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Summary. Consider an array X=(X~j, i, j e N )  of random variables, and let 
U = ( U  0 and V=(V~j) be orthogonal transformations, affecting only finitely 

many coordinates. Say that X is separately rotatable if UXV r a=X for arbi- 
trary U and V, and jointly rotatable if this holds with U = V. Restricting 
U and V to the class of permutations, we get instead the property of separate 
or joint exchangeability. Processes on IR 2, IR+ x [0, 1] or [0, 1] 2 are said 
to be separately or jointly exchangeable, if the arrays of increments over 
arbitrary square grids have these properties. For  some of the above cases, 
explicit representations have recently been obtained, independently, by 
Aldous and Hoover. The aim of the present paper is to continue the work 
of these authors by deriving some new representations, and by solving the 
associated uniqueness and continuity problems. 

1. Introduction 

Consider an infinite two-dimensional array of random variables X = (Xij, i, j E N). 
We shall say that X is separately (or row-column) exchangeable, if its distribution 

is invariant under permutations of both rows and columns, i.e., if (Xij)d(Xp~qj) 
for all permutations (pi) and (q j) of N. If this condition holds with the same 

permutation for rows and columns, i.e., if (Xij)J=(Xp,p) for all (p~), we shall 

say instead that X is jointly (or weakly) exchangeable. In the above definitions, 
it is clearly enough to consider permutations (p~) such that p~= i for all but 
finitely many i. 

Aldous [1] and Hoover [11] proved independently that an array as above 
is separately exchangeable iff it is distributed as 

Xi j= f  (~ ~i, ~j, "~ij), i,j~lN, (1) 
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for some measurable function f :  [0, 114~1R, where the quantities e and ~, 
tlj, 2ij, i, j e N ,  are i.i.d, random variables, uniformly distributed on [-0, 1] (U(0, 1) 
for short). Hoover also showed that an array is jointly exchangeable iff it is 
distributed as 

X i j = f  (o;, ~i, ~j, 2ij), i,j~lN, (2) 

for some function f as above, where e, ~1, ~2, ... and 2ij, i<j, are i.i.d. U(0, 1), 
while 2i i=0 and 2ij=2ji for all i and j. Aldous gives the same result without 
proof, in the special case of symmetric arrays (where Xi j=  Xj~ and hence f ( . ,  
x, y, " ) = f ( ' ,  y, x, ")). 

Since the representation in (2) will play a basic role in this paper, we shall 
give a short proof in Sect. 3 below, modelled after Aldous [1, 2]. (Note incidental- 
ly that Aldous attributes certain crucial ideas in the published proof to J.F.C. 
Kingman. His original argument was more complicated. Hoover's unpublished 
proof [11] uses ideas from formal logic and non-standard analysis, and may 
be hard to read for most probabilists.) Notice that representation (1) follows 
immediately from (2), since the two representations are equivalent for 
(i, j)6(2N) x ( 2 N -  1). This observation will often be useful in the sequel. 

Aldous, in his brilliant paper [.1], goes on to prove a conjecture of Dawid 
[5], giving the general form of a separately rotatable (or spherical) array. By 

this we mean an array X as above, such that UXVra=X for all linear operators 
U and V on N ~ which transform a finite set of coordinates orthogonally while 
leaving the others invariant. Transformations of this type will be called rotations 
below, and for these the matrix notation above will often be convenient. The 
general representation theorem states that an array is separately rotatable, iff 
it is distributed as 

Xij~-ff ~ij-I- ~ (Zk~ikqjk, i, jeN, (3) 
k = l  

for some random variables a and el, e2 . . . .  with Z 2 ek < 0% where the quantities 
2ij, Gig and qik are i.i.d. N(0, 1) and independent of ~r and (ek). In fact, the 
general array is known to be a mixture (in the distributional sense) of dissociated 
ones, where (Xij, i v j  < n) and (Xi~, i/xj > n) are independent for each n, so Aldous 
restricts his attention to the latter and obtains a representation (3) with constant 
coefficients. He also needs a moment condition for his proof. Given Aldous' 
work, it is not hard to supply the additional arguments needed for the general 
version, which is done in Sect. 4 below. Even this result will play a key role 
in subsequent sections. 

In Sect. 5, the characterizations in (2) and (3) will be combined with some 
methods from Aldous' paper to yield a corresponding representation in the 

jointly rotatable case, where it is assumed that UXUra=X for all rotations U. 
For the special case of symmetric arrays, our representation becomes 

X~ = p 6~s + ~(?~J +'~J3 + ~ ~(~k ~jk- 60. 
k = l  

i, j e N ,  (4) 
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where 6ij denotes the Kronecker delta, while the 2~ i and ~ik are i.i.d. N(0, 1) 
as before, and p, o- and el,  ~2, ... are arbitrary random variables independent 
of the 2ij and ~ik and satisfying ~ ~ < oe. Dawid [5] discusses the further re- 
stricted case when the finite subarrays are non-negative definite. In this case 
(4) simplifies to 

Xij=P(~ij--~- ~ ak~ik~jk, i, j e N ,  (5) 
k = l  

with non-negative p and al,  ez . . . .  satisfying ~ a, < 0% as conjectured by Dawid. 
In fact, Dawid proves that the representation (5) is equivalent to (3) above, 
and so his conjecture was essentially settled already by Aldous' paper. 

The last two sections are devoted to exchangeable and continuous random 
processes X in the plane, as introduced in Aldous [2]. Here the definition of 
exchangeability is stated in terms of the increments of X over finite rectangles 
I, given by 

X( I )=  X (b, d ) - X  (a, d ) - X  (b, c)+ X (a, c) 

when I = (a, b) x (c, d). We shall say that a process X on N2+, IR+ x [0, 1], [0, 1] 
x N+ or [0, 1] 2 is separately exchangeable, if the array of increments of X 

with respect to an arbitrary rectangular grid has this property. The definition 
of jointly exchangeable processes on N2+ or [0, 1] 2 is similar, except that we 
have to consider square grids emanating from the origin. For  definiteness, we 
shall assume in both cases that X(s, 0 ) -  X(O, t ) -  O. 

In Sect. 6 we show that a process on IR2+ is separately exchangeable and 
continuous iff it is distributed as 

oo 
Xs, = p s t + aA~t + ~, (a i Bj(s) Cj(t) + flj Bj(s) t + 7~ s Cj(t)), (6) 

j=l 

for some random variables p, a ands ~j, flj, ?j, j e N ,  with ~(c~}+fi~+?f)<oo.  
Here A denotes an independent Brownian sheet, while the Bj and Cj are mutually 
independent Brownian motions, which are also assumed to be independent of 
everything else. The same representation is valid for processes on JR+ x [0, 1] 
or [0, 1] 2, but now with the B/ and Cj interpreted as Brownian bridges in 
appropriate cases, and with the Brownian sheet A accordingly tied down. Our 
proof of (6) depends on the simple observation that exchangeability is equivalent 
to rotatability for continuous and suitably tied-down processes on ~ + .  By this 
coincidence, the representations of rotatable arrays derived in previous sections 
become the basic tools to analyze exchangeable processes in higher dimensions. 

In the final Sect. 7, we characterize jointly exchangeable processes on ~2+. 
For the special case of symmetric processes, our representation formula becomes 

Xst= p s t-t- O(s A t) + ff(Ast + Ats ) 

+ ~ {~j (Bj (s )S j ( t ) - -sAt)+f i j ( sS j ( t )+tBj(s ) )+TjSj (sAt)}  , (7) 
j = l  
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where p, 0, a and the c 9, fii and 7j are arbitrary random variables satisfying 
~ ( c d+ f l 2+ 7~)<  oe a.s., while A is an independent Brownian sheet and the Bi 
are independent Brownian motions, as before. This may be compared with Con- 
jecture 15.20 in Aldous [2], where it is suggested that instead 

X~t=pst+O(s/x t)+aA(sA t, s v t)+ ~ c~Bj(s) Bj(t). 
j=l 

(8) 

Note that the centering of the product terms Bj(s)Bj(t) is necessary for conver- 
gence in general. The missing components ~,fi~sBj(t) and ~fljtBj(s) represent 
centered drift terms in the horizontal and vertical directions respectively, them- 
selves exchangeable, while 0 (s/~ t) + ~ ~;j Bj(s/x t) represents an exchangeable pro- 
cess along the diagonal. 

We conjecture that (7) and the more general non-symmetric version below 
remain valid for jointly exchangeable processes on [-0, 1] 2, with A and the Bj 
tied down as before. We might also mention the open problem of characterizing 
jointly spreadable arrays and processes, where spreadability is defined as in 1-16]. 

Once a characterization problem has been solved, the next step becomes 
to examine the associated problems of uniqueness and continuity. Here the 
former is to identify the equivalence classes of representations giving rise to 
the same distribution, while the latter problem consists in describing the topolo- 
gy in the so defined representation space that corresponds to weak convergence 
for the distributions of X. This program will be carried out below for the repre- 
sentations in (3), (4), (6) and (7). (Note that the uniqueness problem for the 
representations in (1) and (2) has already been solved by Hoover [11].) We 
shall use the approach from the univariate discussion in [14]. Thus for each 
case we shall introduce a suitable set of directing random elements, p say, to 
be given as functions of the coefficients in the representation formula, such 
that convergence in distribution of p and X will be equivalent. 

Our discussion of the main problems, as stated above, will be preceded 
by some general prerequisites in Sect. 2. Here we shall present some results 
based on the powerful section theorem (cf. Dellacherie and Meyer [6]), which 
will provide the technical tools to extend a representation from the dissociated 
to the general case. Likewise, they will yield without effort the X-measurability 
of the directing random elements directly from their uniqueness in the dissociated 
case. Throughout the paper, we shall further make frequent use of the simplifying 
device of randomization, based on the elementary Lemma 2.1 from [16]. In par- 
ticular, this will enable us to proceed directly from an explicit formula for an 

equivalent array or process (i.e. some X' ~ X) to an a.s. representation of X 
itself. Section 2 will also contain the required background on the univariate 
case, as well as a brief discussion of some processes related to Brownian motion 
and sheet. 

As for relevant literature, the lecture notes by Aldous [2] provide a broad 
survey of exchangeability theory. The reader is especially urged to read his 
Sects. 14-15, dealing with the multivariate case. Several of our arguments below 
have been patterned on similar passages in Aldous [1]. On such occasions, 
we shall often give only a brief outline, so the reader may need to consult 
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Aldous' paper for details. Other references on the multivariate case, not men- 
tioned before, are the papers by Dawid ]-4], Hoover [12] and Lynch [17]. 
A referee kindly calls my attention to the paper of Dovbysh & Sudakov [7], 
and to a thesis by Hestir El0] 'giving results like Theorem 6.1 (in a less sophisti- 
cated way)'. 

Our discussion of weak convergence and tightness for random arrays and 
processes presupposes some general theory on the subject, as given in Chapters 1 
and 2 of Billingsley [3]. We shall further need some weak convergence theory 
for probabilities on measure spaces, as provided by Chapter 4 in [15]. The 
reason for this is that, typically, one or more of the directing random elements 
will turn out to be random measures on some appropriate space. Finally, we 
shall often need to refer to [14], not only for the basic univariate representations, 
but also for its elementary randomization Lemma 1.1, which will often yield 
immediate extensions of our weak convergence results from the dissociated to 
the general case. 

2. Preliminaries 

In this section, we shall first derive some general measure theoretic results, 
which will be useful in proving the main theorems of the paper. Say that 
(~2', ~ ' ,  P') is an extension of the probability space (f2, Y,P), if it is of the form 
(f2 x I, ~ x N, P x 2) for some probability space (I, ~ ,  2), which may e.g. be taken 
to be the Lebesgue unit interval. Note that random elements on ~2 extend imme- 
diately to f~' with the same distribution. The procedure of constructing random 
elements on an extended probability space will be called randomization. 

For easy reference, we first restate the simple Lemma 1.1 of [16]: 

Lemma 2.1. Let  ~ and q be random elements in the spaces S and T respectively, 

where S is separable metric while T is Polish, and assume that ~ d f (r/) for  some 
Borel measurable function f :  T-~S. Then there exists, on a possibly extended 

probability space, some random element tf  d 11 satisfying ~ =f(r/') a.s. 

The next result will be needed to extend a representation formula, obtained 
under suitable conditioning, to the unconditional case. 

Lemma 2.2. Fix  a probability space (f2, ~-, P), a a-field N c ~,, and three Polish 
spaces S, T and U. Let  4 : f2 ~ S, t/ : f2 ~ U and f :  T xU-~  S be measurable mappings, 
and put mr= P { f ( t, r/)~ . }. Assume that 

P E ~ ' l ~ ] ~ { m ~ ; t ~ T }  a.s. (I) 

Then there exists a g-measurable random element z in T and an independent 

random element rf d= t /on some extension of  f2, such that ~ = f ( L  t/') a.s. 

