q(u/x v)] = " 

(( Q u, Q Q 

(q(u) Q(~,~))~ = \ q(u) / \ ~ / ---- 

and  therefore we have the estimate 

]tPik(U,v)l<=Zk-lI.,~(U)I.,k(V), if i~I(k a). 

Consequently 

1 ~  (mik--nik)[<= Z Im,kl+ Z In, I 
iEI~ 3 ) i'I(k3) isI(k3) 

< 2 k - i F ,  I I If,'(u)llf,'(v)lq(u)~q(v) ~dudv 
isI(k3) Bik Bik 

k-2 
+ - ~ -  Z I g'2dQ 

iEl~ 3) Bik 

k - - 2  1 

=2k-1 Y, ( S I~'(u)l q(u)�89 - 1~ 
i~I(k3) Bik 1 -- [kfl*] + 1 

k 

k - 2  1 

< 2 k - 2  Z S g,'ZdQ q 12 ~ g"2dQ 
ieI(k3) Bik 1 -- [kfl*] + 1 

k 

1 
=(2+~2)  k -2 ~ ~'2dQ 

1 [ k f l * ] + l  
k 

( u )  - 

\ - -  q(u) / -~k-~' 

~.'2dQ 
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by the Cauchy-Schwarz inequality. We conclude that for each e > 0 

I ~ (mi,--nik)l<--~k -2 
ieI(3)( f l  *) 

if f l*> 0 is small enough (use (i)). We similarly can conclude 

[ ~ (mik--nik)l<ek -2 
iEt(d)(fl*) 

if fl* > 0 is sufficiently small, 
So in order to prove (2.5) we only need to show that for each fl* > 0  

(2.9) ~ (mlk--nik)=O(k--2). 
iel~2)(fl  *) 

First note that U Bik C[fl*, 1- f l* ] ,  and as q is positive and continuous 
i a I(k 3 ) (fl*) 

there exist 0 < ? < B such that 7 _-< q (t) =< B for fl* <__ t_< 1 - ft. Therefore we find 
step functions qk which are constant on the intervals B~k and approximate q 
uniformly on [fl*, 1--fl*]:  

sup Iq(t)--qk(t)[-~O as k ~ .  
,8* <- t < 1 - fl* 

We may assume that ? ~ qk (t) <= B. Let 

~odu, v):= l((u v v, k_ 1 - IB,~(u) IB,~(v). 

For  estimating ~ik(U, V)-  ~#ik(U, V) consider for u, veBik, ieI(k2)(fl *) 

ilk ilk 

q(t)dt ~ qk(t) dt 
u v V  u v v  

~(u) q(v)) ~ (qk(U) qk(V)) ~ 
i/k 

Iq(t)--qk(t)l dt i/k 
v - � 8 9  <uv b ~ qk(t)dt [(q(u) q(v))-~--(qk(u)qg(v)) [ = (q (u) q (v)) -} 

u v V  

_-<?-lk -1 sup Iq( t ' ) - -qk( t ) l+Bk-~?-22VB sup [q(t)i--qk(t)i I. 
f l * < t <  1 - f l *  fl*<t<= 1 - l ~ *  
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A similar estimate holds for 

(q (u) q (v)) ~ Q (B~k) 

~ 1 ((U' k!!/~11 ((/)' k)) ' 

therefore, since sup I q(u) ~ -  qk(U) ~1 converges to zero, there exist a constant 
fl*=<z=< 1 -fl* 

C O and a sequence 6., 6 . ~ 0 ,  such that 

I~ik(u, v ) -  ~oMu, v)l < Co k -16. 

if ieI~Z)(fl*), u, veBik. 
This entails (compare (2.8)) that 

(2.10) I ~ mik-  ~ ~ ~'(u) q (u) ~ ~'(v) ~ q (v) ~ qhk (u, v) du dvl 

<=Cok-16, ~ ~ ~ [],'(u)q(v)+],'(v)q(v)-~ldudv 
i~I(2) Bik Bik 

<=Cok-~. Z ~ ~'~dQ 
iel(2) Bik 

1 - p *  

<=C0k-26, ~ g,'2dQ=o(k-2) 
p* 

(use the Cauchy-Schwarz inequality). 
It follows from (i) that we find step functions t k taking the value tlk on 

Bik, which approximate ~' q~ in L 2 ([fl*, 1 -  fl*]): 

1 --fl* 
(~,' q~--tk)2 d21-+O as k ~ o o .  

