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Summary. We study a nonclassical form of empirical df H,, which is of U- 
statistic structure and extend to H ,  the classical exponential probability 
inequalities and Glivenko-Cantelli convergence properties known for the 
usual empirical df An important  class of statistics is given by T(H,), where 
T(-) is a generalized form of L-functional. For  such statistics we prove almost 
sure convergence using an approach which separates the functional-analytic 
and stochastic components of the problem and handles the latter component  
by application of Glivenko-Cantelli type properties. Classical results for U- 
statistics and L-statistics are obtained as special cases without addition of 
unnecessary restrictions. Many important  new types of statistics of current 
interest are covered as well by our result. 

1. Introduction 

Let X~, ..., X,  be independent r.v.'s having common df F and let h be a measur- 
able function from 1R m to ~ .  Define the associated df H~(y)= Pv {h (X1, ..., X,,) 
<y},  y~P,  and empirical df 

H.(y)=n~,.r ~ l {h (X i . . . . . .  X~)<y}, yeN, 

where the sum is taken over all n(m)=n(n-1)...(n-m+ 1) m-tuples (il, ..., i,,) 
of distinct elements from {1 . . . . .  n}. For  each fixed y, H,(y) is a U-statistic 
with mean HF(y); in the case m = 1 and h(x)= x, H, reduces to the usual empirical 
dfV,. 

Statistics of the form T(H,) were investigated by Serfling (1984) for T( . )  
an L-functional and by Janssen et al. (1984) for T(.)  a more general type of 
L-functional. Certain Glivenko-Cantelli properties for H,  and asymptotic nor- 
mality results for T(H,) were established. 

* Research supported by the U.S. Department of Navy under Office of Naval Research Contract 
No. N00014-79-C-0801 and by NATO under Research Grant No. 0034/87 
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The present paper provides further Glivenko-Cantelli results for the general- 
ized empirical df  I-I, (Sect. 2) and strong convergence results for the "generalized 
L-statistics" discussed above (Sects. 3 and 4). Results for the multi-sample case 
are indicated also. 

Our key tool in establishing Glivenko-Cantelli results is an extension to 
H, of the exponential probability inequality of Dvoretzky et al. (1956) for the 
Kolmogorov distance between F, and F. Our strong convergence results general- 
ize those of Hoeffding (1961) for U-statistics and of van Zwet (1980) for L- 
statistics, without adding unnecessary restrictions. 

In our treatment of the strong convergence problem for generalized L-statis- 
tics, we separate the functional-analytic and stochastic components of the prob- 
lem. As a result, one can obtain results for statistics T(H,) by substituting Hn 
for G, into basic convergence theorems proved for the functional T(.) defined 
on deterministic sequences {G,}. This permits flexibility and easier generalization 
in the choice of (nonclassical) empirical df  to be used and illuminates the funda- 
mental issues involved in the convergence problem. 

It should be noted that results on the behavior of H,  typically apply also 
to the empirical df  Hr, given by putting F, for F in the definition of He. For 
each fixed y, HF~ (y) is a Yon Mises statistic. 

The closeness of H, and HF, may be evaluated through the relations 

(i) n" ( H .  --  H e . )  = (n m - -  n ( m ) )  ( H .  - -  ffI.), 

where /~,(y) is the average of terms l{h(Xi,, . . . ,Xi, .)<y} with at least one 
equality ia = ib, a#b,  and 

(ii) n " -  nr O(n m- 1). 

We shall leave results for He. implicit from those stated for H,. 

2. G l i v e n k o - C a n t e l l i  Resu l t s  

Here we establish results on the almost sure convergence to 0 of I]H,-Hglloo, 
where II f II 0o denotes sup If(x)l. Our first result is an analogue of the exponential 
probability inequality of Dvoretzky, Kiefer and Wolfowitz (1956) for N F , -  Ell oo. 
Their inequality, which serves as a lemma in our development, is the following. 