Proof  Let ~ and ~- denote the Borel a-fields in S and T respectively, and 
conclude by Fubini's theorem that mt B is J-measurable for every B ~ .  Writing 
/~ for a version of P [~e "1 ~q], it is further seen that #B is N-measurable for 
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all BeS(. Letting B 1, B2 . . . .  s5  ~ be measure determining in S, we get 

A - • r :  = t ) :  • J .  
j = l  

Note also that the projection of A on ~2 has probability 1, by assumption. 
By the section theorem (cf. [6]), there exists some (q-measurable random element 

�9 in T, such that/~ = mr a.s. Choosing by randomization some q" _a_ t/independent 

of ~, we get by Fubini's theorem 

P [ ~ e ' l z ] = # = m ~ = P E f ( z ,  r  a.s., 

which shows that (4, z) a=(f(z, q"), z). By Lemma 2.1, there exists some random 

pair (z', r/')--a (z, r/") on an extension of D, such that ~=f(z' ,  rf) and t = <  a.s. 

Thus ~ = f  (z, ~/') a.s., and moreover q' is independent of z, since (z, I/')-a (z, q"). [] 

More can be said when the m, are invariant and ergodic under a suitable 
class of transformations. Here we are using the terminology of Sect. 12 in Aldous 
[2]. 

Lemma 2.3. Let the measures m, in Lemma 2.2 be invariant and ergodic under 
some countable group of measurable transformations of S. Then the random mea- 
sure me is a.s. unique and i-measurable, and there is even a i-measurable choice 
of t. Moreover, the distributions of ~ and m~ determine each other uniquely. 

Proof Let gs be the o--field of invariant Borel sets in S, and put g = ~- 1 Js c ~- 
From Dynkin [8] (cf. Theorem 12.10 in [21) it is known that P [ ~ ' [ g ]  is 
a.s. ergodic, and that the integral representation of P~-* over the ergodic mea- 
sures is unique. Hence the random measures m~ and P [ ~ e . l J ]  have the same 
distribution. Since the range of m is analytic, it follows that P [4 ~" Ig] ~ {mr, t~ T} 
a.s. Thus Lemma 2.2 applies with (q=g,  so there exists some g-measurable 
random element t '  in T satisfying 

P [ ~ ' ] J ] = m r ,  a.s. (2) 

Let us now return to the relation 

mr= PE~E'I(q]-- PE te ' ] z ] .  (3) 

Here the left-hand side is a.s. ergodic, so 

P [ I l t ] e{0 ,  1} a.s., I~g ,  

and it follows easily that 

I={P[II~]=l}E~r(~) a.s., I e J .  

This shows that J c ~r(z). We now obtain from (2) and (3) 

m,,= P [ ~ - I a ~ ]  = E E P [ ~ ' l t ]  I J ]  = EEm~lJ ] a.s. 
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Letting B be an arbitrary Borel set in S, we get 

E m,B m~, B = E m~B E Ira, B I J] = E (E [m~ B I j])2 = E (m,, B) 2, 

d 
and since m~, = m, as above, it follows that 

E (m~ B - m~, B) z = E (m~ B) 2 - -  [= (m~, B) 2 = 0. 

This shows that m, = me, a.s., so m~ is a.s. unique and J-measurable .  It follows 
in particular that P { - *  determines P m~ -1. The converse is also true, since 
P~-I =Em~. [] 

In the applications we have in mind, z is the array of coefficients in the 
representation formula for X, and mt is the distribution of X when z = t is 
fixed. Now suppose that f is a measurable mapping from T to some space 
V, such that mt and f~ determine each other uniquely. If the mappings between 
mt and ft can be shown to be measurable, a.s. P z-1,  then the conclusion of 
Lemma 2.3 will remain true with m~ replaced by p =f~, and p can serve as a 
directing random element for X. The following result yields the desired measura- 
bility when V is Polish. 

Lemma 2.4. Let ~ and ~ be random elements on some Polish probability space 
f2, and taking values in the Polish spaces S and T respectively. Assume that ~ =f(~/) 
a.s. for some mapping f :  T~S.  Then f can be chosen to be measurable. 

Proof Recall that the range A =  {(~, q)(~o); coEf2} is analytic in S x T. Add to 
S an extra point 0. By the section theorem (cf. [6]) there exists a measurable 
mapping g: T-~Sw {0} with g(q)ES a.s., and such that 

(g(t), t)~A u({t~} • T), t~T. 

This means that (gO/), ~)~A a.s., so g ( t / )=f (q )=~  a.s. []  

We need to make some further remarks on the application of the above 
results. First recall that the separate or joint exchangeability of a process on 
a continuous parameter space was defined in terms of transformations of the 
associated increment arrays rather than of the process itself. However, there 
exists in each case a countable group G of measurable transformations of the 
process, such that exchangeability is equivalent to invariance in distribution 
under G. 

To see this, let us e.g. consider the case of joint  exchangeability for continuous 
processes X on ]R 2, the other cases being similar. We then define for fixed 
h > 0 the processes 

Y~(s, t)=X((ih, ih+s) x qh, jh+t)), s, tE(O, h), i , j~N. 

It is easily seen that the joint exchangeability of X carries over to the array 
yh=(y/~). Moreover,  there exists some measurable mapping fh such that X 
=fh(Yh). Writing Tp yh=(yphpj) and TphX=fh(Tp yh) for finite permutations p 

of N, it follows that Tp h X d__ X for all p. 
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Conversely, this property implies that T v X h & X h, where X h denotes the array 

of increments with respect to the h-grid. Thus X is jointly exchangeable iff 
it is invariant in distribution under the transformations T2 with h = 2 - " ,  n e N ,  
and with p a finite permutat ion of N. These transformations clearly form a 
countable group. 

A second remark concerns the ergodicity of the measures ms, required in 
Lemma 2.3. In our applications below, the arrays or processes Xt corresponding 
to m~ will have representations with constant coefficients, and so will be dissociat- 
ed, when defined on N 2 or N~z+. (In case of processes, this means that the associat- 
ed arrays of increments are dissociated.) The desired ergodicity then follows 
as in the usual proof  of the Hewitt-Savage 0-1 law (cf. [9]). For  processes 
on [0, 1] 2 or IR+ x [-0, 1], the conclusions of the lemma may instead be obtained 
via the transformations in Lemma 2.8 below. 

We turn to the characterization of continuous and exchangeable processes 
on IR+ or [0, 1]. Recall that a one-parameter process X is exchangeable, if 
X o = 0  and if the increments of X over an arbitrary set of disjoint intervals 
of equal length form an exchangeable sequence. For  continuous processes, it 
is clearly enough to consider intervals with dyadic endpoints. Say that an 
Re-valued process B is a Brownian motion or bridge, if the component  processes 
are independent Brownian motions or bridges respectively in IR. The following 
result extends the one-dimensional version in [14]. Here and below, we shall 
use a self-explanatory matrix notation. 

Lemma 2.5. An Na-valued process X on ]R+ or [0, 1-1 is continuous and exchange- 
able, iff a.s. 

X t = a t + a B , ,  telR+ or [-0, 13, (4) 

for some random vector o~ in IR e, some random d x d-matrix ~, and some lR<valued 
Brownian motion or bridge, respectively, B. Here c~ and aa T are a.s. unique and 
X-measurable, and their joint distribution determines that of X. 

The representation (4) can be established in the same way as in the one- 
dimensional case, i.e., via weak convergence as in [14], or by the martingale 
argument in [2]. The last statement is an easy exercise in the use of Lemmas 2.3 
and 2.4 above, given the fact that, in the two cases, 

E exp (i S f  T d X ) : ~ E e x p ( i ~  ! f-- l lS[arf]2);  
kEexp( ie  J f - - z l  [aT(f--f)[2), 

where f is an arbitrary R<valued and measurable function with ]fleLlnLa. 
(It is of course enough to consider simple step functions of this type.) Alternative- 
ly, we may obtain c~ and aa T directly as 

a = l i m t - l X t  or ~=X1 ,  o a T = I X ,  X]1 a.s., 
t -~oO 

where [X, X] denotes the d x d-matrix of mixed quadratic variations for the 
components of X. 
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Using characteristic functions as in Theorem 5.3 of [14], we may easily 
deduce the uniqueness of extensions (which incidentally remains true in the 
presence of jumps): 

Corollary 2.6. Let X be an IRd-valued continuous and exchangeable process on 
~ +  or [0, 1], and let Y denote the restriction of  X to some subinterval [0, e] 
with e > O. Then P Y - 1 determines P X  - i 

We shall also need the following multi-dimensional version of Schoenberg's 
theorem (cf. [2, 5]). Say that an lR<valued random sequence X = ( X i j ,  i<d,  

j e N )  is rotatable, if X U ~ X  for every rotation U. For a process X on IR+ 

or [-0, 1] to be rotatable, we require that X be continuous in probability, and 
that the above property should hold for the increments over an arbitrary set 
of disjoint intervals of equal length. 

Lemma 2.7. An ]R~-valued random sequence X = ( X i j ,  i<d,  j ~ N )  is rotatable iff 
a.s. 

d 
X i j  = ~ ffik ~kj, i ~-- 1, . . . ,  d, j ~ N ,  (5) 

k= l  

for some random d • d-matrix a=(aik) and some i.i.d. N(0, 1) random variables 
~kj, k < d ,  j e N .  Similarly, an IRd-vaiued random process X on lit+ or [0, 1] is 
rotatable iff 

X t = a  Bt a.s., t E ~ +  or [0, 1], (6) 

for some random matrix a as above and some d-dimensional Brownian motion 
B. In both cases, a a T is a.s. unique and X-measurable, and its distribution deter- 
mines that o f  X.  

We conclude this section with an elementary discussion of some processes 
related to Brownian motion. First recall that a Brownian sheet is a centered 
Gaussian process X on R2+ with covariance function 

EXstXs , t ,=(sAs ' ) ( tA t ' ) ,  s , s ' , t , t '~]R+.  

Starting from X, we may construct the further processes 

r s t = X s t - S X l t ,  sc[O, 1], t~]R+, 

Z s t - - X ~ t - - t X s l - - s X l t + s t X l l  = Yst-- tY~,  s, t~[0, 1], 

with c0variance functions 

EY~tY~,,,=(SAS'--SS')(tAt'),  s ,s 'e[O, 1],t, t 'e]R+, 

EZstZs,  t , - -~(SAS'--ss ' )( tAt ' -- t t ' ) ,  s , s ' , t , t '~[O,  1]. 

All these processes will be referred to as Brownian sails. (The process Y above 
is also known as the Kiefer process.) 

In the next result, we list some simple relationships which will be needed 
below. For their proofs, it suffices to compute the covariances. 
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Lemma 2.8. Starting from a Brownian motion W and a Brownian sheet X, we 
may construct a Brownian bridge B and Brownian sails Y and Z through the 
formulas 

W s B(s)=(1-s)  I ~ t ,  s t [0 ,  1], 
\ l - s /  

Y(s't)=(1-s)X( ~-s 0 st[O, 1], t t lR+,  

Z(s, t ) = ( 1 - t )  Y s, = ( 1 - s ) ( 1 - t )  X 1 - ~ '  1 - t  ' s, t t [0 ,  1] 2 . 

Conversely, W and X may be obtained from B, Y and Z through 

W(s) = (1 + s) B ( l ~ s ) '  

y s 
X(s , t )=( l+s)  ( - ~ s , t ) = ( l + s ) ( l + t )  

st iR+,  

(s t) 
S, t t ~ + .  Z l + s '  l + t  ' 

We finally state a simple consequence of Lemmas 2.5, 2.7 and 2.8, which 
will play an important role in Sect. 6. 

Corollary 2.9. Let X be an ~,d-valued, continuous and exchangeable process on 
[-0, 1] with X1 =0. Then the process 

Y ( t ) = ( l + t ) X [  t ), \1 + t] t t lR+, 
is rotatable. 

3. Jointly exchangeable arrays 

The purpose of this section is to give a proof, in the spirit of Aldous and 
Kingman (cf. [1, 2]), of the representation formula (1.2) (equation (2) of Section 1) 
for jointly exchangeable arrays of random variables. 

Theorem 3.1. An array X =(Xij, i, j t N )  of random variables is jointly exchange- 
able iff 

X~:=f(~, 4i, 4j, 20, i, j t]N, (1) 

holds a.s. with 2ii=0 and 2u=2ii, for some measurable function f :  [0, 114~IR 
and some i.i.d. U(O, 1) random variables ~, 41, 42, ... and 2ij, i<j. 

It is clearly equivalent to write instead of (1) 

I f (  ~ ~i, ~j, 21j), i <j, 
X~j=lf(~, ~,~j,~j~), i>j, 

[g(~, ~i), i=j, 
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for some measurable functions f :  [0, 1]4--*1R and g: [0, 112-+]R, and some i.i.d. 
U(0, 1) r andom variables e, 4i and 2~j as above. 

