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Summary. In 1974, Mandelbrot introduced a process in [0, 1] 2 which he 
called "canonical curdling" and later used in this book(s) on fractals to 
generate self-similar random sets with Hausdorff dimension De(0, 2). In this 
paper we will study the connectivity or "percolation" properties of these 
sets, proving all of the claims he made in Sect. 23 of the "Fractal Geometry 
of Nature" and a new one that he did not anticipate: There is a probability 
pc~(0, 1) so that if p <Pc then the set is "dustlike" i.e., the largest connected 
component is a point, whereas if P>Pc (notice the =) opposing sides are 
connected with positive probability and furthermore if we tile the plane 
with independent copies of the system then there is with probability one 
a unique unbounded connected component which intersects a positive frac- 
tion of the tiles. More succinctly put the system has a first order phase 
transition. 

1. Introduction and Statement of Results 

In this somewhat lengthy first section we describe the model, state our results, 
and give the easy and/or interesting parts of the proofs. The developments 
here are divided into three parts. 

a. Definition and Hausdorff Dimension 

The first step is to describe the model. Let A0=[0 , 1] 2 and for l< i ,  j < N  
let 

B . . = [ i -  1 •  i ]  
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Let eije{O, 1} be independent "coin flips" with P(e~j=l)=p. If e~j=l we say 
B~j is occupied and we let 

AI= ~ Bij 
i , j  

g i j ~  l 

i.e. we keep the squares with eij = 1. To define A 2 we repeat the last construction 
(appropriately scaled) in each surviving Bij or more generally, if we have con- 
structed A,_ ~ then we let 

Bi~=I N, , x ~ , , l <=i, j<=N" 

let e~ie {0, 1} be independent with P(eTj= 1)=p, and let 

i , j  
~ . =  1 t j  

Ao, A1, A 2 . . . .  is a decreasing sequence of compact sets so the limit Ao~ 
= ~ A, exists (possibly qS). Mandelbrot  calls A~ the curds and calls the comple- 

n 

merit tO, I]2-A~o the whey. Independent of what you call these things, the first 
question to be resolved is: "When is A~ + qS?". Using some simple facts about  
branching processes it is easy to show. 

(1) A~ + q5 with positive probability if and only if p > 1/N 2. 

Proof. Let Z,, be the number of squares of the form Bi~ which are contained 
in A,. Z ,  is a branching process in which each particle has on the average 
N2p offspring so if Np2<__l we have P ( Z , > 0 ) ~ 0  as n ~ o e  and if Np2>l 
we have P(Z,  > 0 ) ~  p as n--* ~ where p is positive solution of 

((1 - p) + p(1 - x))N2 = (1 - x ) ,  

(see, e.g., Athreya and Ney (1972), Chap. 1). 
From the results above we see that ifNpZ< 1 then A , =  4) when n is sufficient- 

ly large so A~=~b. On the other hand if Np2>l  then P(A,4=~b for all n )>0  
and since the A, are a decreasing sequence of nonempty compact sets we have 
A~o 4= ~b on f2 o -- { A , .  ~b for all n}. 

Historically the first aspect of A~ which was considered was its "similarity 
dimension" (see "Fracta l  Geometry  of Nature" ,  hereafter abbreviated FGN,  
p. 211). To calculate this we observe that (i) if we multiply the unit square 
by N then on the average we have Np 2 copies of our set and (ii) if we multiply 
the unit cube in d-dimensions by N then we have N e copies of it, so the "similarity 
dimension" of our set is 

l~ P) - 2 -t log p 
log N N 

(the point of (ii) is that if we apply the last recipe to the unit cube it gives d). 
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The last formula is a well-known recipe for computing the Hausdorff dimen- 
sion of things (e.g., the standard Cantor set has dimension log 2/log 3 because 
multiplying it by 3 produces 2 copies) so it is natural to try to show that 
the Hausdorf dimension is 2 + (log p)/log N. Half of this is very easy. Well-known 
results from branching processes (or martingale theory) imply that if Z ,  = the 
number of B~j contained in A, then 

W, = Z, / (N z p)n___, W a.s. 

where Wis a random variable with EW= 1 and 

{ W > 0 } = { Z , > 0  for all n}={A~4:r  

(again this can be found in Chap. 1 of Athreya and Ney (1972)). 
Since A, can be covered by Z ,  = I/V,. (N 2 p)" cubes with sides of length N - "  

we see that if e = 2 - ( l o g  p)/(log N) then the e-dimensional Hausdorff measure 
of Aoo< W <  oo so the Hausdorff dimension of A~__<c~. To get a bound in the 
other direction requires more work, but fortunately for us most of the work 
has already been done by Kahane and Peyri6re (1976) in a paper titled "Sur 
certains martingales de Benoit Mandelbrot".  Since the proof of dim(Ao~)=e 
is peripheral to our main concern - the connectivity properties of A~ - it 
is carried out in the appendix. For a more general result along these lines 
(developed independently of ours) see Mauldin and Williams (1986) 

b. Basic Connectivity Properties, Existence of Phase Transition 

With the random set defined and its Hausdorff dimension computed we turn 
our attention now to our main subject: the connectivity properties of A~. The 
first two result are essentially due to Mandelbrot (see FGN, pp. 215-216) but 
we use branching process arguments instead of his rule that "the co-dimensions 
add"  (FGN, p. 213). 