Therefore (writing I~ 2) for/~2) (fl,)) 

(2.11) ~, ~ ],'(u) ~'(v) q(u) ~ q(v) ~ ~Oik(U, v) du dv 
/el(2) 

= ~ ~ tk(U) tk(V) ~Oik(U, V) du d v + R  k, 
i~I(k2) 

and 

R~ = Y~ ~ [~'(u) q(u)~ ~'(0 q(O ~ -  t~(u) t~(v)] ~,~(u, v) du dv 
i~I(2) 

= ~ ~ (~,'(u) q(u) -~- tk(U)) ~,'(V) q(v) ~ (Pik(U, V) du dv 
i~l(2) 

+ Z SS (r q(v) �89 tk(U) Cpik(U, V) du ev 
iel(2) 
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and since [qhk(U, v)l <2k-llB,,,(u)In,,(v), we have 

IRkl<2k -1 F, ~ Ig,'(v)q(v)~ldv ~ I~,'(u)q(u)~--tk(U)ldu 
iel(k2) l~ik Bik 

+2k -~ ~ ~ Itk(u)l du ~ I~,'(v)q(v)~--tk(V)ldv 
i~l(k2) Bik Bik 

=<2k-1 Z ( k-1 ~ (g'q}--tk) 2d21"k-1 ~ g,'EdQ) �89 
i~l(k2) Bik Bik 

+2k-1 Y, ( k-1 ~ t~ d ~  k-1 S (r ~ 
iel~ 2) Bik Bile 

1 - f l *  1 - fl* )�89 
=<2k -2 ~ g,'2dQ" ~ (g'q~--tk)2d2 ~ 

fl, fl, 
1 - fl* 1 - fl* )�89 

+ 2 k  -2 ~ t2d21. ~ (g'@--tk)Ed21 
#* fl* 

=o(k-2), 

where we repeatedly applied the Cauchy-Schwarz inequality. 
Finally consider 

(2.12) Z ~ tk(U) tk(V) qhk(U, V) du dr= ~, t2k I ~ rP'k(U, V) du dv 
iEltk2) iel(k2) Bik Bik 

k-2 
= Y, qk 1-T 

i~l(k2) 

k-2 
- Z I t2 d))  

12 i ~ ,  B,~ 

k - 2  
12 ~" I g '2dQ+~ 

iel~ 2) Bik 

y', nik+O(k-2). 
iel~ 2) 

The second equality is obtained by evaluating the integral. Now combining 
(2.10), (2.11) and (2.12) yields (2.9) and the proof is completed. 

Remark. One might be interested if for a fixed Po the expansion stated in Proposi- 
tion 2.1 holds uniformly for a given set of pairs (g, h) of functions on R 1. It 
is more natural to discuss this question for the corresponding expansion (2.5) 
which involves the transformed functions ~ and q. So assume ~/" is a set of 
pairs (g, q), where ~ is an absolutely continous function on (0, 1) and q is a 
probability density on (o, 1). Let 

and 
G = {g [ (g, q)e~r for some q} 

~//'2 = {q I (g, q ) e ~  for some ~}. 
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Assume 

(i~) The functions {~'2ql(~, q)e~} are uniformly integrable in LI((0, 1)), and 
~,2 dQ < oe for (~, q)e~,  

(ii.) for each compact interval Kc(0 ,  1) the functions g'lK (~eVa) and the 
functions qlK (qE"U2) are equicontinuous (flK means the restriction of a function 
f to K). 