For  the proof, we shall need some simple exercises on condit ional  probabili- 
ties, valid for arbi t rary r andom variables, sequences or arrays 4, ~/, ~, ~1, th, 
... Throughou t  this section, condit ionally independent  or i.i.d, will be abbreviat- 
ed c.i. or c.i.i.d., respectively. 

L e m m a  3.2. (a) 4 and t I are c.i., given ~, iff (~, ~) and t 1 are c.i., given ~. 
(b) I f  (41, 42) and t 1 are c.i., given ~, then 41 and q are c.i., given (~2, ~). 
(c) I f  ~1, ~a . . . .  are c.i.i.d, and c.i. of  (q 1,  r]2), given ~, and if ~ is qz-measurable, 

then ~1, 42 . . . .  are c.i.i.d, and c.i. o f t  h, given tl2. 
(d) I f  (41,-.-, ~,) and 4,+1 are c.i., given q, for each heN ,  then 41, ~2 . . . .  

are c.i., given rl. 

Lemma 3.3. I f  the pairs (~j, tlj), j e N ,  have the same distribution, there exists 
some transition kernel m, such that 

P [ 4 ~ ' l t / j ] = m ( t / j , ' )  a.s., j e N .  

Proof of Theorem 3.1. Define Yij=(Xij, Xji), i, j s N ,  and note that  the joint  
exchangeability of X carries over to Y=(Y~j). By the Danie l l -Kolmogorov theo- 
rem, we may  extend Y to a joint ly exchangeable array indexed by ;g2. Write 
A=(Y~j, i v  j__<0) and B=(B1, B2, ...), where Bi=(Yij, j=i ,  0, - 1 ,  --2, ...). For  
n e 7Z +, we further define Y" = (Yij, i, j = 1, . . . ,  n), By = (Yi~, J = i, 0, - 1, . . . ,  - n) and 
CT=(gli . . . .  , Y,i). We shall show that  

(i) For  each neTZ+, the pairs (C7, Bi), i>n, are c.i.i.d, and c.i. of Y', given 
(A, B 1 . . . . .  B,). 

It is clearly enough to prove the corrersponding statement for the pairs 
(C'~, BT'), with m e n  arbitrarily fixed. But the latter pairs are exchangeable over 
(A, B1 . . . .  , B,, Y"), and hence c.i.i.d, and c.i. of that  array, given the directing 
r andom measure #. By L e m m a  3.2(c) it remains to show that  # is measurable 
with respect to (A, B x, . . . ,  B,), which is obvious since the extended sequence 
(C7, BT'), i . . . .  , - m -  2, - m -  1, 1, 2, . . . ,  is exchangeable with the same directing 
measure #. Taking n = 0 in (i), we get in particular 

(ii) B1, B2, ... are c.i.i.d., given A. 
Using L e m m a  3.2(a, b), it is further seen from (i) that  

(iii) C~" + 1 is c.i. of yn, given (A, B), 
(iv) C,~+1 is c.i. orB,  given (A, B1, .. . ,  B ,+0 .  

F rom (iv) with n =  1 it is seen that  I112 is c.i. of B, given (A, B 1, B2), and by 
the exchangeabili ty of Y, we then get more generally 

(v) Yij is c.i. orB,  given (A, Bi, Bj), for all i, j e N  with i# j .  
On the other hand,  it is seen from (iii) and Lemma 3.2(d) that  C 1 is c.i. of 
(C], C~ . . . .  ), given (A,B), i.e. that  Y12 is c.i. of (Yij, 1__<i<j#2), given (A,B). 
Using the exchangeabili ty of Y and applying L e m m a  3.2(d) again, we may  con- 
clude that  

(vi) the elements Y~j, 1 =< i <j ,  are c.i., given (A, B). 
Statements (ii), (v) and (vi) will be needed below. 

We next conclude from the exchangeabili ty of Y that  (A, B i, B 2, Y~j) has 
the same distribution for all i, j e N  with i +j .  Hence, by L e m m a  3.3, there exists 
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some transition kernel m between suitable spaces, such that 

P[Yije'IA, Bi, Bj]=m(A, Bi, Bj;') a.s., i, j e N  with i#j. (2) 

From the definition of Y~j it is seen that, if H is an arbitrary Borel set in IR 2 
and H ' =  {(x, y)elR2; (y, x)eH}, then a.s. 

re(A, Bi, Bj; H)=m(A, Bj, Bi; H'), i, j e N  with i=t=j. (3) 

But then (2) remains true with m replaced by the kernel 

gt(a, b, c; H)=�89 b, c; H)+�89 c, b; H'), 

and so we may henceforth assume that (3) holds identically. 
The next step is to use the 'coding'  argument of Aldous I-1, 2] together 

with Lemma 2.1 above, to conclude from (ii) that 

A=p(e) ;  Bi=q(e, ~i), ieN, a.s., (4) 

for some measurable functions p and q, and some i.i.d. U(0, 1) random variables 
c~ and 41, 42, ..., defined on a possibly extended probability space. Since Xi~ 
is a component of B~, we get in particular 

Xu=g(c~, ~) a.s., i eN,  (5) 

for some measurable function g: 1-0, 112--,IR. Writing 

m'(a, x, y;.)=m(p(a), q(a, x), q(a, y);'), a, x, ye[0,  1], (6) 

we may next introduce two measurable functions f l ,  f2: [0, 114~IR, such that 
whenever 2 is U(0, 1) 

P((fl,fz)(a, x, y, 2)) -1 =m'(a, x, y;'),  a, x, ye[0,  1]. (7) 

In that case, (3) shows that also 

P((f2,fx)(a, Y, x, 2)) -~ =m'(a, x, y;.), a, x, ye  1-0, 1]. (8) 
Defining 

fl(a, x, y, z), x<y,  

f(a, x, y, z)=]fa(a, y, x, z), x>y,  
[ 

/ g(a, x), x=y,  
we get 

z'" ((fx,f2)(a, x, y, z), x<y,  
(f(a, x, y, z),f(a, y, x, )~=~.(f2,fl)(a, Y, x, z), x>y.  

If 2 is U(0, 1), it follows by (7) and (8) that 

p(f (a ,x ,y ,  2),f(a,y,x, 2))-l=m'(a,x,y;.), a,x,y~[O, 1], x#y .  (9) 

We finally take 2'~j, i<j, to be i.i.d. U(0, 1) and independent of c~, ~a, ~2 . . . .  , 
let 2'ii =--0 and 2 j i -  "~'ij, and define 

Xi~=f(c~, ~, ~, 2}j), i, j eN .  (10) 
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If we can show that (X)j)d=(X~j), it will follow by Lemma 2.1 that the original 
array X = (Xij) has a similar representation. 

Now (6), (9) and (10) imply that the pairs Yi~=(X'ij, X)i) with l < i < j  are 
conditionally independent, given e, ~ ,  ~2 . . . .  , with conditional distributions 
m(A, B~, Bfi'), so the same thing is true under conditioning with respect to 
(A, B), in agreement with properties (v), (vi) and (2) for the Yo" Hence Y and 

Y'= (Y0 have the same conditional distribution, given (A, B), and we get Ys Y', 
as desired. [] 

4. Separately rotatable arrays 

The main purpose of this section is to remove the second moment condition, 
imposed by Aldous [1], to prove that separately rotatable arrays of random 
variables have the form (1.3), as conjectured by Dawid [5]. We shall also solve 
the associated uniqueness and continuity problems. 

Theorem 4.1. An array X =  (Xifl i, j e N )  of random variables is separately rotat- 

able, iff a.s. o3 
Xij=ff  2iJ-~- Z O~k~ikqjk ' i , j~N,  (1) 

k = l  

for some random variables a > 0 and cq > o~ 2 ~ . . .  ~ 0 with ~ ~2 < o~ a.s. and some 
independent set of i.i.d. N(O, 1) random variables 2ij , ~ik, rIjk, i,j, k e N .  Here ~r 
and the eg are a.s. unique and X-measurable, and they are a.s. non-random iff 
X is dissociated. 

Proof. As before, we may extend X to a separately rotatable array indexed 
by Z 2. Write A=(Xi j ,  i v  j<0) ,  and note that X + =(Xij, i A j > 0 )  remains sepa- 
rately rotatable under conditioning by A. Moreover, it is clear from the proof 
of Theorem 1.4 in Aldous [1] that X + is conditionally dissociated, given A. 
Finally, we shall prove below that E [ X ~ [ A ]  < oc a.s. We may then conclude 
from Theorem 4.3 in Aldous [1] that X has conditionally the form (1) with 
constant coefficients, and the unconditional result will follow by Lemma 2.2 
above. 

To show that E [X21 [A] < ~ a.s., let us first conclude from Lemma 2.7 above 
that Xij~-a i ~ij for some random variables o-i>0 and ~ij, where the latter are 
i.i.d. N(0, 1) for fixed i and independent of o-i. Since a~ is clearly A-measurable 
when i < 0, and since E ~ < o% it follows that 

E[X~IA]=a'~E[#~j[A]<oo a.s., i=<0. 

The symmetric argument shows that also 

E[XglA] < oe a.s., j=<0. (2) 

Let us now fix i=  1, and put ~ j =  r and X~j= a s ~y=qj. By the conditional 
form of Schwarz' inequality, we get 



428 O. Kallenberg 

~ (~- 1 +. . .  + ~- 2) A] E[q~[A]=E ~2 + . . .+#z  5 

- -  e [(~/z ~ + . . .  + ~/z_ 5)2 [A] . --< E ~21 + +~:2_5 

Here the second factor on the right is a.s. finite by (2), while the first one 
is a.s. finite since 

E ~2a+- -+~2_  5 =E~14"E(~21 '+. . .+~25)-2~ < 0  r-ge-'2/Zrgdr<~ 

where x<y means that x=O(y). Thus E [q2 [A] < oo a.s., which completes the 
proof of the first assertion. 

In order to prove that the coefficients in (1) are a.s. unique and X-measurable, 
it suffices by Lemmas 2.3 and 2.4 above to assume that they are non-random. 
But in that case it is easily verified that 

Eexp(itX11)=exp(--1a2t2)fi(l+o~2t2)-�89 t~]R, (3) 
j = l  

from which the uniqueness follows by the theory of analytic functions, or directty 
by differentiation. 

Here we have already used the obvious fact that arrays X with constant 
coefficients are dissociated. Assuming conversely that X is dissociated, it is seen 
as in Sect. 2 that X must be ergodic. Moreover, the sequence of coefficients 
is clearly invariant under separate rotations of X, and hence measurable with 
respect to the invariant a-field for X. Hence the coefficients are a.s. non-random 
in this case. [] 

For  every separately rotatable array X as in (1), we shall define an associated 
directing random measure # on ~ +  by 

# = a  2 6o + ~ ~ 5aj, (4) 
j = t  

where fix denotes the measure with a unit mass at x. Recall that m,- -~m 
(m. tends weakly to m) for bounded measures m, and m on ~ + ,  iff m , f ~ m f  
for every bounded continuous function f on N~+. Here mf denotes the integral 
~fd m. The corresponding notion of convergence in distribution for a.s. bounded 

w d  
random measures #, and # on ~ +  is denoted by #, ,#. It is known that 

d 
this convergence is equivalent to #, f , p f  for every bounded and contin- 
uous function f. Moreover, a sequence (#,) is known to be weakly tight, and 
hence relatively compact with respect to the above notion of convergence, iff 
(p, lR+) is tight and moreover 

lim limsup P{#,(r, oe)>~} =0, e>0.  (5) 
r--* (x3 n---~ oo 
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Analogous results hold for random measures on R and more general spaces. 
(For a complete discussion, see Chapter 4 in [-15].) 

For arrays of random variables, convergence in distribution is defined with 
respect to the usual product topology in N~.  Here we shall solve the continuity 
problem for the representations in (1), by characterizing convergence in distribu- 
tion of separately rotatable arrays in terms of their directing random measures. 

Theorem 4.2. Let the arrays X1, X2 . . . .  be separately rotatable and directed 
d w d  

by #1, #a, ... Then X ,  ~ some X iff #,-----~ some #, and in that case X is separate- 
#,a= ly rotatable and directed by some #. 

Proof If X is separately rotatable and directed by #, then (3) and (4) yield 

E e x p ( i t X ~ l ) = E e x p ( - ; f  l~ } xZ #(dx) , tMR, (6) 

where the inner integrand on the right is defined by continuity to be equal 

to t 2 at x =  0. Assume first that the #, are non-random with #,--~--. some #, 
and note that even # must be of the form (4). From (6) it is seen that the 
one-dimensional distributions of X,  converge as n-~oo, with limits given by 

d 
(6). This shows in particular that (X,) is tight. If X,-----~X along some subse- 
quence, then even X will be separately rotatable and dissociated, so X must 
be directed by some non-random measure #'. But then (6) holds for both # 

a 
and #', and it follows as before that #'=#. Thus X,-----~X along the original 
sequence, with X directed by #. By Lemma 1.1 in [12], the conclusion extends 
immediately to the case of random directing measures #,, such that 

w d  
#n , some #. 

d 
Assume conversely that X,  ~X, and suppose we can show that (#,) is 

w d  
weakly tight. If #, ~# along some subsequence, it follows as before that 

a 
X, - - - -~someX'  along the same subsequence, with X' directed by some#'=a#. 