(1) If p < 1/N and x is not of the form m/N" for some integers m and n then 
P(A  x [0, 1 J ) = r  1. 

Proof The number of intervals of the form {x} x [ ( j -1) /N" , j /N"]  contained 
in A, is a branching process in which the mean number of offspring is Np. 

The last result implies that if p <= 1/N then the largest connected component 
is a point. By changing the value of x that we consider this result can be 
sharpened somewhat: 

(2) If p__< 1/]//N then the largest connected component is a point. 

Proof We say a segment [j~_l,  j l x {l/N} is vacant if either of the two adjacent 

squares in the n th subdivision is. The reason for this terminology can be seen 
in Fig. 1.1 which shows what might happen in the first two subdivisions when 
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Y/% 

Fig. 1.1 

N = 2. After the first subdivision [1/2, 1] x { 1/2} was vacant and after the second 
the whole interval is. At this point the wiggly line is not a path in the whey 
but eventually the squares which touch [�88 �89 and a 1 [-z, : ]  will become vacant 
and it will be. 

With the last picture in mind we let I1, be the number of occupied segments 
of the form [-(j- 1)/N", j/N"] x { 1/N}. Y, is a branching process in which each 

interval has p2 N offspring so ifp 2 N =< 1, i.e., p __< 1/VN then the branching process 
dies out with probability 1 and as above, if we wait a while longer there will 
be a path in the whey arbitrarily close to [0, 1] x {I/N}. Repeating the last 
argument at heights j/N" shows that with probability 1 there are curves in 
the whey arbitrarily close to all the lines [0, 1] x {j/N"} and (reflecting the argu- 
ment) also close to {j/N"} x [0, 1] so the largest connected component is a 
point. 

Note. When N = 2 we have that A~ + q5 for p > 1/4 and (2) applies when p < 1/V~. 
A simulation of the first 8 subdivisions for that value is given in Fig. 1.2. 

Having seen that A~ can be badly disconnected the logical next step is 
to ask if it can ever be connected. If we let I A,] denote the Lebesgue measure 
of A, then E[A,I=p"~O exponentially fast so at first this looks unlikely and 
in fact all three authors have thought at one time or another that the conclusion 
in (2) might hold for all p <  1. This is not the case, however, and a simple 
argument shows that if p is large enough then with positive probability there 
is a connected component which intersects all four sides of the square. After 
discovering our proof we noticed that the key idea appears in Mandelbrot's 
heuristic argument (see FGN, p. 217) so we will reverse the historical order 
of things and give his argument here and use it to motivate our rigorous proof. 

"First  consider the case in which the number of surviving squares K is 
non random. In this case of N z - K  > [N/2] (where [x] = the  largest integer 
<x)  there is no way that any given face between two precurd cells can fail 
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P - . 7 0 7 1  

Fig. 1.2 

to survive. Even if the worst happens and all the nonsurviving eddies crowd 
along said face, these eddies are so insufficient in number that it is sure (not 
almost, but absolutely) that no path becomes disconnected." Mandelbrot goes 
on to conclude that "With the same condition applied to unconstrained curdling, 
failure to percolate is no longer an impossibility but an unlikely event". While 
the last statement is a reasonable conclusion, it is not by mathematical standards 
a proof (although the bound implies on Pc is probably correct - see Fig. 1.3 
for a simulation of the system with p = 8/9) so we supply one in Sect. 2 (and 
invite the reader to supply the missing detail before we reveal the answer there). 

To state our result and prepare for other developments below we need some 
definitions. Let Bn={x~A,: x can be connected to {0} x [0, 1] and to {1} x [0, 1] 

by paths in An} and let Bo~ = ~ Bn. If x~B~ let Cn(x) be the component of 

Bn containing x. C1 (x)~ C2 (x)=. . .  are compact and connected so F(x)= ~ Cn (x) 
is connected and has a nontrivial intersection with {0} x [0, 1] and {1} x [0, 1] 
(since all the C,(x) do). Let f21={B| } (and recall f2o={Aoo.~b}). When 
f21 occurs we say there is a left-to-right crossing of [0, 1] 2. Let pc(N) 
= inf{p: P(f2x)> 0}. Our first result that we dare to call a theorem is 

Theorem 1. pc(N)< 1 for all N> 2. 