(iiiu) there exists 0<fi=<l/2 such that each q6Y/'2 is nondecreasing on (0,fl) 
and nonincreasing on ( 1 -  fl, 1), 

(iVu) for each compact interval Kc(0 ,  1) there exist ? > 0  and B such that ?<=q 
=<B on K, if qe~2.  

Then we have 
k - 2  

as k ~ o% uniformly in (g, q) e Y2. 
The proof of this is similar to the proof of Proposition 2.1. One has to 

approximate g' and q uniformly by step functions. Because of the equicontinuity 
assumption (iiu) the quality of this approximation does not depend on (~, q). 

/~* 1 
As for the tail behaviour note that (iu) implies that ~ f,'2dQ+ ~ ~,'2dQ~O 
uniformly in (~, q)er if fi* ~0 .  0 1-fl* 

3. The Minimax Problem 

Motivated by Proposition 2.1 we replace the term rlg-Tr,og[t 2 in (1.9) by its 
k-2 

first order approximation ~ -  ~ g,2 h-  2f  (from now on we shall omit the symbol 

d21 in the integrals, since integration will always be understood with respect 
to Lebesgue measure) and solve the corresponding minimax problem find hi e ~  
such that inf sup ~ g,2 h- 2f  = sup I g,2 h i- 2f~ where ~ = {h e L 1 (n:~l) [ h _-> 0, ~ h -- 1 } 

h~d4 gE~ g ~  

and ~ is defined by (1.8). Here we make the general assumption on f that 
there exists a probability density h o with ~ho2f< oo. The next lemma shows 
that we can replace the set ~ by the sets ~ or ~ which are defined in the 
following way: 

@ = {g e L2(P0) [g is absolutely continuous, 0 < g' __< M, and j g2f<= C}, 

~-= { g ~  I j g Z f =  C}. 

Lemma 3.1. We have 

sup ~ g,2 h- 2 f =  sup ~ g,2 h-2f .  
g ~  g ~  
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I f  ~ is not the empty set, then 

sup ~ g,2 h - 2 f  = sup S g,2 h-  2f. 
g ~  ge~ 

Proof The first assertion of Lemma 3.1 is an immediate consequence of the 
inequality I(g-(Igf))2f____ Ig2f To prove the second assertion we first show 
that ~ 4 0  if and only if for the function g , ( x ) = M x - S M z f ( z ) d z  we have 
~g,f>=C. The " i f ' -par t  is obvious, set ~ = e g ,  for a suitable c~e[0, 1]. Now 
assume that there is a g in N, then ~ g f  = O, ~ f,2f = C and 0____ g' < M by definition. 
Let ~ ( x ) = ( 1 - s )  ~,+sM(x--2o)  , where ~(2o) =0. 

Therefore 

~2__~2 and S ~ f = s ~ M ( x - 2 o ) f ( x ) d x .  

l (gs -- I g~ f)2 f = f g~ f -  (I gs f)2 

= ~ ~,2 f _  s 2 ([, M(x  -- 20) f (x)  dx) 2 

> ~ , 2 f - s 2 . p ,  p > 0 .  

On the other hand 

SO 

and 

M (x - 2o) -  S M (x-- 20) f (x) dx = M x- -  ~ M x f (x) dx = g.  (x), 

g ~ - - ~ g ~ f = ( 1 - - s ) ~ - - s g ,  

l (t~-- ~ g~ f)z__<(1 --s)~ g 2 f +  s ~ g2,f 

= ~ g 2 f - - s ( ~ g 2 f - - ~ g 2  f )  

= ~ g 2 f _ s ( C _  ~ g2,f). 

Thus ~ g~ f > C since otherwise the two inequalities would contradict each other 
for small s. 

Now it is easy to prove the second part of the lemma. If g ~ ,  ~ g 2 f < C ,  
we set g s = s g + ( 1 - - s ) g ,  g s e ~  and g'~>g'. As ~g2f  is continuous in s and ~ g 2 f  

2 > C >  I g ~ f  we find so with Ig~o f =  C. 
From now on we shall assume N + 0 .  Otherwise g ,  solves the maximum 

problem. 