Thus X is directed by some #" a = #, so the distribution of # is unique, and the 
w d  

convergence #,----*# holds along the original sequence. 
To see that (#,) is tight, conclude from the subadditivity of l o g ( l + x )  for 

x _>_ 0 that 

a2t a + ~ log(1 + c~] t2)>_log(1 +a2t2)+ ~ log(1 + e ] t  2) 
j = l  j = l  

o0 

Using this, we get from (3) for any r, t > 0 

E cos (t X11) --< E exp(-- 1 log(1 + t 2 # IR+)) = E (1 + t 2 # IR+)-~ 

=<P{#N+ =<r}+( l+ t  2r) -~ P{#N+ >r} 

= 1 --(1 --(1 +t 2 r) -�89 P {#JR+ >r}. 
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Substituting X~ and #~ for X and #, and letting n~oo,  r~oo  and t ~ 0  in this 
order, we obtain 

lim limsup P {#~ I1 + > r} = 0. (7) 
r--+ co n ---~ co 

Since #~(r, oo)> 0 implies that #~ IR+ > r 2, (7) yields in turn 

lim limsup P {#~ (r, oe) > 0} = 0. 
/ ' --*co n--~ co 

(8) 

The desired tightness follows from (7) and (8). [] 

We shall next prove a rather straightforward extension of Theorem 4.1, which 
will be needed in Sect. 6. 

Lemma 4.3. Let X,  Y, Z and T be arrays of  random variables Xij , Yi, Z i  and 
T, i, j e N ,  such that 

(UXV, YV, UZ, T) d (x ,  Y, Z, T) (9) 

for all rotations U and V. Then we may write T=p  and a.s. 

Xij =a3~ij+ ~ o:k ~ik tljk, Yi = ~ flk ~ik, Z j =  ~ 7ktljk, i, j e N ,  (10) 
k = l  k = l  k = l  

for some (X, Y, Z, T)-measurable random variables p, a and ek, ilk, ~k, k e N ,  with 
2 2 2 ~(~k + flk + 7k) < O0 a.s., and some independent set of  i.i.d. N (O, 1) random variables 

).ij,~ik, tljk, i,j, k e N .  I f  we assume that a, ill, 71>= 0 and ~2>=ct3=>...>=0=~1, 
and that ak=O implies fik=7k=O for k >__2, then the coefficients in (10) will be 
a.s. unique, apart from rotations of  the sequence (fig, 7k), k e N ,  within index sets 
where the o~ k assume a common value. 

Proof. The array (X, Y, Z, T) is separately exchangeable, so by (1.1) it has a 
representation 

(Xij, Yi, Zi, T)=f(a ,  ~i, tlj, ~)i~), i, j e N ,  (11) 

for some function f and some i.i.d. U(0, 1) random variables ~, ~i, t/j and 81j, 
i, j e N .  The proof in [-13 shows that a may be chosen as a 'coding'  of A, 
a stationary extension of (X, Y,, Z, T) into the index domain {(i, j)" i v j<O}.  
Since (9) remains conditionally valid, given A, it suffices by Lemma 2.1 above 
to establish the representation (10) with non-random coefficients, in the case 
when a is constant. In that case, (11) reduces to 

Xij=fl(~i ,  rlj, ~i1), r/=f2(~i), Zj=f3(rlj), i, j e N ,  

for some measurable functions fl"  [0, 1] 3 ->IR and f2, fa : [0, 11 ~]R. 
Since EX21 < oo by Theorem 4.1 above, we may henceforth proceed as in 

the proof of Theorem 4.3 in Aldous [1]. Thus we may first subtract from Xij 
a component a21j, such that the 21j are i.i.d. N(0, 1) and independent of the 
~i and t/j, while the remainder Xij--o~.ij is of the form h((i, tlj ). As in [1], 
we may further write 

h(~, tlj)= ~ (z k gk(~i) g'k(rlj), i, j e N ,  
k = 2  



Representations in Bivariate Exchangeability 431 

for some constants C~k>0 and some or thonormal  sequences (gk) and (g~) in 
L2 [0, 1]. 

The argument in [1], p. 597, next shows that the random variables f2(~) 
and h(~, Yl), --., h(~, y,) are jointly centered Gaussian for every n e N  and a.e. 
(Yl, ---, Yn)e[ 0, 1] n, whenever ~ is U(0, 1). Again we may change the definition 
of h on a null-set in [-0, 112, to make this statement hold everywhere. By the 
Hilbert space argument in [1"1, p. 596, we may then conclude that f2(~) and 
g2(~), g3 (0  . . . .  are jointly centered Gaussian. Adding another Gaussian function 
gl to the or thonormal  system g2, g3 . . . .  , we get an expansion f2(~)=Y',flk gk(~) 
for suitable constants ilk. Applying the same argument to f3 and the g~, and 
putting gk(~i)= ~ik and g'k(tlj)= ~bk, i,j, k eN ,  we finally obtain the representation 
(10). 

To prove the uniqueness assertion, it is enough by Lemmas 2.3 and 2.4 
to consider the case of non-random coefficients. A simple computat ion then 
shows that, for any t, u, velR, 

E exp( i tXl~ +iu I11 +ivZ~) 

= ~ ( l + t a e 2 )  - ~ e x p  - t2a 2 1 u2fla+v2y2+ituvo~jijVj] 
j = l --  2 j = l i ~ 2  ~fj "]" 

From this expression, we may obtain o- and the ek as before by putting u = v = 0. 
Next we may divide by (3) to identify the sums 

2 2, 2, 1+  t2 0~2 �9 j = l  l + t  O~j j = l  lq-t20~J j = l  

Here we may differentiate at the origin, to construct all sums of the form 

1~2 .2k 2 - 2 k  ~ r~ n ~ 2 k + 1  Fj  ~j , ~)j O~j , L P J  YJ J , ke2g+. (12) 
j=o j = o  j = o  

If e2>O, we may finally divide by e2k and let k-~oe to obtain the sums 

21j  , (13) 
jeJ jeJ jeJ 

where J = { j e N :  ej=a2}. Subtracting the corresponding sums from (12) and 
continuing recursively, we may construct all sums as in (13) with J = { j e N :  
a j=  x}, x > 0, and finally also fig and 75. []  

5. Jointly Rotatable Arrays 

The aim of this section is to characterize the class of jointly rotatable arrays 
of random variables, and to solve the corresponding uniqueness and continuity 
problems in the special case of symmetric arrays, for which the explicit represen- 
tation was given in (1.4). 
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Theorem 5.1. An array X=(Xi j ,  i,j~]N) of random variables is jointly rotatable, 
iff a.s. 

i,j N, (1) 
k = l  1 = 1  

for some random variables p, a, ~r' and 7kl, k,l~]N, with ~kl+Cqk=0 for k # l  
and ~ ,  ~2 z < ~ a.s., and some independent set of i.i.d. N(O, 1) random variables 
2,j and r i,j, k~]N. The random variables p, (tr_tr') 2 and ~ ~ are a.s. unique, 
as are the ~kk apart from order. Moreover, the coefficients in (1) can be chosen 
to be X-measurable, and they may further be taken to be non-random iff X is 
dissociated. 

Note that the double sum in (1) converges in probability and that the limit 
is a.s. independent of the order of summation. To see this, reduce by conditioning 
to the case of constant coefficients. In this case the series converges in L2, 
since the products ~k (jr are orthonormal for k, l~l',l when i# j ,  and for k<l  
when i=j. Furthermore, the variables r k -  1 are i.i.d, with zero mean and finite 
variance. Note also that the double sum reduces to ~Tkk(~2k--1) when i=j  
and to ~'~ ~kt ~ik ~jt when i # j .  

When X is symmetric, we may write Xij=�89 to see that (1) holds 
with tr = a' and with ~kt = 0 for k # I. Thus (1.4) holds in this case with ~k = ~kk. 

Proof To prove that arrays as in (1) are jointly rotatable, we may clearly assume 
that the coefficients are non-random. By independence, we may then treat the 
arrays 6 o and 2~j+ 2j~ and the double sum separately. For 3ij the result is well- 
known from linear algebra, and for the double sum it follows easily from Lem- 
ma 2.7 when the summation is finite, and then in general by approximation 
in L 2. In case of 2i1-t-2ji , notice that the ar rays  2~(~i ~ j - 6 i j  ) and ~i t / i - ( jq~ 
have mean zero and the same covariances, when the ~i and tli are i.i.d. N(0, 1). 
By the multivariate central limit theorem, it follows that 2,j___ 2j~ can be approxi- 
mated in distribution by jointly rotatable arrays of the form 

and 

2 ~ "  
Xij=(~ ) k~= l(~ik ~jk--(~ij), i , j~N,  

Xij =n-�89 ~. (~ik ?]jk--~jk l~ik), i,j~]N, 
k = l  

respectively, where the ~ik and qik are i.i.d. N(0, 1). This shows that the arrays 
2ij_+2ji are jointly rotatable, and hence completes the proof of the sufficiency 
part. 

Our next aim is to establish the representation (1) for an arbitrary jointly 
rotatable array X. Since rotatability is stronger than exchangeability, we get 
by Theorem 3.1 a representation of the form 

X i j = f  (~, ~i, ~j, rhj), i , j~N,  (2) 

with thj-rlj i  and t/i i -  0, for some measurable function f :  [0, 114--*~ and some 
i.i.d. U(0, 1) random variables ~, ~1, ~2 . . . .  and qi2, i<j. Rotating by U, we 



Representations in Bivariate Exchangeability 433 

get an array U X U  r with the same distribution, and hence with a representation 

( u x u r ) i j = f ( a  ', ~'~, ~), tf~j), i, j e N ,  (3) 

for some ~', (~'~) and (q'0 as above. Here we may assume that a '=  a, and that 
~)= ~j for those indices j which are not affected by U. Indeed, we get these 
relations automatically, if we use the coding construction of Sect. 3, based on 
a stationary extension X' of X, and on the corresponding extension UX'U T 
of U X U  r. 

Under these conditions, X remains jointly rotatable, conditionally on ~. 
By Lemma 2.2, it is enough to prove that almost every conditional distribution 
agrees with the distribution of (1), for some non-random choice of coefficients. 
Now (2) shows that X is conditionally of the form 

Xi j=f (~  i, ~j, thj ), i , j~N,  (4) 

for some measurable function f :  [0, 113~N, with the same ~i and ~hj as before. 
Again, the representation of a rotated array U X U  T may be assumed to use 
the same variables ~j, for indices which are not affected by U. To simplify 
the writing, we shall henceforth consider a fixed conditional distribution satisfy- 
ing these assumptions, and suppress the conditioning from our language and 
notation. 

Next we note that the restriction of X to the index set I = ( 2 N ) x  ( 2 N - 1 )  
is separately rotatable and dissociated. Hence Theorem 4.1 shows that E X~ < oe 
for i# j ,  so the arguments in Sect. 4 of Aldous [1] apply, and we get for (i,j)~I 
a decomposition 

Xij=g(~i, ~j, thj)+h(~i, ~j) a.s., (5) 

where the variables g(~i, ~j, thj ), (i,j)el, are i.i.d, centered Gaussian, while 

h(x, y)-- ~ ek gk(x) g'k(Y) in L2([0, 1] 2) 
k= l  

(6) 

for some constants el,  ~2 . . . .  with ~ e ~ <  0% and some orthonormal sequences 
gl, g2 . . . .  and g], g~ . . . .  in L2 [0, 1]. Moreover, 

h(~ i, ~j)-=E[Xij[~i, ~j] a.s. (7) 

for all (i,j)eI, and hence by symmetry whenever i# j .  Comparing (4) and (5), 
it is clear that we can choose 

f ( x ,  y, z)=g(x,  y, z)+h(x, y), x, y, ze[O, 1] with z#O, (8) 

so even (5) extends to arbitrary i# j .  
To analyze g, we note that the array Y= a X + b X r = (a X~j + b Xji) is jointly 

rotatable for fixed a, heR,  since for any rotation U, 

u Y U T =  U (aX + b X T) UT=aUXUT-}-b(UXUT)T d a X  + b XT = Y, 
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Moreover, even Y has a representation (4) in terms of the same random variables 
4, and q,j, since in fact 

Y ~ i = a X , j + b X j i = a f ( ~ ,  ~ ,  thj)+bf(~j,  4~, rhj), i, j e N .  