As usual in arguments of this type the bound on Pc is ridiculous: we show 
that pc(3)<0.9999 or what is a little less embarrassing: if N = 3  and p>0.9999 
then P(f21) > 0.999. 
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Fig. 1.3 

c. More Refined Properties 

Having seen that if p is ridiculously close to 1 then the probability of a left-to- 

right crossing is positive and that if p < 1/~/N then P(largest connected compo- 
nent of Aoo = a single point )=  1 it is natural to let 

Pd = sup {p: P(largest connected component  of Aoo 

= a point) = 1} 

Pc = inf{p: P (A~ has a left-to-right crossing)> 0} 

(where d is for dustlike and c is for critical) and ask if pc=pd. This and more 
is proved in the next result which uses the notation introduced before Theorem 1. 

Theorem 2. Let ~2] ={B,4=qS}. There is an ~0>0 so that if P(~2])_<e 0 then P(f21) 
= 0 and furthermore, the largest connected component is a point. 

The proof  of Theorem 2 is based on two conclusions which are analogues 
of results for "ord inary"  percolation. The proofs of these results are straightfor- 
ward generalizations of the "classical" ones but it will take a lot of verbage 
to convince the reader of this and we will need to prove a second pair of 
result later in this section, so details are deferred to Sect. 3. 

Let ~?].K be the event that there is a left-right crossing of [0, 1] x [0, K] 
when independent copies of A ,  are placed in each of the squares [-0, lJ x [ k -  1, k] 
l<_k<_K. 
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(a) if P(g2~,l)<e then P(O~,K)<fK(e ) where fK(e)--*0 as e ~ 0  and 
(b) ifP(f27,2)<0.01 then 

plc~,+k~ 1) t~~ ~=<~exp( - N k -  

Remark. The reader should observe that the last probability goes to 0 exponen- 
tially fast in the length of the cubes, and superexponentially fast in k. 

With (a) and (b) in hand the rest is easy. If we pick eo so that fz (z) =< 0.01 
for all e__<% and have n such that P(f2~,l)<e o then (a) and (b) imply P(f2~,l) 
_-< P(O~,E) goes to 0 as n --* oo and feeding this estimate into (a) shows P(O~,K) ~ 0 
for all K <  oe. The last observation implies that with probability 1 we have 
a "crack" (i.e., a curve from bottom to top which lies completely in the whey) 
in [a, b] x [0, 11 for all a < b of the form a = j /N  m, b = k i n  m. Since this will also 
with probability 1 be true for all the reflected rectangles: [0, 1] x [a, b] it follows 
that the largest connected component is a point. 

From Theorem 2 it follows immediately that the percolation probability 
P(f21) is positive at Pc- To prove this, note that since p-~ Pp(f2~) is continuous 
(it is a polynomial) and SPp(01) as n--* o0, p--. Pp(f21) is upper semi-continuous. 
Since p ~ Pp(O~) is nondecreasing the last observation implies it must be right 
continuous on [0, 1] and hence > 0  at Pc i.e., there is positive probability of 
a left-to-right crossing when p = Pc- 

Looking at the last result one might think "I t  is easy to see the source 
of the discontinuity above. ~1 is really just a sponge crossing event so the 
discontinuity is caused by the phenomenon in (b): if sponge crossing probabilities 
get too small then they go to 0". To get around this objection and have a 
phase transition which like other percolation processes involves the appearance 
of an unbounded connected component, we place an independent copy of our 
random set A~ in each square z+[0 ,  1] 2 z e Z  2, call the result A~, and look 
for percolation in A~ in the usual sense: we let f2oo = {A~ has an unbounded 
connected component} and let Pb = inf{p: P (f2~o) > 0}. 

It is clear that pb>=Pc>=pa. (This should help explain the somewhat unusual 
notation. To help you remember what the b stands for think of unbounded 
and observe that p, is clearly unacceptable). Our last result shows that Pb = Pc. 

Theorem 3. I f  p >__ Pc then with probability 1, A~ has a unique unbounded connected 
component. 

Comparing this with Theorem 2 shows that the system undergoes a very 
violent transition as we pass through p = p~. When p < Pc the largest connected 
component is a point, but when p =Pc then there is a unique unbounded compo- 
nent. The reader should note that if we let s = {the unbounded component 
of A"  touches [0, 112} then P(f~o)>0 at Pc, so p ~Pp(f2oo) is (like p~Pp(f21)) 
is discontinuous at Pc. 

The key to the proof of Theorem 3 is the observation that if we rescale 
A~ by dividing by N and then flip new coins to see which squares of the 
form [( i -1) /N,  i/N] x [ ( j - -1) /N, j /N]  are occupied then the result has the same 
distribution as A~, so if we ignore the second step we have 

d 

A2/N = (A21 all 4 j  = 1) 
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or iterating the last result 

d 

A2/N = = (A" l all e~ = 1, m < n). 