Lemma 3.2. Suppose ~ h - 2 f < ov and ~ x2 f (x)  dx < oe. Then 

(3.1) s u p f g ' Z h - 2 f = m a x M S g ' h - 2 f .  
ge~ g ~  

Proof The right hand side of (3.1) is indeed a maximum because the functional 
g'--*Sg'h-2f  is weak*-continuous on the dual D(N1) * of U ( N  1) and the set 
~a consisting of the derivatives g' with g - S g f e @  is weak*-compact. The last 
assertion follows from the weak*-compactness of the set 

{heLl(~l)* [O<_h<_M} 
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because the map g'---, g' f ( x ) d x -  g' f(x)d is continuous on Yd. 
\ 0  x 

To see this let g ' , e~  e and g ' , ~ h 6 @  d weakly*. Define g,(x).'= ~ g',. g,(x)<=Mx 
0 

x 

and g , (x)= ~/to, ~1 g; ~ ~/to, ~ h = S h=: H(x). Therefore by Lebesgue's dominated 
0 

convergence theorem 

g2 f _  (~ g. f)2 ~ S H2 f - (~ H f)  2" 

Next we are going to construct, for a given g 6 ~ ,  an approximating g~E~ such 
that g'~ is 0 or M a.e. [21] and g'~--*g' weakly*. We partition l~={xlg(x)<O} 
and Ie={xlg(x)>O} into intervals I{=(a~,b j) and I ~ -  j J - (a2, b2) of length at most 
~. Set 

g~ (x)=, 

g(a~)+M(x--a{), for a~<=x<a~+M -a ~ g' 
q 

g(bl), for a{ + M -1 S g' < x < M1 

o, for x61R 1 - ( I1  wI2) 

g(a{), for a �89  -1 S g' 
r~ 

g(b~)+M(x-b{), for M2-M -~ ~ g'<=x<bJ2. 

We note that g~E~ and ]g~-g[ <Me. By compactness we find e , ~ 0  and hs~d 
such that g~,' --, h weakly* and clearly g '=  h. Since M g~t = get  2 we have 

MSg, h -2 f=Ml im fg ,  h-2f=limfg;~h 2f 
n n 

and therefore 

max M~ g'h-af  <sup S g,2 h-Zf. 
g~-@ g~f~ 

Now equality is immediate since 

g'2<=Mg' for all g e ~ .  

Remark. In general the supremum on the left hand side of (3.1) will not be 
attained. This is because a possible maximum go of the quadratic functional 
is also a maximum of the linear functional and has to fulfill ~g;2 h-2 f  
=M~g'oh-2f Since g'o2<=Mg'o, we can conclude g'o2=Mgo on {h-Z f > 0 } .  So 
on this set g~ takes on only the two values 0 and M. On the other hand the 
maximum of the linear functional can easily be shown to be unique. In general 
its derivative will have values strictly between 0 and M. Therefore go cannot 
be the maximum of the linear functional, which is a contradiction. 
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Though this is not needed in the sequel, let us point out now to calculate 
for fixed h, h-2feD(IR') ,  the maximal g for the linear functional. 

Proposition 3.1. Suppose 

j g ' l h - 2 f = s u p S g ' h - 2 f .  
ge~ 

Then gl = -  v'a/f where v, is the unique solution of the free boundary problem 
with constraint 

(3.2) 

1 t 2 
such that j 7 (v,) = C. 