Thus the above arguments apply to Y as well, and show that the variables 

a g(4,, ~,  rhj) + b g(~ j, 4i, rh~) 

= a (Xij-- E [Xi~ I ~i, ~j]) + b (Xj i  -- [27. [ X j i  I 4i, 4j]) 

= ~ j -  E [~jl ~,, 4i3 

are i.i.d, centered Gaussian for (i,j)eI. By Corollary 3.13 of Aldous [1], they 
must then be independent of ~t, 42, ... Since a and b were arbitrary, it follows 
that each of the pairs 

(g(4/, ~j, rhj), g(~j, ~,, tli~)), i<j, (9) 

is bivariate centered Gaussian and independent of ~1, (2 . . . .  But then it must 
also be independent of the other pairs in (9), which means that all these pairs 
are i.i.d, centered Gaussian and independent of 4~, 42 . . . .  We now put 

s 2 = E (g (~i, 4j, ~ij)) 2, r s 2 = E g (~i, 4j, th2) g (4~, ~,, thj), 
and define 

= ~  ((1 +r)�89 

Letting )~ij, i#:j, be i.i.d. N(0, 1) and independent of the ~,, it is easy to check 
that the array (a 2,j+ a' 2j,, i=l=j) has the same distribution as (g(4i, ~,  qij), i#j).  
By Lemma 2.1, we may then redefine the 2,j such that 

g(~,, {j, qij)=ff2ij-1-17'2ji  a . s . ,  i# j .  (10) 

We shall next examine the functions gk and g~ occurring in (6). Let us then 
fix a rotation U=(U,k), write X' = (X'0 = U X U  r, and note that X' has a represen- 
tation (4) with 4i replaced by (',. Let us further denote the shell-o--field (cf. [1, 
2]) of X by 5(, and note that ~ is also the shell-o--field of X'. Fix indices 
i<j  such that U only affects components number 1, . . . , j - 1 .  Combining (7) 
with Lemma 3.7 of Aldous [1], we get 

h (~',, 4~) = E EX~jl 4; ~] = E [x',j [ 5P] = ~ U,k E [Xkj 15~3 
k 

=~uik E [Xkjl ~ ,  Cj] =~u,k h(~a, 4j). 
k k 

Assuming that 4)= ~j and using (6), we hence obtain 

Y~ ~. g'(~j)(g.(~',)- Y~ u,~ g.(4~)) = 0 
n k 

a . s .  

By Fubini's theorem, the same relation holds a.s. for almost every realization 
(xl . . . . .  xj-1,  x~) of (41, ..., ~j-1, 4'0. Since g'l, g~, ... are orthogonal, it follows 
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that 

g,({i)=~Uikg,({k) a.s., i, n e N .  
k 

(11) 

Interchanging the roles of rows and columns, we get in the same way 

g',(~)=~Uikg',(~O a.s., i, neN. 
k 

(12) 

The next step is to replace the sequences (gk) and (g~) by a single orthonormal 
sequence. Let us then introduce the Hilbert space H in L2 [0, i]  spanned by 
gl, g2 . . . .  and g~, g~ . . . .  , and note that 

h + u(x)=5(h(x, y)+h(y, x)) u(y)dy, ueH, 

defines a compact and self-adjoint operator on H. Thus h + has a complete 
orthonormal sequence of eigenfunctions h a, hz, . . . e l l .  In particular, we get 
an expansion 

h(x, y ) = ~ c q j  hi(x ) ha(y ) in L2([-0 , 112), (13) 
i j 

where E E  ~2= • g~ < oo. Moreover, 

h(x, y) + h(y, x ) = ~  ~(cqj+ c~ji ) hi(x) hj(y), 
i j 

so e i j + e j i = 0  for i~j. From (11) and (12) it is further seen that 

h,(('i)=~Ulk h,((k) a.s., i, n~N. (14) 
k 

It follows in particular that the array (h,(~k)) is rotatable in k, and since the 
~k are further independent, we may conclude from Lemma 2.7 that hl(~), h2(~), 
... are i.i.d. N(0, 1). This proves the representation (1) for i,l=j, with ~ik = hk((i). 

To extend (1) to the diagonal, we put 

Yij=2ZO~kl(~ik~jl--61j(~kl), Z i j = X i j - Y i j  , i, j e N ,  
k l 

and conclude from (14) that (Y, Z) is jointly rotatable. To determine the distribu- 
tion of Za~, we put Z ' = U Z U  r, where the rotation U=(Uik) is such that u l ,  
= U 2 1  ~ U2 2 = - -  U 12 = 2 -- ~,  and compute 

d 

Zt12= �89 l - -  Z22-~ Z12--  Z21)= Z12 . (15) 

Here the variables ZI> Z=2 and Z,2 Z21 are independent, while Z,2 and Z12 
- Z z a  are Gaussian, so it follows from Cram6r's factorization theorem (cf. [9]) 
that Z,~ is N(p, s 2) for some p and s. Computing the variances in (15) yields 
by (10) 

1 ( 2  $2 q-- 2 (0- - -  0 " ) 2 )  = 0"2 q -  0 ' ' 2  ' 
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SO S 2 - - -  ( 0 " " ~  0 " )  2 .  Thus we may extend (10) by writing 

Z~j=p6~j+a2~j+0"2j~, i, j e N ,  

where the 2ij are i.i.d. N(0, 1). 
It remains to prove that Y and Z are independent. To see this, choose 

for each n s N  a rotation U = (u~,) with u 11 . . . . .  u.1 = n -~, Writing Z' = U Z U  T, 
so that Z =  u T z  ' U, we get 

zll l i  i i = -  Z'ij-=- 1 -(~ij) Z ~ j + -  ~, (Z ' i i -p )+p  
n i = 1  j = l  n i = 1  j =  /'l i = 1  

= s , +  r , + p .  

p 
Here Erf=n-l(f f- t-a')2--*O, so. Sn+p-- - -*Z~l .  Writing "~=(~ik), it is further 

seen from (14) that S, is independent of ~ ' =  U~ and hence of S = Ur~  '. Hence 
Z l t  is independent of ~, and the same thing is true for each Z u. Since the 
sequences (Zu, ~il, ~i:, ...), i e N ,  are mutually independent, it follows that the 
whole diagonal (Z11, Z22, ...) is independent of S, and hence of Y. The indepen- 
dence of Y and Z now follows, since the non-diagonal part of Z was shown 
before to be independent of (~ ,  32 . . . .  ), and hence of the diagonal plus Y. 
This completes the proof of the representation (1). 

If the coefficients in (1) are non-random, then X is clearly dissociated. Con- 
versely, a dissociated array X is not affected by conditioning on A, and as 
the above proof shows, a representation exists in the conditional situation where 
the coefficients are non-random. In the general case, it is seen from Lemma 2.3 
that the coefficients can be chosen to be X-measurable. It remains to prove 
that p, (0"-t-0") 2, 2 2 a 2 /  and the O~kk are a.s. unique, and by Lemmas 2.3 and 
2.4 it is then enough to consider the dissociated case. The uniqueness of p, 
(a + a') 2 and the akk is then obtained from the formula 

oo 
2 - ~  E e x p ( t X l l ) = e x p ( p  t+�89 2 t ) I-I (1 --2tC~kk ) ~ exp(--tC~kk), (16) 

k = l  

valid for small t, while the uniqueness of ( a -  a') 2 and ~ a~z follows by applying 
Theorem 4.1 to the restriction of X - X  T or X respectively to I = ( 2 N ) x ( 2 N  
-1) .  [] 

In the symmetric case, i.e. when 

Xij=POij+ff(•ij-k)cji)-'}- ~ ~k(~ik ~jk--(~ij), i, j e N ,  (17) 
k = l  

we may associate with X the directing random elements p and #, where 

# = 2 a a  go+ ~ ~26~- (18) 
k = l  
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Note that p is a random measure on ]R in this case, since the ~k may be both 
positive and negative. In the space Jg0R) of bounded measures on N, we define 

w wd 
weak convergence , as before, and write -----~ for the corresponding notion 
of convergence in distribution. The same notation will be used for convergence 
with respect to the associated product topology on N x Jg(R). 

Theorem 5.2. Let X1, X 2 ,  . . .  be symmetric and jointly rotatable arrays directed 
d wd 

by (Pn, #n), n~N. Then Xn ~ some X iff (p,, p,) ~ some(p, #), and in that case 
d 

X is symmetric, jointly rotatable, and directed by some (p',/t') = (p, #). 

Proof In the symmetric dissociated case, formula (16) becomes 

E e x p ( t X l l ) = e x  p p t+2o-  2 t2--�89 ~ [log(1--2tc~j)+2tc~j] 
j = l  

=exp { p t - 2 f  l ~  2tX (19) 

where it is assumed that It[ <�89 Jail) - 1 .  H e r e  the integrand on the right 
is defined by continuity to be - 2 t  2 at x = 0 .  Note also that the restriction 
of X to I =(2N)  x ( 2 N -  1) is separately rotatable and directed by the measure 

oo 
2 # ' =  2 o -2 6o + ~ e~ 6l~jI " (20) 

j = l  

Let us first assume that the directing pairs (p,,/~,) are non-random, and 

that p,--+p while #, w ~#, where /~ must again be of the form (18). Then the 

measures p', in (20) will converge along with #,, so Theorem 4.2 shows that 
the non-diagonal elements of X,  form tight sequences. As for the diagonal ele- 
ments, we get even convergence in distribution, with the limits satisfying (19). 
This is because max]e  j[ stays bounded by the weak convergence of #,. We 
may thus conclude that (X,) is tight, with every limiting array X satisfying 
(19). Since even the limits are dissociated, symmetric and jointly rotatable, p 
and p must be the directing elements of X, so the limiting law is unique, and 

d 
we have in fact convergence X,-----~X. As before, the result in this direction 
extends immediately to the non-dissociated case. 

For  the result in the opposite direction, it is enough as before to show 

that X,  / , X implies tightness of the sequences (p,) and (#.). Considering the 
restrictions to the index set I and using Theorem 4.2, it is seen that the associated 
sequence (p',) is tight, which clearly implies tightness of (#,). From the first 
part of the proof we may then conclude that the reduced arrays X,-p , (6 i j )  
form a tight sequence, and since X,  converges by assumption, the desired tight- 
ness of (p,) follows by subtraction. [] 
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6. Separately Exchangeable Processes 

In this section, we shall prove the representation (1.6) of separately exchangeable 
and continuous processes X on N 2, IR+ x [0, 1] or [0, 1] z, and we shall further 
solve the corresponding uniqueness and continuity problems. Recall from Sect. 2 
the definition and elementary properties of Brownian sails. Say that a process 
X is dissociated, if its increment arrays have this property. 

Theorem 6.1. A process X on I=~,z+, ~ +  x [0, 1] or [0, 1] 2 is continuous and 
separately exchangeable, iff a.s. 

X ~ t = p s t + a A ~ t +  ~ (c~jBj(s) Cj(t)+fltB~(s)t+ytsCt(t)), (s, t)~I, (1) 
j = l  

2 2 for some random variables p, a and ~j, fit, Yj, j e N ,  with ~(c~ t +fit +72) < oo a.s., 
some independent Brownian sail A, and some independent sequences (B j) and (C j) 
of  i.i.d. Brownian motions or bridges. The coefficients in (1) may be chosen to 
be X-measurable, and if I = I R  2, they may further be taken to be non-random 
iff X is dissociated. 

First of all we need to show that the right-hand side of (1) defines a continu- 
ous process: 

Lemma 6.2. The series in (1) converges a.s. uniformly on bounded sets. 

Proof By Fubini's theorem, we may take the c~j, fit and 7t to be non-random. 
By Lemma 2.8 we may further assume that I = I R  2, so that the Bj and Cj are 
Brownian motions. By an obvious scaling argument, it is enough to prove a.s. 
uniform convergence within the unit square. 