The last observation makes it easy to believe (and prove) that if P(O1)>0 
then the probability of a left to right crossing of [0, N"] in Woo ~ 1 as A ~ oo. 
To prove this we observe that P(Y27)~P(Oa) as n ~ o o  so if e > 0  and n is 
large then 

P(~]  -- al)-<_sP(Q1) <-- 5P(a])  
o r  

and hence 

P(Ot IY2~)~ 1 - 5  

P(t2115~=l for all m<=n)>l-5. 

Having established that the crossing probabilities of large squares is close to 
1 the result now follows from two more facts we will prove in Sect. 3. To avoid 
the topological nightmares which would come from trying to deal with A"  
directly we will consider the situation after n subdivisions and prove results 
which are independent of n. 

Let A', be the set which results when we place independent copies of An 
in each square z + [-0, 1] 2, z ~ Z  2. Let O" be the event that there is a left-to-right J,K 
crossing of [0, J]  • [0, K] in A',. 

(a') If  P(O~,L)> 1 - 5  then P(O"kL, L)>= l--gk(5) where gk(5) is independent of 
n a n d  ~ 0  as e ~ 0  

(b') If P(~2~L,L) > 0.99 then 

P(~2~L, 2~- 1L) > 1 --~5 exp(-- 2 k- 1). 

The notation and the numbers in (b') should remind the reader of (a) and 
(b) stated earlier. We will see in Sect. 3 that they are closely related. With (a') 
and (b') in hand the conclusion follows from a standard construction (see Smythe 
and Wierman (1978), Chap. 3). Let L be chosen so that P(~2~L,L)>0.99 for all 
n when P--Pc, let B1 =[0,  2L] • [0, L]B2 = [0, 2L"] x [-0, 4L] and for j > 2  let 

B2j- 1 = [0, 2JL] x [0, 2 j -  1L"] 

B2j  = [0, 2JL] x [0, 2 j+ 1L"]. 

It A2~- 1 - there is a left to right crossing of Bzj-  t in A', 

A~j = there is a top to bottom crossing of B2j in A', 

The events are chosen so that if all the crossings occur then our construction 
guarantees there is an infinite path in A', starting at some point in {0} • [0, L]. 
The estimate in (b') shows that 

,,c = < l e x p ( _ 2 j -  1 ) P(A2j- 1) 

P(A"2~) < ~ exp ( -  2 j) 
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(where the additional c in the superscript is for complement). Summuming over 
j and using the fact that 2 ( j -  1) < 2 j -  1 for j > 1 and e > 2 we get 

y ,  p(AT?O)__< 2 . 2 ~ ( e - 2 ) j - 1 = z ~ ( l _ e - 2 ) - 1 < ,  2 4, t l .  

k = l  j = l  

( 14 From the last computation it follows immediately that P > 8/9 and 
k 

hence with probability => 8/9 there is an infinite path in A', starting at some 
point in {0} • [0, L]. Letting n ~ oo and taking intersections as we did before 
the statement of Theorem 1 it is easy to see that the same is true for n = ~ .  

The argument above shows the existence of an unbounded component  when 
P_->Pc. The fact that it is unique is proved in the same way as in the ordinary 
case and the reader is referred to Harris (1960) or p. 50 of Smythe and Wierman 
(1978). 

Having demonstrated that Mandelbrot 's  model has a discontinuous transi- 
tion while "ord inary"  percolation has a continuous one, it is appropriate to 
take a moment  to reflect on what caused the difference, and with this in mind 
we would like to observe: in "ord inary"  percolation occupied and vacant cross- 
ings play essentially interchangeable roles but in Mandelbrot 's  model there is 
a fundamental asymmetry - a vacant crossing which exists at a given iteration 
will persist thereafter while an occupied crossing may be lost at any subsequent 
time. 

2. Proof  of  Theorem 1 

We will prove the result only in the case N = 3. It will be clear from the first 
observation that the same proof  works for any N=> 3. The case N = 2  can be 
treated by comparing with N--4 .  The first observation (due to Mandelbrot  
and mentioned in the introduction) explains why we start with N =  3" in this 
case as long as 8 of the 9 squares are occupied, then any two adjacent squares 
must have adjacent occupied boundary squares. 

This observation motivates the following definitions. We say an outcome 
is good if A1 contains at least 8 squares B~j. We say an outcome is very good 
if A1 contains at least 8 squares Blj which are good, i.e., contain at least 8 
squares when they are subdivided. For  m > 2  we say an outcome is (very)" 
good if A1 contains at least 8 squares B]j in which Am ca B/lj is (very) m- 1 good. 