- v'~ - M . H ( h - 2 f - , ~  va)30., 

v a ( - o o ) = v z ( o o ) = 0 ,  and 2 > 0  

(Here we denote by H the Heaviside function 

{0}, for u < 0  

H(u) = / [0, 1], for u = 0 

({1}, for u > 0 ,  

and for zMR' and A c l R '  the expression z + A  has to be interpreted as {z} + A  
={z+alaeA} . )  

Proof (a) Derivation of the Formula. We denote by Ua(x) the closed 6-neighbour- 
hood of x. According to Lebesgue's density theorem (see e.g., Hewitt-Stromberg 
(1965), Theorem 18.2), for almost all points xl and x2 with g'~(xl)> 0 and g](x2) 
< M there exist e > 0 and y > 0 such that 

and 
21 (U0 (x2) c~ {g't < M - -  e}) > 7 6 

for small 6 > 0. 
Setting 

(3.3) q~a,~ (x):= S Iu~(~)~,{g ~ >~3(t) dt/21(Ua(xO c~ {g'l > e}) 
--oo 

~~ x2(x):= S Iv~(~a)~{g~ <M-~}(t) dt/~l(U6(x2) (") {gl < M--  e}) 
--CO 

we conclude 

S (g l  --/~1 (~ (~gt~, Xl -~-/~2 (~ (~gt~, x2)2f - 5 g 2 f _  _ 2 21 a 5 q~a, ~, g ,  f +  2)~2 {~ ~ (/)a, x2 g l  f +  R 
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where IRI < const �9 (22 + 2~) hi. Now for a ~ 0 

173 

Sq)a,x, g l f - ~ g , f  ( i=1,2) 
Xi  

and this is strictly positive by the monotonicity of g~ and by gl %0, ~ g t f = 0 .  
So we find sequences 21 ->0 (i -- 1, 2), 6~ --+0 of positive numbers such that 

cO 

)j~ j" gl f 
(3.4) ~ x~ 22 o~ and gl-2~b~qoa . . . .  +2~ 6~ qo~ . . . .  ~ .  

S g t f  
XI 

To prove this note first that the condition on the derivative for this function 
to belong to ~ is fulfilled for small 21, 22 and 6. Secondly ~g~f<C, and 

- 2 2x 6 S q)a,x, g 1 f + 2 22 6 ~ ~0a, x2 g~ f = 0 is equivalent to 

2 1  - -  I q ) a ,  X2 g l f  
22 I(Pa, x2gxf" 

So (3.4) follows from the estimation of R. By the maximality of gl 

h- f+2  h- f<=O 

and therefore for almost all xl, g~(x~)> 0, and x2, g~(x2)< M we get 

h-2f(x;) < h-2f(xO 
CO 

Iglf ~~ 
X2 X1 

So we find a Lagrange parameter 2 > 0 such that 

CO 

(i) h-2f(xO>2 ~ glf implies g i ( x 0 = M  
X1 

and 

(ii) 
CO 

h-2f(x2) <2 S gJf implies gi(x2)=0. 
X2 

CO 

Setting va (x) := S gl f we get the formula. 
X 
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(b)  The Monotonicity of 2 ~ v z .  Suppose 21>22 and vi is a solution of (3.2) 
for 2=2~ (i= 1,2). Multiplying the difference of the Eqs. (3.2) with (v l -v2)  + 
we get 

- M(H(h - 2 f _  21 v~) - H(h - 2 f _  22 vz)) (v~ - v2) + 3 0. 

Now M(H(h-  2 f _  21 vl) - H(h - 2 f _  22 v2)) (vl - v2) + ~ [ - o% 0]. This is clear for 
vl _-< v2. For  Vl > vz we have - 21 vl < - 22 v2 < - 22 v2 and the statement follows 
from the monotonicity of H. As a consequence we get 

and hence 

- v l - v 2 ) '  ( v l - v 2 )  + =<0 

(vl 1 -v2) '  (vl--v2) + >0 .  
- - o D  

Integration by parts yields 

_;1 
--~ 7 (/)1 --/22)t ((U1-/)2)+)t- '~ - (V 1 --/)2)t (/)1-/)2)+1_~oo ~m~O, 

Since the boundary terms vanish we get (vx - v z )  + = 0 and vl < vz. 