Lemma 2.1. There exists a finite constant Co, not depending on F, such that 

( 2 . 1 )  P{lIf,--flloo>d}<=Coexp{-2nd2}, d>0,  n > l .  

We shall utilize Lemma 2.1 to establish a related inequality for the moment- 
generating function of II F . -F I [  ~, which is evidently a novel result for the classi- 
cal empirical d f  

Lemma 2.2. There exists a finite constant C~, not depending on F, such that 

(2.2) E{expsllFn-Fllo~}<-(l+Clsn-1/2)exp{s2/8n}, s>0,  n > l .  
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Proof By a well-known identity and an application of Lemma 2.1, we have 

(2.3) E{exp s liE.-Eli oo} = ~ P {exp (s liE.-Ell oo)> t} dt 
0 

es 

-= 1 + ~ P{ ]]F,--F[L ~o >(log t)/s} dt 
1 

es 

< 1 + Co ~ exp { - 2 n ( l o g  t)2/s 2} dt, 
1 

where we have used the fact that 0 <  I]F,--FIt ~ < 1. The integral in (2.3) is easily 
evaluated as (here N(#, a 2) denotes a normal distribution with mean # and 
variance 0 .2 ) 

2)  1/2 s n-  1/2 p {0 < N (s2/4 n, s2/4 n) < s} exp {s2/8 n}, 

2 )  /2 so that (2.2) follows with C 1 = C o . [] 

We now extend Lemma 2.2 to the empirical d f  H,,. 

Lemma 2.3. For the constant C 1 in (2.2), we have 

(2.4) 
E{expsl lH,-HFlloo} <=(l + C l  s[n/m]-l/2) exp{sZ/8[n/m]}, s>0 ,  n>=m. 

(Here [ . ]  denotes greatest integer part.) 

Proof Utilizing a representation for U-statistics given by Hoeffding (1963) (or 
see Serfling (1980), p. 180), we have the representation 

(2.5) 
n! 

where each H(, ~ is a classical empirical d f  based on [n/m] terms h(Xi . . . . .  , X j ,  
h(X~ . . . .  ..., Xz2,, ), ... corresponding to a particular permutation (il, i2 . . . . .  in) 
of (1, ..., n). By convexity of the exponential function and Lemma 2.2, we obtain 
(2.4). [] 

Applying Lemma 2.3 in connection with the elementary relation 

(2.6) P{l]H,-Hv]l~o>d}<=e-SaE{eSLIn"-uvll~}, s>0 ,  

and with s-- 4 [n/m] d, we obtain 
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Theorem 2.1. There exists a finite c o n s t a n t  C1, not depending on F, or h, such 
that 

(2.7) 

P { l [ H , - H F l l ~ o > d } < ( l + 4 C l [ n / m ] l / Z d ) e x p { - 2 [ n / m ] d Z } ,  d>0 ,  n>m.  

It should be noted that Theorem 2.1, specialized to the case m =  1, is not 
as sharp as Lemma 2.1. This is due to the indirect method of proof using 
moment-generating functions and perhaps also due to a lack of sharpness in 
the bound obtained in Lemma 2.2. Nevertheless, for practical purposes in typical 
applications, Theorem 2.1 in its present form is sufficiently powerful. For exam- 
ple, it immediately yields, via the Borel-Cantelli lemma, the following rate for 
the almost sure convergence of [[H,-Hvl[ co to 0. 

Corollary 2.1. There exists a finite constant C,,, not depending on F or otherwise 
on h, such that with probability 1 

(2.8) limsup \log n] lIB,--Hell ~o < C,~. 

(For example, Cm>(m/2) in  suffices.) In the case m = l ,  it follows by the LIL 
for [[F,-FI[ ~ (due to Chung (1949); see also Serfling (1980), p. 62, for discussion) 
that the limsup in (2.8) remains finite with (log n) replaced by (loglog n). Such 
refinements of (2.8) involve tools more delicate than Lemma 2.1 and Theorem 
2.1 and will not be pursued here. 