Let 0m be the probability that the outcome is (very)" good. From the recursive 
definition it is clear that 

9 9 Om=p (0m_ 1 +90~_  1 (1 -- Om_O)+9pS(1--p) 0,,_8 

for m > 1 and 

Oo=p9 + 9p8(1--p). 
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Here  0 o is wha t  we get if we let 0_ 1 = 1 in the previous  definition, so if we 
let 

(p (X) : p9 (9 x s - 8 X 9) -~ 9 pS (1 - p) x s 

then 0,, = g0 "+  1 (1) where  q~m+ 1 (x) = go (~o"(x)) . . . .  and  a little t hough t  gives: 

(1) As nT oo & ( 1 ) S p  = the largest  fixed poin t  of  ~o in [-0, 1]. 

Wi th  (1) in hand,  the p r o o f  of  T h e o r e m  1 will be comple te  once we show 
that  if p is close to 1, q) has  a fixed poin t  > 0. T o  simplify no ta t ion  let 

a = p  9 f l = 9 p S ( 1 - p )  

so tha t  q) m a y  be wri t ten as 

~o(x) = (9~q -  f l ) x s -  8 0~ x 9 

Let t ing x = 1 - e  and  observing  tha t  

(1 - e ) k =  1 -ke-~ 

we see tha t  when  (8 - 2) e/3 < 1 

and  when  (9 - 3) e/4 < 1 

k ( k - 1 )  e 2  - k(k-1)(k-2) , S 3 . . {  - . . .  

1.2 1 .2 .3  

( l - e )  s > l - 8 e  

(1 _~)9 =< 1 - -9g  + 36e 2, 

since the last two condi t ions  imply  tha t  the te rms we have d r o p p e d  a l ternate  
in sign and  decrease in magni tude .  

The  last obse rva t ion  implies tha t  for  e < 2/3 

~o(1 - e) > (9 ~ + fl)(1 - 8 ~ ) -  8 ~(1 - 9~ + 36e 2) 

----(C~ q-/~)-- 8 f lg - -288~g  2 

NOW ~, fi > 0 and  ~ + fi < 1 so if e < 1/8 we have  

go ( l - - e )>  c~-288e  2 . 

Sett ing ~=0.001 and  ~ =  1 - 0 . 5 e  gives 

r - ~ ) >  1 - 0 . 7 8 8  e 

so q~ has  a fixed poin t  in [-0.999, 1]. Recal l ing ~ = p 9  and (1-~5)9~ 1 - 9 6  when 
( 9 -  2)5/3 < 1 we see tha t  if p > 0.9999 then P (f21) > 0.999 as c la imed in the intro-  
duction.  

3. Proofs of the Sponge Crossing Results 

In  this section we will p rove  (a), (b), (a'), and  (b') f rom Sect. 1 and  therefore,  
comple te  the proofs  of  T h e o r e m  2 and  3. In  each case our  proofs  are ob ta ined  
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by modifying one step of the proof of the analogous statements for ordinary 
site percolation, so we will begin by recalling those proofs. 

To prepare for our later claims the reader should observe that the variables 
which indicate whether the squares [(j--1)/N', j /N"] x [ ( k - D / N ' ,  k/N'] are 
occupied or not are increasing functions of independent random variables and, 
hence, are positively correlated in the sense of Harris (see Kesten (1982), Sect. 4.1 
for a statement and proof of this result), so steps which only use his inequality 
will generalize immediately to our settings. When all is said and done, this 
leaves only two places (one in each result) where the argument has to be modified. 

Let DJ, K be the probability there is a left to right crossing of {1 . . . .  J} 
x {1 . . . .  K} by open sites when sites are independently open with prob p and 

closed with probability 1 -  p. Our first goal is to prove 

(A) if PL,/~ 1 - 5  then pkL, L > 1--hk(e) where hk(e) is independent of L and ~ 0  
a s  ~ ---~ 0 

(B) ifp2L, L>0.99 then 

PZkL, 2k-'L > 1 - - ~ e x p ( - -  2 k- 1). 

The hardest part of doing this is the first step: to prove (A) for some k > 1. 

(1) P3L/2, L ~ (1  - -  (1  - -  PL, L)1/2)  3" 

Proof. The first lemma explains the unusual formula in the answer. 

The square root trick. Let A 1 and A 2 be increasing events. If A = A  1 kAA 2 where 
P(A1)=P(A2) then 

P(A1) > 1 --(1 --P(A)) 1/2 

Proof From set theory and Harris' inequality we get 

(1 - P ( A 0 )  2 = P ( A ~ )  2 = P(A~) P(A~2) 
< P(A~ c~ A~2)= 1 - P(A) 

so P(A 1) > 1 - (1  - P(A)) 1/2. 

Remark. The reader should observe that this result only uses Harris' inequality, 
so the parts of the argument which use this trick also generalize immediately. 

The lemma above allows us to have paths begin or end in one half of the 
square without dividing the probability by 2. With this and a little geometric 
trickery we can get the paths we want. In this part of the proof we follow 
Russo (1982), pp. 230-231, very closely, mostly using his notation, so we will 
be a little vague about the definitions and refer the reader to our picture (Fig. 3.1) 
or Russo's paper to figure out the precise definitions. Let Es be the event that 
s is the lowest left-right crossing of [-0, L] x [0, L]. 