(c)  Uniqueness of the Solution of (3.2). For  fixed 2, vz is unique by (b). Conse- 
quently it is the solution of the minimum problem 

whose Euler equation is (3.2). Now take 21>22, by (b) v~o~<v~2. Suppose 

~ (v~)2 > ~ + (v~) 2, then by the minimality of 
4 4 

J J 

h 2 _ v,~ 1 :< h 2 - -  V . ~  2 - 

Since on the other hand -vx l  > -v~2 we have equality 

and since 
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v~2 solves the minimum problem (,) for 21 as well. 
By uniqueness of the solution of (*) we therefore have v;~, = va~. This proves 

1 1 
that for 2~ > 22 either I J @ (vl,) 2 < ~ ~ (vi2) 2 or vx, = va~ and therefore the solution 
of (3.2) is unique. 

After this digression let us resume the investigation of the minimax problem. 
We want to interchange the order of sup and inf. The only obstacle to apply 
a minimax theorem is the noncompactness of ~/~ in the weak*-topology. So 
instead of ~ consider for L > 0 

J/tL:={hegl(R1) lO~ h<_L, ~ h~ 1}. 

JC/L is a convex set, compact in L~0R1) *. The functional h ~ g ' f / h  2 is lower 
semi continuous on 

Jr n {hl l h- 2 f < o~}. 
For 2 elR a 

{he~'Ll lg 'h-2f  <2} 

is compact. 
So we may apply the minimax theorem (see e.g., Kindler (1979)) to get 

inf suplg 'h-2f=sup inf Ig'h-2f. 
heJRL g~N g e ~  h~.~lL 

For he~( ' :=d/d c~ {hl~h-2f< oo} denote by h L the function hL:=h/x L6d/d~. For 
g e ~  and he~g/t' 

~ g ' h L Z / =  ~ g ' h L Z / +  S g'h[2f 
{h < L} (h>L} 

<= ~g'h-2f  +ML -2 
Hence 

inf ~g'h-2f< inf ~g'h[2f 
he~/L he~/' 

< inf ~g'h-2f+ML -2 
h~ ~l " 

and therefore 

inf s u p ~ g ' h - 2 f <  inf s u p S g ' h - 2 f  
he~l" g ~  he~l'L gE~ 

= sup inf ~ g' h - 2 f  
g e ~  he~ClL 

__<sup inf ~g'h-2f  +ML -2. 
ge~ he,///' 

As L was arbitrary we have 

inf sup l g' h- 2 f < sup inf ~ g' h- 2 f . 
h ~ / '  g ~  ge~ he J/" 
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The converse inequality is trivial, so 

inf sup~g'h-2f=sup inf ~g'h-Ef. 
heM, l '  g E ~  g e ~  h~dd' 

We are looking for a solution h 1 of 

inf sup ~ g' h -  2 f  = sup ~ g' h• 2f. 
h ~ / '  ge~ ge~ 

By the preceding argument 

sup~g 'h~-2 f=sup  inf ~g'h-2f=:cc 
g ~  g ~  h~d4" 

Therefore we are going to calculate hg: 

inf ~g'h-2f  = ~g'hg2f 
heJa" 

and gl : 
sup ~ g' h~2 f = ~ g'l h~2f. 
g~N 

As ~g~ h 1 2 f <  a-- y g~ h ~ f <  ~ g'~ h( 2f by the strict convexity of h ~ h - 2 f  

hi = h~ on {g[ > 0} (later we shall show: g[ > 0 a.e.). 