For  this purpose, put Cj=B~(1) and t/t=Ct(1), j e N ,  and decompose the 
sum S in (1) into three parts T+ U +  V, corresponding to the decomposition 
of each term. Let us first assume that these sums are finite. By Doob's inequality, 
we obtain for U 

E sup I g(s, t)[2~< E I~'~flj ~j]2 = Z f l 2  
s,t< 1 j j 

and similarly for V. (Here x < y  means x=O(y),  as before.) In case of T, we 
may use Doob's and Schwarz' inequalities, as well as the scaling and symmetry 
properties of Brownian motion, to obtain for fixed s-_< 1 

IS ~ 4 E 2 EsuplT(s, t )14<s2E c~j~j~lj ~-S  2 2 0 ~ 2  ~2n2j 

t< 1 I z'~.J J 

j k 

4 ~ 2 2 
= s  2 E y ~ j  . - . s  s t . 

j - , j  , 
Thus 

Esup sup IT(k2-", t)-- T((k--1) 2-", t)l*~<2-" c~ t , 
k==_2 n t < l  
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so by Minkowski's inequality and a.s. continuity, 

sup  IT(s, t) l =< ~ sup sup I T(k 2-", t ) -  T ( ( k -  1) 2-", t)] 
s.t<l= 4 hEN k<=2 n t<=l 4 

< 2 - - n / 4  < 2 - ~j 2 ~ aj . 
\ j  ! h e n  \ j  

Summarizing these results, we get 

E sup IS (s, 012 ~< 2 (~f + fi~ + T~)- (2) 
s , t ~  1 j 

Returning to the case of infinite sums, let S, denote the n-th partial sum, 
and conclude from (2) that, for m ~ n, 

n 

EsuplSm(s, t)--Sn(S, t)[2~ Z (,2+fl2_1_~2). 
s,t<= 1 j = m +  1 

By a standard argument, there must then exist some continuous process S on 
[0, 1] 2, such that 

suplS,(s, t ) - S ( s ,  t)]~O a.s., (3) 
s,t<-- 1 

as n ~ o o  along some suitable subsequence. Hence (2) extends to infinite sums 
by Fatou's lemma, and we get in particular 

lim E sup [ S, (s, t ) -  S (s, t) 12 = 0. 
n~o~ s,t<_ l 

Since the terms of S are independent, we may finally invoke a result in It6 
and Nisio 1-13], to conclude that (3) remains true along the original 
sequence. []  

To prove the necessity of (1), we shall need two further lemmas, both exhibit- 
ing exchangeability preserving transformations. 

Lemma 6.3. Let the real valued process X on [0, 1] 2 be separately exchangeable. 
Then so is the 1R4-valued process 

r(s, t)=(X(s, t), sX(1, t), tX(s, 1), stX(1, ~)), s, teE0, 1]. 

Proof By the definition of exchangeability for continuous parameter processes, 
it is enough to prove the corresponding statement in the discrete case. Let 
us thus assume that X =(Xij, i, j~  {1 . . . . .  n}) is a separately exchangeable array 
of random variables, and write 

Yij=(Xij, X.j,  Xi. , X..), i , j~{1 . . . . .  n}, 

where the dots indicate summation over the corresponding indices. It is then 
required to show that (yp, q)=d (y/~) for arbitrary permutations (Pi) and (qj) of 
(1, ..., n). But this follows immediately from the fact that 
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Yp, qj = (Xp,qj, X.~j, Xp,., X..) 

=(XiJ, X.i, Jf*., X..), i, j e {1  . . . .  , n}, 

where X = ( X p ,  qj). [] 

Lemma 6.4. Fix I = ~ +  or [0, 1], and let X be a continuous and separately ex- 
changeable process on I x IR +. Then the process 

Y(s, t ) = ( 1 - t )  X s, , seI ,  te l0 ,  1), 

has a continuous and separately exchangeable extension to I • [0, 1]. 

Proof From Lemmas 2.5 and 2.7 it is seen that Y is separately exchangeable 
on I x [0, 1), and this property is clearly shared by a possible continuous exten- 
sion of Y to  I • [0, 1]. It is thus enough to show that such an extension exists. 
By scaling, we may then assume that I = [0, 1], in which case it is equivalent 
to show that Y is a.s. uniformly continuous. 

To see this, let W h and Wh', h>0 ,  denote the moduli of continuity of Y 
on [0, 1] x [0, 1) and [0, 1] x [0, 1], respectively, and let Wh", h>0 ,  be the corre- 
sponding modulus for the restriction of Y(s, t ) -  Y(s, �89 to [0, 1] x [�89 1). Then 

W<__ W' + W", and from the exchangeability of Y it is further seen that W" e W'. 
Since Y is a.s. uniformly continuous on [0, 1] x [0, �89 it follows that Wh~0 
a.s. as h--+0, which means that Y is a.s. uniformly continuous even on 
[0, U x [0, 1). [] 

Proof of  Theorem 6.1. Let X be given by (1). Then X is continuous by Lemma 6.2. 
To see that X is also separately exchangeable, we may clearly take the coefficients 
in (1) to be non-random, and by independence it is then enough to consider 
separately the individual terms of the form ps t ,  aAst or ~ B s C t + f l B s t + y s C  v 
For the first and last of these the result is obvious, and for the second one 
it follows easily by Lemmas 2.5 and 2.8. 

Suppose conversely that the process X on I=R2+,  R +  x [0, 1] or [0, 1] 2 
is continuous and separately exchangeable. In order to prove the representation 
in (1), it suffices by Lemmas 2.8 and 6.4 to take I = [ 0 ,  1] 2. In this case we 
may define 

X'sl =Xs l  - - S X l l  , X ' l t = X l t - - t X l l  , 
(4) 

X's't= X s t - - s X t t - - t X s :  + St X l l ,  s, tG[0, 1], 

and conclude from Lemma 6.3 that the ]R4-valued process 

(X's't, sX'l,, tX's:, s t X l O ,  s, tG[O, 1], 

is separately exchangeable as well. Equivalently, the process (X's't, X':t) is condi- 
tionally exchangeable in t, given (X'~I, Xll) ,  while (X'~'t, X's,) is conditionally 
exchangeable in s, given (X'I, X :  1). Note  also that X'~' 1 =X'~t= X'I: = O. 
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Let us next define the processes 

~. , 1  , L = ( l + t ) x '  1, , 

( s t )  (5) 
" s, t ~ + ,  Y~,=(l+s)(l+t)x" -l+s' l+t ' 

and conclude from Corollary 2.9 that the pair (Y~'i, Y.'t) is conditionally rotatable 
in t, given (Y~'., Xll),  while (Y'[, Y~'.) is conditionally rotatable in s, given (Y.'t, Xll).  
In terms of the increments of the process 

(Ys'[,sY.'t, tYs'.,stXxl), s, te~.+, (6) 

this is precisely the hypothesis of Lemma 4.3, so on every fixed square lattice, 
we get a representation of the form 

X l l  =p,  Yst=oAtst-[ - ~ o~jB)(s) C)(t), 
j = l  

(7) 

j = l  j = l  

for some X-measurable random variables p, o- and ej, flj, 7j as in (1), some 
independent Brownian sheet A', and some independent set of i.i.d. Brownian 
motions B) and C), j e N .  

Halving the grid size yields a similar representation (7), and by the uniqueness 
part of Lemma 4.3, we may take the coefficients to be the same. Continuing 
recursively, it follows that the finite-dimensional distributions of (6) for dyadic 
s and t are the same as for the processes in (7). This result extends by continuity 
to arbitrary s, tEN+.  By Lemma 2.1, we may then assume that (7) holds a.s. 
for all s and t. 

From (7) it is seen that the process 

Yst=Ys't+sY.'t+tYs'.+StXl~, s, tMR+, 

can be represented by the right-hand side of (1), but with A, (B j) and (C j) replaced 
by A', (B)) and (C)). Moreover, we get from (4) and (5) 

r( t s,  Eo, 1). (1--s)(1--t)  1 Z s  ' 1 - t  

Hence (1) holds with 

Ast=(l_s)(l_t)A,( s t )  
- 1 - s '  1 t '  

Bj(s) = (1-- s) B) s , Cj(t) = (1-- t) j \ l _ t ] ,  j~N, s, te l0 ,  1), 

which have the desired distributions by Lemma 2.8. 
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It remains to show that the coefficients in (1) can be taken to be non-random, 
whenever X is dissociated. One way of seeing this is to extend a fixed increment 
array for X to the index set ;g2, and notice that the subarrays indexed by 
N 2 and (-]N) 2 are independent. As seen above, both determine measurably 
the coefficients in (1), to the extent described by Lemma 4.3. Indeed, under 
the stated conventions, the coefficients p, ~ and the ~j, as well as the rotational 
invariants in (4.13) are all uniquely determined. Thus all these parameters are 
independent of themselves and hence a.s. non-random. In this case, there is 
clearly even a non2random choice of the/~j and 7j. [] 

To every process X as in (1), we shall associate the directing random elements 
p and #=(#1, ..., #4), where the #k are a.s. bounded random measures on ~ + ,  
given under the normalizing condition e j>0 ,  j s N ,  by 

j = l  j = l  

2 6 2 + 
#3 ~ Z YJ ctj, f14 ~- ~j 

j = l  j = l  

As before, .w , denotes weak convergence in the space JClOR+) of bounded 
wd 

measures on N+,  while -----~ denotes convergence in distribution with respect 
to the associated weak topology. The same notation will be used for convergence 
in the product spaces (Jg(N+))* or lRx (~r when endowed with the 
corresponding product topologies. 

On the other hand, the processes X in (1) will be considered as random 
elements in the space C(I) of continuous functions on I = N  2, N+ x [0, 11 or 
[0, 112 , and here the associated topology is taken to be that of uniform conver- 
gence on bounded sets. Convergence in distribution with respect to this topology 

d 
will be denoted by -----~, and we shall write !~--, for convergence of the finite- 

d 
dimensional distributions. Note in particular that Xn ~ X for random elements 
in C(N2+) or C(N+ x [-0, 11), iff convergence holds for the restrictions to an 
arbitrary rectangle [0, a] x [0, b]. Thus the theory reduces in both cases to that 
of C([0, 112), for which most results in Chapter 2 of Billingsley [3] remain valid 
with obvious changes. In particular, a sequence (X,) of random elements in 
C([0, 1] 2) is tight, iff (X,(0)) is tight and moreover 

lim sup P {w(X,, h)>e} =0, e>0, (8) 
h~0 n 

where w(f, ' )  denotes the modulus of continuity of the function f. 
The following theorem justifies the above terminology for p and ~, and 

solves the uniqueness and continuity problems for the representation in (1). 

Theorem 6.5. The directing random elements p and I~ of a continuous and separately 
exchangeable process X on IR 2, lR+x [0, 1] or [0, 112 are a.s. unique measurable 
functions of X ,  and the distributions of (p, p) and X determine each other uniquely. 
I f  X 1, X2 . . . .  are processes as above and directed by (Pn, #,), n~lN, then the 
statements 
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(i) X,  d some X, (ii) X ,  f n , ~someX, (iii) (p,, p.) wa ,some(p, #) are equiva- 
lent and imply that X is separately exchangeable and directed by (p, #). 

In order to apply the tightness criterion (8) to the processes in (1), we shall 
need a bound for the modulus of continuity in a special case. Recall that f < g  
means f =  O (g). 

Lemma 6.6. Let X be given by (1) with vanishing p, a and fl:, 7j, j e N ,  and 
let X' denote the restriction of X to [0, 1] 2. Then 

EIw(X ' ,h )]2<h~E~a 2, he[O, 1]. (9) 
j = 1  

Proof. By Fubini's theorem, it is enough to consider the case of non-random 
ej. Let us first assume that X is defined on N~ 2. Proceeding as in the proof 
of Lemma 6.2, we get with s, s', t restricted to [0, 1] 

s u p  sup IX(s, t ) -X(s ' ,  t)l 
[s--s']~<2= - m  t 4 

< ,~>m k-<2-sup supt [X(k2-", t ) - -X((k-1)2-" ,  t)[ 
4 

2 - n / 4 ~  -m /4 .  2 
~-~ O~j 2 : - . 2  O~j . 

\ j  / n>=m \ j  / 

The symmetric argument yields the same estimate with s and t interchanged, 
and (9) follows by combination. 

If X is instead defined on P,+ • [0, 1], the transformations in Lemma 2.7 
yield the above estimates for the restrictions of X to [0, 1] • [0, 1] and 
[-0, 1] • [�89 1], from which (9) is obtained by combination. Similarly, (9) follows 
for processes on [0, 1] 2 from the estimates obtained via Lemma 2.8 for the 
restrictions to the squares I • J with I, J = [0, �89 or [�89 1]. [] 

W e  shall also need the following simple result about convergence of measures. 
Recall that a sequence of Radon measures #, on some topological space con- 

verges vaguely to # (written g,  "-~#), if # ~ f ~ # f  for every continuous function 
f with compact support. 

Lemma 6.7. Let (#n) be a weakly tight sequence of bounded measures on ~+,  
and assume that #n--~--~# on (0, ~). Then #nf--+#f for every bounded continuous 
function f :  IR+ ~ , .  with f(O) = O. 

Proof. The tightness implies that (#,) is weakly relatively compact, so it is enough 
W ! #! 

to consider weakly convergent subsequences. But if # , - - - -~#,  then = #  on 
(0, ~),  and therefore # j ~ p ' f = # f .  [] 

Proof of Theorem 6.5. To prove the first assertion, it suffices by Lemmas 2.3 
and 2.4 to consider the case of non-random coefficients. The uniqueness of 
p and # then follows as in the proof of Theorem 6.1 from the uniqueness part 
of Lemma 4.3. Conversely, # determines the coefficients in (1) to the extent 
described by that lemma. Thus it remains to show that rotations of the type 
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mentioned there do not affect the distribution of X. Let us then assume that 

x, ,  = ~ (~ Bj(s) Cj(t) +/~j Bj(s) t + 7j s Cj(t)), 
j = l  

(10) 

and that, in matrix notation, fl'= Ufl and 7'= U? for some rotation (orthogonal 
matrix) U. Then 

Xst=o~Br Ct+tflr Bs+s?T C t 
= aBf U r UCt 3t- tfl 'r UBs +s? 'r UCt 
=~B' r C't + t fl'r B' + sy'r C't, 

with B's= UBs and C't= UCt. Since clearly (B', C')~ (B, C), this shows that X 
has a second representation as in (10) with (fl', 73 in place of (fl, ~). Thus both 
pairs yield the same distribution, as asserted. 