Let sr be the portion of this path from the time it last hits {L/2} x [0, L] 
until it reaches {L} x [0, L] (thick line in Fig. 3.1). 

Let st, = the reflection of s~ through {L} x [0, L] (dotted line in Fig. 3.1). 

Let d (sr u sr~)= the points in [L, 3L] x [O, LJ strictly above s~ u sr~. 
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~- 

Fig. 3.1 

/ 

Let N(s)= the points in [0, L] x [0, L] strictly below s (the shaded region 
in Fig. 3.1). 

Let F~ be the event that there is a path starting from [L/2, 3 L/2] x {L} and 
connected to sr in d(srus , ) -N(s )  (and notice that this definition allows you 
to use s which consists of open sites). 

Let G be the union of E S n F~ over all the paths s for which the first point 
of s~ has y coordinate <=L/2 (like the one drawn in Fig. 3.1). 

Le t / - /be  the event that there is a left-to-right crossing of [L/2, 3 L/2] x [0, L] 
which starts at a point with y-coordinate > L/2. 

We have not drawn a path of the last type in Fig. 3.1, but we invite you 
to do so now to convince yourself that on G n H there is a left-to-right crossing 
of [0, 3L/2] x [0, LJ so to prove (1) it suffices to show 

P(GnH)>(1 - (1  - pL, J / 2 )  3 

The first step in doing this is to observe that Harris' inequality implies 

P(G n H) >= P(G) P(H) 

and using the square root trick with A={there  is a crossing of [L/2, 3L/2J 
x [0, L]} and A1 = H  gives 

P(H) > (1 - (1  - -  pL, L) 1/2) 

To estimate P(G) we write 

P(G) = Z P(Es n F~) = ~ P(E,) P(FslE~) 
s s 

and observe that if F" is theevent ,  that there i s  a p a t h  from [L, ~ ]  x {L} 

to Sr in d (st u s ,)  then 

(,) P (F~ [ Es) ---- P (Fs) -->_ P (F~') 
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(here we use two things (i) E s is measurable with respect to the sites in ~(s) 
= N(s)w s, (ii) the presence of s which is open makes it easier to find the connec- 
tions we want. Notice that in (i) we use independence and this is the first time 
we have used something more than Harris '  inequality.) 

With (,) established, the rest is easy because two more applications of the 
square root  trick gives 

P (F/) >= (1 --(1 --pL, L) 1/2) 

~, P(E~)>= (1 --(1 -- pL, l.) '/2) 
s 

and putting the pieces together we have (1). 
With (1) in hand the rest of the proof  of (A) is easy. We only have to 

prove 

(2) 1--pk, L,L<3(1--p(k+I)L/Z,L) for k=>l. 

Proof To prove this we draw a picture (Fig. 3.2) and observe that if all 3 paths 
exist then there is a crossing. The inequality above results from using the fact 
that 

P A __< P(A~) 
i = l  / i = 1  

and pL, L>p(k+ 1)L/2,L for k >  1. 
Combining (1) and (2) gives 

p3L/Z,L > (1 --(1 -- pL,L) ~/2) 3 

1 --fl2L, L<--__ 3(1 --fl3L/a,L) 

1 -- p3L,L =< 3 (1 -- P2 L,L) 

etc., which gives bounds on Pkz, L in terms of PL,L and completes the proof  
of (A). 

The next two inequalities (due to Aizenman et al. (1983)) are the keys to 
the proof  of (B): 

(3 a) 1 -- p4L, L__--< 5 (1 -- p2L,L). 

(3 b) P4L,  2 L  ~ 1 - -  ( 1  - -  P4L,L) 2. 
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L 2L 3L 4L 

Fig. 3.3 

Proof. For  (3 a) we draw another picture (Fig. 3.3) and observe that (i) if all 
five paths exist then there is a crossing and then argue as in the proof  of (2). 

To prove (3b) we observe that the existence of a crossing in [1, 4L]  x [1, L] 
and [1 ,4L]x[L+I ,  2L] are independent events and a crossing of 
[1, 4L]  x [-0, 2L] occurs if at least one of them does. (Here we use independence 
for the second and final time.) 

With the last two inequalities in hand the rest is just arithmetic. Combining 
(3 a) and (3 b) gives 

(4) P4L, 2 L ~ 1 - -  25 (1 - P 2  L,L) 2 

and iteration does the rest: for if PEL,L = 1 --2/25 where 2 < 1 then 

(4) implies 
P4L, 2L--> 1 - 22/25 

PaL, 4L > 1 -- 24/25 

and by induction that 

p(2kL, 2 k- 1 L) > 1 - - ~ e x p ( 2  k- 1 log 2). 

If we let 2 = 1 / 4  and use the fact that l o g ( i / 4 ) < - 1  we get the inequality in 
(B). 