So let hg be the (unique) minimum of ~ g' h- 2f. Take as a variation 

ha(x ) = [hg(x) + I~h,~l(X ) 2 qffx)]/C(2, ~), 

C(X, tP)=~[hg+I~h,e~2q~ ~ (P. 
{h, > e} 

By the minimality of hg 

O> [. g ' h22 f -Sg 'h2Z f  

= S g ' f ( h {  ~ - C(;~, q~)2 h~- 2) + ~ g' f (C( ,~,  ~o) 2 h 2 2 _ h ;  2) 

= I 2 ;~ ~0 (x) ( -  ~ g' h~- 2 f +  g'(x) h ;  3 (x) f ( x ) )  d x  + 0 (2), 

and therefore 

S q~ (x) (-- S g' h2 z f +  g'(x) hg- 3 (x) f(x)) dx = O. 
{hg >= ~} 

Taking as a variation ha = (hg + 2 ~o)/~ (hg + 2 ~o) with 2 > 0, qo > 0 we get 

q~(x) ( -  f g' h/- 2 f +  g'(x) h 2 3 (x) f ( x ) )  d x  < O. 
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So we have 
1 

hg = const.  (g'f)~ 
1 1 

= (g'f)~/~ (g'f)~ 

(incidentically this proves: the existence of hoaLl(lR 1) such that ~ho2f< oo is 
equivalent to fxeI2(lR1)). 

Now we can calculate gl. As 

gl fulfills 
g' h~-2f= (~ (g,f)�89 

(gl f)�89 sup ~ (g'f)}. 
g E . @  

We proceed as in the proof of Proposition 3.1. Take as a variation 

with 
gl -- 21 6v (P~ . . . .  + 22 Ov (P,~ . . . .  

oO 

g , f  2~ 
__ ~ x2 (compare (3.4)), 

I g l f  
x 1  

where ~o~,x~ are defined by (3.3). We calculate 

2 2 

(,) f(xO (gl f)-X(xO > f(x2) (gl f)-~(x2) 
oO oO 

S g l f  S g l f  
X1 X 2  

if g'l(Xl) > 0 and g] (X2) < M. An immediate conclusion is that g] > 0 a.e. or g'l = 0 
a.e. Also if 0 < g'l(X) < M then 

2 

f(x) (gl f )  -x (x) 
/(x)= - - 2 > 0  

oO 

g l f  
x 

(independent of x). Therefore i f / ( x ) > 2  we must have g ] (x )=M and i f / ( x ) < 2  
then gi(x)--0 (compare with (,)). 

Now assume g~ > 0  a.e., then I_>_2 a.e. We shall prove that 

(**) gi(x)=inf  M, f~  - (x~ ) -  ~ . 

s x I 



178 S. Luckhaus and W. Sauermann 

7 ~. , < (x) 
C a s e I : M < _ t 2 S g l f / ~  -- S inceg l (x )=M,  we then have g~(x)< \ 2 . !  g l f - ~  ] 

or (equivalently) l (x )> 2, and hence g~(x)= m.  

/ 1 k 3 
> f~(x )  ~ . . . 

Case II: M =  / co | .  Under  this hypothesis we get l(x)= 2, since l (x )> 2 
/ y s ,I] l 

x , _ x " f � 8 9  
would "mply gl(x)= M and ~ - l ( x ) >  2 contrary to the hypothesis. But 
I(x) = 2 is equivalent to ~ gl f 

X 

= ~ (where 2* = 2-  5). gi(x) = . )~, f~ (x )  

oO 

Hence (**) is proved. Setting vx.(x)= ~ g l f  yields 
X 

(3,) =0, 

So we have proved the major part of 
1 1 

, ~- t g Proposition 3.2. The minimax solution hi is given by hi = hg, = (ga f ) / ~  (gl f ) ,  and 
gl is determined by gl = -  v'~,/f where 2*> 0 and vx, is the unique solution of  
(3.5) with the constraints 

(i) v . ( -  o o ) = v . ( o o ) = 0 ,  
(ii) ~ (v'~,)z/f = C. 

Proof. We still have to prove uniqueness. 
(a) Let 21 <2z and vat be solutions of (3.5) with constraint (i). We claim 

that vx, < v~2. Testing the difference of the Eqs. (3.5) with (v~l- v~.2) + we get 

1 , 3 1 3 

) [(v< - vz~) + ],2 + ~ (inf {M, 22 f :  v~:} - inf {M, 21 f :  v~:}) (va, -- v~j + = O. 