Let us next consider sequences of processes X. directed by (p,, #,), and 
show that (iii) implies (i). By the continuity of the mappings in Lemma 2.8, 
it is then enough to consider processes on [0, 1] 2, and by Lemma 1.1 in [14] 
we may further take the p. and #, to be non-random. If (p, , /~,)--~some(p, #), 
then the sequences of parameters p, tr, ~ ~2, 2 f12 and ~ ?~ for these processes 
are clearly bounded, so it is seen from (1) and Lemma 6.6 that (X,) is tight. 

d 
If X, ~X' along some subsequence, then X' will also be separately exchange- 
able, say with directing pair (p', #'). Here p' and #' must also be non-random. 
In fact, this would be obvious for processes on F-. 2, since X' would then be 
dissociated like all the X,. For processes on [0, 1] 2 it then follows by the map- 
pings in Lemma 2.8. 

It remains to prove that (p', #')= (p,/z), since (i) will then hold by the unique- 
ness result above, with X as a process directed by (p, kt). To identify (p', #'), 
let us drop the subscripts of X,, p,, # . . . . .  for convenience, and write 

U=2X(�89 1)-X(1,  1), V=2X(1, �89 1), 

T :  4X(�89 1 1 :)--2X(-z, 1)--2X(1, �89 1). 

Using the transformations in Lemma 2.8, it is seen as in case of Lemma 4.3 
that 

Eexp(irp+itT+iuU +ivV) 
1 c o  U2 2+V272+ituvo~jfljTj ] 

=exp ir p---~ -1 +~T~f ] 
j = l  "= 

[ i f  l~ lI(u2#2q-l)2#3)(dx) 
=exp irp--~ x2 #l(dx)--2 1+t2x2 

i t u v  r (x 2#2+x 2#3-#4)(dx)]  
+ ~  J ~ - ~ + ~ 5 ~  i ]" (11) 
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Here the exponent on the left is continuous in X, while the one on the right 
is continuous in (p, #) by Lemma 6.7. The same relation must then hold in 
the limit as n-->oo, i.e. for the process X' and the pair (p, p). Since this relation 
is also true with (p', y') in place of (p, y), it follows as in case of Lemma 4.3 
that indeed (p', # ' )= (p, #). 

Since (i) trivially implies (ii), it remains to show that (ii) implies (iii). By 
Lemma 2.8, we may then restrict our attention to processes on ]R~. Assuming 
(ii), it is enough, as in case of Theorem 4.2, to show that the sequence of pairs 
(p,, y,) is weakly tight. To see this, drop the subscript n as before, and write 
X~ 1 = P + T+ U + V, where U and V denote the sums in (1) with coefficient arrays 
(fij) and (T j) respectively. Proceeding as in (11), we get 

SO 

[ I f  ]og(l+t2x 2) t2f (/A2 -F #3) (d x) Eexp(itXaO=Eex p itp--~ x2 #l(dx)-~ 1 _t_ t2 x2 

i t  3 [" (x 2 p2+x2 
j '  

[ I f  l~ )] ]Eexp(itXlOl<Eexp --~ x2 #l(dx , 

and it follows as in case of Theorem 4.2 that the sequence of random measures 
#1 is weakly tight. 

This implies in particular tightness of the variables T above, so even the 
sequence of variables p + U + V must be tight. Now 

t2 ~3) R] E exp[i t(p + U + V)]=E exp [i t p--~ (lZz + 

so for any c > 0 we get 

I E exp [ i t  (p + g + V)] ] < E exp - ~- (#2 + #3) 

=< P {(#2 + P3) ]R =< c} + e-t2c/2 p {(/~2 + #3) N~ > c} 

= I - (I  - e - ' 2 c / 2 )  p + l R  > c } ,  

which shows as before that the sequence of random variables (Y2 +P3) 1R is 
tight. Thus the random measures #2+#3 form a vaguely tight sequence, and 
since clearly it4(dx)~2xZ(#2+l~3)(dx), the same thing must be true for the 
measures Y4. Since #2, P3 and #4 are all zero outside the support of #1, the 
above conclusions extend immediately to weak tightness. This proves the desired 
tightness of the sequence (#,). 

From this it follows in particular that the sequence of random variables 
T+ U + V is tight, so the same thing must be true for p. Thus even (p,) is tight, 
as well as the sequence of pairs (p,, #,). [] 
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7. Jointly exchangeable processes 

Here we shall characterize the class of jointly exchangeable and continuous 
processes X on IRZ+, and we shall further solve the corresponding uniqueness 
and continuity problems, in the special case of symmetric processes X, for which 
the representation reduces to (1.7). 

Theorem 7.1. A process X on IR 2 is continuous and jointly exchangeable, iff a.s. 

Xs, = p s t + a A~t + a' At~ + 8(s /x t) + ~ E au(B,(s) B~(t)-  (~ij(s /x t)) 
i j 

+~(f l j tUj(s)+fl)sBj( t )+TjSj(s /xt))  , s, t eN+,  (1) 
J 

for some random variables p, a, a', ~ and aij, flj, fi'j, Tj, i, j e N ,  with a i j+a j i=O 
~'~,'n2 ~_nt2 ]_ 2 , ,~  for i +j, and such that E~o~2<oQ and 2_,tP~ Pj 7j) 0% some independent 

Brownian sheet A, and some independent sequence (Bj) of i.i.d. Brownian motions. 
The random variables p, ~q, (a+a ' )  2, E E a  2, Eft] ,  Ef t )  2, E y  2, EflJfi), ZfiJ~J 
and ~ fi)7j are a.s. unique, as are the ~jj apart from order. Moreover, the coeffi- 
cients in (1) can be chosen to be X-measurable, and they may further be taken 
to be non-random iff X is dissociated. 

First we need to examine the convergence of the series in (1). 

Lemma 7.2. The series in (1) converge in probability with respect to the uniform 
metric on every compact set, and the limit is a.s. independent of the order of 
summation. I f  ~u = 0 for i ~-j, then the convergence is even a.s. 

Proof. It is clearly enough to consider the case of non-random coefficients. The 
last term in (1) can be treated as in case of Lemma 6.2, so we need only consider 
the double sum, S say. By a scaling argument, it is further enough to consider 
convergence within the unit square. We shall prove below that 

2 ~  E sup ss t -E E (2) 
s,t<=l i j 

provided the summation is finite. In the general case, we may then obtain the 
desired convergence and uniqueness of the limit by applying (2) to differences 
between partial sums. Note that (2) extends to the limit in this case. If eu = 0 
for i+j, then the terms will be independent, so we may use [13] as before 
to strengthen the conclusion to a.s. convergence. 

To prove (2), take s = t, and note that 

Sst ~- E ~u( B2 (s)-- s) + ~ E aiJ Bi(s)(Bj(t)-- Bj(s)) = T~ + Ust, 
i i j 

since c~ij+~yi=O for i# j .  Write cq=(~ja~) ~, and let ~i and t/j be i.i.d. N(O, 1) 
random variables. By Doob's inequality, we get 

E sup T~2 ~< E T12 =Ea~i E ( ~ - -  1 )2~E ~2,. 
s~<l i i 
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Using Doob's and Schwarz' inequalities plus the symmetry of N(0, 1), we further 
obtain for a fixed se[O, 1] 

4 

E sup 1[4~1~'1T4 ~.~$21::: ~i ~i~j 
re[s, 11 

 ,j,l 
i 

(? = s2 Z ~i E ~i Z c~F 2 E ~ii t/ 
i i 

J 

The proof may now be completed as in case of Lemma 6.2. [] 

Proof of Theorem 7.1. A process X as in (1) is a.s. continuous by Lemma 7.2. 
To see that X is also jointly exchangeable, it suffices by the same lemma to 
consider the case of finite sums. We may further take the coefficients in (1) 
to be non-random, and consider separately the three terms pst, aAst+cr'At~, 
O(sAt), and the remainder of X. For the first and third of these, the joint 
exchangeability is obvious, and for the second it follows from the joint rotatabil- 
ity of the corresponding terms in Theorem 5.1. Finally, the result for the remain- 
ing expression in (1) follows easily by the exchangeability of Brownian motion. 
This establishes the sufficiency of the representation (1). 

Suppose conversely that X is continuous and jointly exchangeable. Our first 
aim is to reduce the discussion to the case when X is dissociated. Let us then 
denote by X,  the array of increments of X with respect to the square grid 
of size 2-". Note that the sequence of arrays X,  is consistent, in the sense 
that an element in Xr, is the sum of the corresponding elements in X, whenever 
m<=n. By Kolmogorov's theorem, we may extend each X,  to the index set 
~2, in such a way that the consistency and the joint exchangeability are both 
preserved. Let A1, A2, ... be the restrictions to ( - ; g  +)2 of these extended arrays. 
From the discussion in Sect. 3 it is clear that X,  is conditionally jointly exchange- 
able and dissociated, given An. The same thing is then true for all Xm with 
m<n. Fixing m and letting n~oo ,  it follows by martingale theory that Xm 
is conditionally jointly exchangeable and dissociated, given all the A,. Since 
m was arbitrary, we get the same property for X. By Lemma 2.2, it is then 
enough to show, in the dissociated case, that X has a representation as in 
(1) with constant coefficients. We may thus assume from now on that X is 
dissociated. 

In that case, it is seen from Theorem 3.1 that any fixed increment array 
(Xu) as above has a representation 

Xij=f(~i, ~j, )~ij) a.s., i, j s N ,  (3) 

for some measurable function f, where the variables ~t, ~2 . . . .  and Zlj, i<j, 
are i.i.d. U(O, I), and moreover Zu--=O while Zij=-Zjl. On the other hand, the 
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increments of X within squares indexed by I = ( 2 N ) x  ( 2 N - 1 )  combine in an 
obvious way to form a continuous, separately exchangeable and dissociated 
process on N.2+, so by Theorem 6.1 we have on I another representation 

Xij=pova~ijq- ~ ((Zk~iktljk-OVflk~ik~-];kl~jk) a.s., (i,j)sI, 
k = l  

(4) 

where p, a and the (Zk, ilk, 7k are constants, while the ~ij, ~ik and q~k are i.i.d. 
N(0, 1). We need to show that we can choose 

(5) 

for some functions g, gk and gl. In that case, (4) determines the functional 
dependence in (3) for i#j ,  so (4) remains valid with the 2ij, {~k and t/j k given 
by (5), for all pairs (i, j) with i~j.  

To prove (5), we shall need some relations between (3) and (4). First note 
that 

p = E X o = E f  (~,, ~j, Zo) = f  ( ' , ' , ' ) ,  

where the dots on the right indicate integration with respect to the corresponding 
variables. Applying the law of large numbers to both (3) and (4), it is further 
seen that a.s. 

lim 1 ~Xi,2j_l~-p..4- ~fik~ik--~f(~i,',~ i e2N,  
n o r a  n j =  1 k =  1 

oo 

lim i X2,d=P + Z Ykrljk=f( ", ~J"), j e 2 N - 1 .  
n ~  H i = 1  k = l  

Combining these relations with (3) and (4), we get for (i, j ) e I  

a 2ij + ~ a k ~ik rljk = f  (~i, ~j, Zii)--f(~i,',') - - f ( ' ,  ~i,') +f( ' , ' , ' ) ,  
k = l  

flk ~ik=f (~i,'," ) - - f  (','," ), 
k = l  

~o 

~, Yk r/jk = f ( ' ,  ~ j , ' ) - - f ( ' , ' , ' ) .  
k = l  

The set of arrays on the left (together with p) is clearly separately rotatable 
in the sense of Lemma 4.3, so from the proof of that result it is seen that 

Z ,jk=  ' z0+ 
k = l  k = l  

k = l  k = l  k = l  k = l  
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for some constants o-', ~ ,  f ; ,  7~, and functions g, gk, gk, where the latter are 
such that the random variables on the left and right have the same distributional 
properties. This shows that (4) and (5) are simultaneously true, but possibly 
with some new set of coefficients p, o-, e~, f~, Yk and random variables 2~, 
{~k, t/j~, all with the same properties as before. As already pointed out, the 
result extends immediately to arbitrary (i, j) with i+j. 