Having carefully disected the independent case we turn to the proofs of 
(a'), (b'), (a), and (b) taking them in that order. 

(a') If P(f2~L,L)>=l--e then P(f2~L,L)>=l--gk(e) where gk(e) is independent of n 
and ~ 0  as e ~ 0 .  

Proof. From our discussion of the independent case it suffices to show that 

(,) P(F~]E~) >= P(F~) 

(see the proof  of (1) above) is valid in our setting. In the independent case, 
if we condition on the location of s then the sites above s have the same distribu- 
tion as they did orginally (i.e., independent). In the present setting this is not 
true but something better happens. The presence of the path is "good news", 
i.e., the conditional distribution is larger than the original and the inequality 
we want is true. 

To make the argument in the last paragraph precise we need to introduce 
some notation to describe the conditional distribution. The reader is encouraged 
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2"/, Z / /  

to look at Fig. 3.4 while we do this. (In that drawing the shaded squares are 
occupied, blank squares are vacant (and left unsubdivided on the next level), 
and squares marked with u are unconditioned, i.e., we do not need to know 
their fate to know that the shaded set is the lowest crossing.) 

Let s be the lowest left-to-right crossing of [0, 1] 2 in An (s=a union of 
squares) when we consider squares to be adjacent if they share a side in common. 
Let -~r be region above s, defined in the obvious way. A square of the form 
[ ( i -  1)/N m, i/N m] x [ ( j -  1)/N m, j /N m] is said to be unconditioned if it lies in . J  (s), 
because in this case its coin flip e~ is independent of the event {s is the lowest 
left-to-right crossing}. 

In addition to unconditioned squares, there are, of course, also squares which 
intersect s. The latter squares must be occupied, for otherwise the part of s 
they touch would not be, so they are our friends. The last observation shows 
that (*) holds and completes the proof  of (a') so we proceed now to the proof  
of: 

(b') If P(~'-2~L,L ) 7> 0.99 then 

Qn P(  2kL, 2~-lL)-->l--2~sexp(--2 k-l)  

Proof From our discussion of the independent case it suffices to show that 
(3b) is valid in this setting, but this is trivial: the existence of a crossing in 
[-0, 4L]  x E0, L] and E0, 4L]  x [L, 2L] are independent events. 

Having dealt with (a') and (b') the next item on the agenda is to prove: 

(a) if P (f2], 1) < e then P (Y2],K) N fk (e) where f~ (e) ~ 0 as e ~ 0. 

Proof The first step is to turn this into a problem about percolation probabilities 
close to 1 by looking at the vacant sites on the dual graph G * =  (Z 2, S'), i.e., 
the points in the graph are Z 2 and the edges g ' =  {(z, z + u) where u~ + u~ < 2} 
i.e., in addition to nearest neighbor connections z ~ z + ( 1 ,  0) . . . .  z~z+(O, - 1 )  
connections to diagonal nearest neighbors z ~ z + (1, 1) . . . .  z ~ z + (1, - 1) are 
possible. 
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G* is the (graph-theoretic) dual of G = (Z 2, 8) where e = {(z, z + u): u~ + u2 z < 1 } 
is the usual set of edges connecting nearest neighbor sites and as is well known 
either there is always either an occupied left to right crossing of 
{1, ...J} x {1, ...K} or a vacant top to bottom crossing of the same rectangle 
but not both (see Sect. 2.6 and Chap. 3 of Kesten (1982) more details). From 
the last observation it follows that if we let g2s, K be the probability of a top-to- 
bottom crossing of [-0, J]  x [-0, K] by vacant squares when we count all squares 
which touch as adjacent, then it is sufficient to prove 

(~) If P(OT, 1) > 1 - ~  then P(f2~,K) --> 1 - f K  (5) where fK (~) ~ 0 as e ~ 0. 

The proof of the last result is very similar to the proof of (a'). From our 
discussion of the independent case it suffices to show that 

(,) P(Ps I/~) > P(P~) 

where the ~ indicates that we are referring to vacant crossings, but otherwise 
considering the same events as in the proofs of (1) and (a') above. 

To prove (,) this time we repeat the argument in the proof of (a'). The 
unconditioned squares are still unconditioned and the ones which touch s (now 
a vacant crossing) are affected by knowing the square they touch is vacant 
but this time we cannot conclude that the corresponding coin flip=O. It is 
a delicate matter to prove (and in general false) that conditioning on an increas- 
ing event causes the set of vacant sites to be larger than the original in the 
sense of stochastic monotonicity (i.e., the two sets can be constructed on the 
same space in such a way that one includes the other). Fortunately we do 
not need this here. We are interested in one decreasing event so it follows 
from Harris' inequality that 

P(PslEs)> P(F~) 

and the proof of (a) is complete. 
The last thing to be shown is 

(b) if P(f27,2) < 0.01 then 

p (~] +zk) < 1 exp ( --  N k - 1) 