But 
, : lv~(x)<=,~zV;~(x)  if vz,(x)>=v~jx) 

1 ,+1,2 
SO 5 7 [(V< -- VZ=) -1 = 0 and consequently v< < vz~. 

(b) Let v and ~ be solutions of (3.5) with constraint (i) for Lagrange parame- 
ters 2 and 2. Assume that 

1 
f (v') ~ = r >___ c = 5 7 (~')~ 
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We already know that either v < ~ or v > ~5. Furthermore v and ~7 are the unique 
solutions of the minimum problem 

1 
f -  (v') 2 - 2 ~ ~(2, v) ~ min 

for their respective Lagrange parameters. Here 

4~(2, v) = in f{M v, 2~M�89 �89 + [-2 M~ 2~f �89 22/�89 v-�89 +. 

(3.5) is the Euler equation of this minimum problem. 
In case that 15 > v we obtain - ~ ( 2 ,  ~)< - ~ ( 2 ,  v), and therefore 

By the uniqueness of the minimal v in this case we get v = g. This proves that 
in any case we have zS<v. 

Now according to (a) condition (i) uniquely determines the solution of (3.5) 
for each 2", and according to (b) condition (ii) uniquely determines 2*. Thus 
we have proved Proposition 3.2. 

We turn to the interpretation of the results. Assume that f is continuous, 
~xEf(x)dx<oo, and ~f~<oo .  Then ~gZdP o is finite for g ~  and there exists 

h o 6 d / w i t h  ~ho2f<oo. Assume further that f�89 tf(t)dt~oo for Ix[~oQ, 

then it follows from the differential equation (3.5) that for Ixl large enough 
1 2 

gi(x) = M and therefore h i(x) ~fg(x) and f(x)/hl(x ) ~fS(x);  hence the pair (g, hi) 
fulfills the conditions of Propositon 2.1 for every g ~ .  Compare h 1 with any 
h-6~/g such that (g, h-) fulfills these conditions for every gE~.  We then have 

g~ h i  2 f =  sup ~ g' h~ 2f<= sup ~ g' h-- 2 f  

and according to Lemma 3.2 

sup ~ g,2 h i -2 f~  sup ~ g,2 h--2f. 
g e ~  ge-@ 

What does this mean for the respective loss of Fisher information? Let co 1 
and (5 k be the partitions associated with h 1 and h according to (2.3). h 1 is better 
than h-in the sense that for each g e N  we find ~ e N  and ko, such that 

Ilg-n~o~(g)l[22 < I[~-~,k(~)ll 2, if k>ko. 

Our results have to be interpreted in this way, since the expansion of Proposition 
2.1 is not uniform on N x Jd. 
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Example. We solved the free boundary problem (3.5) numerically for f(x) 
=(2~)  -1 exp( -x2 /2 )  and M =  1 (by scaling we may always standardize in this 
way). For a choice of 2*'s we obtained the results: 

2* M C Ig lh [Z f  

0.01 1.0 0.0934 13.15 
0.05 1.0 0.2944 21.08 
0.1 1.0 0.4689 25.19 
0.2 1.0 0.7213 29.38 
0.3 1.0 0.8974 31.58 

The following exhibits show the functions gl and h 1. In each case gl has tails 
of the form constant + M.x, and h l has tails proportional to exp( -x2 /6) ,  that 
is proportional to the normal density with mean 0 and variance 3. 
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M : I . , C  = 

u], 

'..-3. -1.5 -0 .  1.5 3. 

x - ax is  

M=I.,C--.09, Lambda=.01 

v2, 
.~- c~ 

g 
e~ 

-3. - 1.5 -0.  1.5 3. 
x - a x i s  

M= I . ,C  = .29. Lambda=.O5 

I 

' 3. - 1 . 5  1 .5  3 .  -0.  

x -  a x i s  

Fig .  1 A - C  
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J 
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