Applying the same argument to the array (aX~j+bXj~) for arbitrary a and 
b, and proceeding as in the proof of Theorem 5.1, it may next be seen that 

o- 2ij = o-' 2'ij + o-" 2)~, i +j ,  

for some constants o-', o-" and some i.i.d. N(0, 1) random variables 2}j, i#j ,  
independent of ((fl. Moreover, the {jk and qjk are seen as before to be jointly 
Gaussian for fixed j, so we may again use the spectral theorem, to obtain a 
representation for i # j  of the form 

k = l  k = l  / = 1  k = l  

where the coefficients on the right satisfy e~z + c(~k= 0 for k + I, while the variables 
~)k are i.i.d, and N(0, 1). For  convenience, we may change the notation and 
assume from now on that 

Xij=P+o-+ 2ij+o-- 2 j i+~E~k ,  gig ~jt+~flk ~ik+~7, ~j,, i=#j, 
k l k l 

where the 2ij and ~ik are i.i.d. N(0, 1) random variables, while p, o-+, o-_ and 
the ekl, fig and ?~ are constants satisfying c% + e~k = 0 for k # l, and moreover 

k = l  / = 1  k = l  1=1 

Note that this agrees with (1) if we put o-+ =o-, a_ =o-' and 7j= f). 
Halving the grid size, we get a similar representation for the corresponding 

increments X}j, say with coefficients p', o-+, o-2, ~ t ,  f~, 7~. Hence the original 
increments Xij have another representation of the form 

Xij = 4 p' + 2 s )~}j + 2 o-; 2)i + 2 ~ ~ e'kl r ~)l + 23/2 E(flk ilk -]- 7k ~Jk), 
k l k 

where the random variables on the right are again i.i.d. N(0, 1). Equating the 
expectations yields p = 4 p', and by applying the law of large numbers as before, 
we further obtain a.s. 

k l k l 

+ = 2 Y,(B  + 71 
k k 
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Thus the X'ij have the same joint distribution for i+j as the variables 

k l k 

p 1 + ,lj  + 2 2 + 
k l k 

in full agreement with (1). Continuing recursively, and using the fact that both 
X and the process in (1) are continuous, it follows that the entire set of increments 
outside the diagonal is distributed as in (1). By Lemma 2.1, we may thus construct 
a Brownian sheet A and an independent sequence of i.i.d. Brownian motions 
Bj, such that the increments of the two processes in (1) agree a.s. outside the 
diagonal. 

To extend this result to the diagonal, we write 

Y (s, t) = p s t + aA,t + a'At~ + ~ ~ aij(Bi(s) Bj( t ) -  (s A t) 5ij) 
i j 

+~(fljtBj(s)+fl~sBj(t)), s, t>=O. (6) 
J 

Let us further write X~n)= (Xly)) for the increment array of X with respect to 
a grid of size 2 -", and put 

Y~(s, t ) = ~  l{i2-"=<s, j2-"<_t, i:~j} Y! ".) __,j, s, t>O, n~N. 
i ) 

For fixed dyadic s and t and for large enough n, we get with ~ N(0, 1) 

E(Y(s, t) - Y~(s, t)) 2 = (s/x t) {2- 2, p2 + 2-"(a  + a') 2 
t 2 + 2 - "  E(~ 2 -  1) 2 Z Z c ~  + 2 - 2 "  2(flJ+flJ) }~0,  

i j j 

s o  Yn(s ,  P t)-----~ Y(s, t) for dyadic s and t. Note in particular that Y is measurably 
determined by X and independent of the choice of representation. 

p 
Let us next define Z = X - Y  and Z , = X - Y , ,  and note that Z,----~Z at 

dyadic points. Since moreover 

Z.( i2-" , j2-")=Z,(( i^ j )2-" , ( iAj)2-") ,  i , j~N, 

we get the same relation for Z, so there must exist some continuous process 
U with Uo- O, and such that 

Z(s , t )=Z(sAt ,  sAt)-~U(sAt), s,t>_O. (7) 

From the joint exchangeability of X ("), it is further seen that (X, Y,){") is jointly 
exchangeable for re=n, and hence also for m<n. Letting n--+oe for fixed m, 
we may conclude that (X, y)(m) is jointly exchangeable. The same thing will 
then be true for 2 the IR -valued process (Y, Z) on p z+. 
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Writing U!")= U ( i 2 - " ) -  U ( ( i -  1) 2-"), we get from (7) 

Z!y) = --,lE"b~"~,j, i, j e N ,  

which shows that even the process (Y(s, t), s U (t)), s, t > 0, is jointly exchangeable. 
Proceeding as for X above, we may then obtain a representation as in (6) for 
each component, in terms of a common sequence of Brownian motions Bj. 
Using the law of large numbers as before, it is seen that the constants 0-, a' 
and all the cqj and fi~ must vanish in the formula for s U(t). Thus we get, jointly 
with (6), a representation of the form 

s U ( t ) = O s t +  ~T j sB j ( t ) ,  s,t>_O, 
j= l  

where 0 and the 7~ are constants with ~ 72 < oo. By (7) it follows that 

Z (s, t) =/~ (s/x t) + ~. 7j Bj(s/x t), s, t => 0, 
j= l  

(8) 

and adding this to (6) yields (1). 
In view of the results in Sect. 2, it remains only to prove the uniqueness 

assertions. Then recall that the diagonal process (8) is measurably determined 
by X, and that the processes ~ f l jB j ( s ) and  ~.fl)Bj(t) can be measurably recov- 
ered through the law of large numbers. All these processes form together a 
mixed Brownian motion in IR 3 with drift (0, 0, 0) and mixed quadratic variations 
2?2,  2fl2, ~fi)z, 2?:j/~j, 27j f i )  and ~fljfi),  so these quantities are a.s. unique. 
Subtracting the corresponding terms from (1), we end up with a jointly rotatable 
process, for which the a.s. uniqueness of the parameters p, (0-4-0-,)2 and ~ ,  c~/] 
as well as of the sequence (e j j) follows by Theorem 5.1. [] 

When X is symmetric, the representation (1) simplifies to (1.7), i.e. we have 
0-'= 0-, fl)~ flj and e~ ~-ej ~ij. In this case, we may introduce the directing random 
elements p, 0 and # = (#1, .-., #4), where the #j are a.s. bounded random measures 
on IR, given by 

#1 = 2 0-2-'l-Z 0~2 ~5~.,, # 2 = Z f i 2  a=~, 
J J 

#3 = Z 7 2  3=,, # .  =Z(fla-+ yj) z 3=,. (9) 
) ./ 

The uniqueness and continuity problems for the representation (1.7) have the 
following solutions in terms of the triple (p, 0, #). 

Theorem 7.3. The directing random elements p, 0 and I~ of a symmetric, continuous 
and jointly exchangeable process X on N,2+ are a.s. unique and X-measurable, 
and the distributions of  (p, ,9, #) and X determine each other uniquely. I f  X 1, 
X 2 . . . .  are processes as above directed by (p,, 0,, #,), n e N ,  then the statements 

d f d  wd 
#,)----+some (p, ~9, #) X,-- - -+ some X,  (iii) (p,, O,, (i) X,----+ some X,  (ii) 

are equivalent and imply that even X is such as above and directed by (p, O, #). 
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For the proof, we shall need a tightness criterion for the processes X in 
(1.7), regarded as random elements in C(ll2). 

Lemma 7.4. Let B1, B 2  . . . .  be independent Brownian motions, and put 

X,(s, t)= ~ o~,j(Bj(s) Bj(t)--s A t), 
j = t  

s, t e l l + ,  n s N ,  

where the e,j are non-random. Then (X,) is tight if 

sup ~ ~2j< oo. 
n j = l  

Proof. For s, t > 0 we write 

Y.(s, t)=X,(s, s+t) 

= ~ ~.j(B~ (s)- s) + y ~.~ 8j(s)(Bj(s + t ) -  ~j(s~) 
j = l  j = l  

= r. (s) + V. (s, t). 

Proceeding as in the proofs of Lemmas 7.2 and 6.6, we get 

0o 

E Iw(U., h)lE<h ~ ~ e2j, 
j = l  

which shows that (U.) is tight. 
As for (T,), we write Mj(t)=B2(t)-t, and note that dMj=2BjdBj by It6's 

formula. Since the martingales M i are further orthogonal, we obtain for T, 
the quadratic variation process 

Hence 
j = l  j = l  0 

ao 

Esup[-T,, T,]*t_h<=4h a2jEsupB2(s)<h ~ 2 O~n j ,  
t < l  j = l  s < l  j = l  

which shows that the sequence (IT,, T,]) is tight. Since T, = IV, o IT,, T,] for some 
Brownian motions W,, it follows that even (T,) is tight. 

The above results combine to show that (I1,) is tight. The tightness of (X,) 
then follows from the fact that X,=Y,o~0, where ~o denotes the continuous 
mapping 

~O(S,t)=(sAt, sv t - -sAt) ,  s,t>=O. [] 

Proof of Theorem 7.3. Let X be directed by (p, 0,/0, and note that p and 0 
are a.s. unique and X-measurable by Theorem 7.1. To prove the same thing 
for #, it suffices as before to consider processes (1.7) with constant coefficients. 



Representations in Bivariate Exchangeability 453 

By the proof of Theorem 7.1, we can construct the processes 

T (s, t) = a (As t + A ts) + ~ aj (B i (s) Bj (t) - s/x t), 
j = l  

v(t)= Z v(t)= Z vjBAt), s, t=>o, 
j = l  j = l  

(lO) 

as measurable functions of X. A simple computation further shows that, for 
J t[ sufficiently small, 

E exp(t T11 +iuU1 +ivVO 

= e x p / 2 t z ~  Z l o g ( 1 - 2 t a j ) + 2 t ~ j +  flJ 1-2t-~j )1 
\ 2j=1 

{ 2 f l ~  + 2 t x  =exp - x2 #l(dx) 

21f (u2#z +v2#3 +uv(#4-#2-#3))(dx)}i~ ~ x  ' (11) 

where the first integrand is defined by continuity to be - 2  t 2 at x = 0. Putting 
u = v = 0 yields the uniqueness of #1. Using a recursive argument as in the proof 
of Lemma 4.3, it may next shown that the sums 

Z#, Z JTJ 
j e J  j e J  j~J 

are unique for all index sets J of the form { jsN:  a j=x}.  From these we may 
easily construct the measures #2,/~3 and #4. 

Conversely, these four measures determine the parameters a z and e j, fli, 
7j, apart from order and from rotations of the sequence of pairs (fli, 7J) within 
groups of indices where the aj assume a common value. As in case of Theo- 
rem 6.5, it is clear that such rotations do not affect the distribution of X. Thus 
(p, 0, #) and P X -  1 determine each other uniquely. The uniqueness part of the 
theorem now follows by Lemmas 2.3 and 2.4. 

Let us next consider a sequence of processes X,  directed by (p,, O,, #,), neN.  
To prove that (iii) implies (i), we may assume as before that the p,, ~, and 
#, are non-random. From (iii) it then follows by Lemma 7.4 that the correspond- 
ing sequence of triples (T,, U,, V,), as defined by (10), is tight. Moreover, these 
triples are clearly jointly rotatable and dissociated in the obvious sense, so 
the same thing must be true for any limiting triple (T, U, V). The proof of Theo- 
rem 7.1 then shows that even the latter must be of the form (10), say with 
coefficients a' and ~), fi), 7), so (11) must hold for (T, U, V) with the associated 
measure #'. But (11) is also true with the limiting measure #, as may be seen 
by proceeding to the limit in formula (11) for (T~, U,, V,). As above, we may 
then conclude that # ' = # ,  so (T, U, V) is uniquely distributed, and we have in 
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fact convergence (T,, U,, d V,) -----. ( T, U, V). Thus (i) holds by continuity with X 
directed by (p, 0, #). 

To complete the proof, it remains to show, as in case of Theorem 6.5, that 
(ii) implies tightness of the sequence of directing triples (p,, 0,, #,). For  this 
purpose, consider first the increments of X over a square grid outside the diago- 
nal, and conclude as in case of Theorem 6.5 that the sequence of triples (p, ~tl, #2) 
is tight. Using the implication (iii) =~(i), we may next conclude that the sequence 
of processes 

pst+ ~ {a~(Bj(s)Bj(t)--sA t)+flj(sBj(t)+tBj(s))}, s, t>=O, 
j = l  

is tight, and by subtraction from X we get tightness of the variables Z~t in 
(8) for fixed s and t. Taking c > 0 and writing 

IEexp(itZlOl= Eexp(itO--�89 <Eexp(--�89 

-< 1 - ( 1  -e-~t=O P {~7~ > c}, 

it follows easily that the sequence of sums ~ 77 is tight. The same thing must 
then be true for the measures #3, since their supports are contained in those 
for #1. The formula # 4 < 2 ( # z + # 3 )  shows that even the measures/~,  are tight. 
From the result for ~7 2  it is further seen that the processes ~ 7jBj(s/x t) form 
a tight sequence, and subtracting these from (8), we get the same result for 
O(s ix t) at every fixed (s, t), and hence also for the variables O. []  
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