Proof As in the proof of (a) it suffices to prove (6) if  P(~'2],2)>0.99 then 

P(~],  2) > 1 -~5  exp(-- N k- 1) 
Now 

P ( ~ , - ,  2N,-) - "+"  e~j = 1 when k = P ( ~ 1 , 2  Jall <m) 

so it suffices to show 
~n 

P(Qu", 2 Nm) ~ 1 

exponentially fast, but having changed our perspective so that the squares get 
larger, the adjacent rectangles used in the proof of (3b) are independent, and 
repeating the proof of (b') proves (6) and hence (b). 
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Appendix: Computation of the Hausdorff Dimension 

In this section we will complete the proof  that d i m ( A ~ ) = e  by showing 
dim(A~)__> e. As we mentioned earlier the key to doing this is found in a paper 
of Kahane and Peyri6re who studied the original process defined by Mandelbrot  
in (1974) (see pp. 342-343). In that model the squares B~"~ are assigned i.i.d. 
weights wi~ with P(wTj= 1/p)=p and P(wT~=0)= 1 - p  and we define a sequence 
of measures #. on [0, 1] e with #n=u.(x)dx where the u n satisfy Uo = 1 and if 
xeBTj 

bl n (X)  = U n --1 (X)  WiS. 

Kahane and Peyri6re studied the limiting behavior of u n and computed the 
Hausdorff  dimension of the support of the limit set. That  as the old expression 
goes, is the good news, the bad news is that they proved their result only for 
subdivision of the unit interval so we will have to describe their results and 
proofs to show that in our situation there is very little difference between cutting 
the unit interval into c = N 2 pieces or the unit square into N 2 squares. 

The first and most basic observation is that if we let I1,= [I#nN = t h e  total 
variation of #n then Y, is a nonnegative martingale so as n ~ oo, Y, converges 
almost surely to a limit Y~ which has EYo~ < EYo = 1. Repeating the last argument 
in each square B~ we see that for each i,j and m, #n(Bi"j) converges to a limit 
which we call #(B~) and this defines a (random) measure on [0, 1] 2. 

The first question which must be answered is: When is ft = 0 (i.e., Y~o = 0)? 
The answer found by Kahane and Peyri6re is 

(A 1) The following are equivalent: 

(a) EYoo= l 
(b) EYoo>O 
(c) E(w log w) <log(N2). 

In our case E ( w l o g w ) = l O o g l ) p  so the condition is N Z p > l  the necessary 

and sufficient condition for {A~o # qS} to have positive probability and a trivial 
necessary condition for Yoo ~ 0. 

The second theorem in their paper is 

(A 2) Let h > 1. One has 0 < E yh < oO if and only if E (w h) < (N2) h - ~. 

In our case E(wh)=(1/p)hp=(1/p) h-1 SO if p > N -2, i.e., 1/p<N 2 then EY h <co 
for all h < oo. This fact is also confirmed by their third theorem which we will 
not state. We mentioned the moments of Y~o only so that we could apply their 
fourth theorem. 

(A3) Suppose E(Yo~ log Y~o)< oo. For  each x~[-0, 1] 2 let I.(x) be the square Bi"j 
containing x. Then # almost surely we have 

lim log #(In(x)) _ 1 - E ( w  logc w) 
n~oo log IIn(x)l 

where c = N 2 and II.(x) l = the Lebesgue measure of In(x). 
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W e  have  s ta ted  the  las t  resul t  in [0, 1] 2 r a the r  than  in [0, 1] where  it was 
or ig ina l ly  proved ,  bu t  it  is c lear  f rom the s t a t emen t  tha t  it  is t rue for subdiv i s ions  
of  a genera l  measu re  space. The  d imens ion  on ly  changes  the  

Corol la ry .  Let D = 2 ( 1 - E ( w  logc w)). The measure # is almost surely supported 
by a Borel set of dimension D such that each Borel set of dimension <D has 
# measure O. 

I t  does  no t  change  the p r o o f  t h o u g h :  " P o u r  d e m o n t r e r  le co ro l l a i re  on  
uti l ise un  th6or6me de Bil l ingsley (1965), pp.  136-145".  

H a v i n g  found  the H a u s d o r f f  d imens ion  of  the s u p p o r t  of  # the last  th ing  
to check is tha t  it  agrees  wi th  the  u p p e r  bound .  In  ou r  case E(wlogcw)  
= lip(log c 1/p)p a n d  logo x = log x/ log(N 2) so 

D = 2 ( 1  ( - l o g p ) ]  l o g p  
2 1 ~ g N  ] = 2 + l o g s  

which  checks wi th  the  u p p e r  b o u n d  and  we have  ident i f ied  the  H a u s d o r f f  d imen-  
s ion of  A~ o as e = 2 + (log p)/ log N. 
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