Our next result treats the almost sure behavior of weighted discrepancies 
between H,  and He, extending the strengthened Glivenko-Cantelli theorem for 
F, given by Wellner (1977). 

Theorem 2.2. Let q be a nonnegative continuous function in [0, 1] which is nonde- 
creasing in [-0, 6] and nonincreasing in [ 1 - 6 ,  1], for some 6>0 ,  and satisfies 

1 

S [q(t)] -1 dr< oe. Then with probability 1 
0 

(2.9) [[(H,--Hv)/qOHFII~o ~ O  , n ~ o o .  

Proof We follow the technique of Wellner (1977). Let e > 0 be given and choose 
M 1 

M < 6  such that S [q(t)] -1 d t < e  and ~ [ -q( t ) ]  - 1  d t < e  and such that M and 
0 1 - M  

1 - - M  are continuity points of H i  1. Put Oo=H;~(M)  and O I= H ~I (1 - -M) .  
Now write 

H,(Y) /-/F (Y) [[(H,--HF)/q ~ Hr[[ ~o --< sup ~- sup 
y < 0o q o H ~ ( y )  ~ < 0o q o / - /~ (y)  

1 --H,(y)  . 1 --Hr(y)  + sup H,(y)- -H~(y)  +sup  - - + s u p  

=:A~ + A2 + A3 + A4+ As. 
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N o w  

A 3 <  ( sup [qogF(y)] -x) llg.-Hv[lco ~ O w p l  
Oo < y <=O~ 
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by T h e o r e m  2.1. And,  since y < 0o ~ HF(y)< M, we have  

t t M 

A 2 <  sup --< sup ~ [-q(u)] -1 du= ~ [q(u)] -1 du<e.  
= o < t < ~  q( t ) - -o<t<M o o 

Similarly, we have  As <e .  A n d  wp 1 

l {h (Xh, . . .  , X J < y }  A, __< ~-~r 2 sup 
y < 0o q o H~ (y) 

<~i-.J s l {h(X, . . . . . .  x,~)SOo} oo 
= qoHr(h (X~ ,  ..., X,m)) +-oo ~ [q~ dHe(Y)<e' 

using the S L L N  for  U-statist ics (Hoeffding (1961); or  see Serfling (1980)) and  
the fact tha t  

h(Xil, ..., X,m) < y < Oo ~ h(Xi . . . . .  , X,m) < H ;  1 (M) 

He(h(X h . . . .  , Xim)) < M < ~5. 

Similarly, A 4 has an a.s. l imit < a. 
Therefore ,  for every e > 0 ,  l imsup ]L(H,-H~)/qoH~II~o<5a. [] 

n--+ oo 

As an appl ica t ion  of T h e o r e m  2.2, we have  

Corol lary  2.2. Let p>  1. I f  ~ (HF(1--HF))P(I-~) < oO for some 0 < e <  1, then with 
probability 1 

(2.10) I IH, -HeHp~O,  n ~ o o .  

(Here  Ilgllp denotes  (5 Ig(x)l p dx) 1/'.) 

Proof We write 

]IHn- HFII, < H(Hn-HF)/q o HFIL oo " ][q o HFIle 

and app ly  T h e o r e m  2.2 with q (t) = (t (1 - t)) t - ~. [ ]  

I t  is easily checked tha t  the a s sumpt ion  of Coro l l a ry  2.2 is satisfied if 
E Ihl p- '  +~ < oo for some 6 > 0 (cf. L e m m a  2.2.1 of  He lmers  (1982)). 
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Let #, and #r denote the probability measures on the class B of Borel sets 
in ]R, associated with the df ' s  H,  and Hr. Following Gaenssler (1983), for 
any subclass C of B, we define the empirical C-discrepancy 

(2.11) D, (C, #V) '= sup [#, (C) -- #v (C)], 
C e C  

and we assume that this quantity is Borel-measurable. Let X<,) = (X,, 1, " " ,  Xn, n) 
denote the vector of order statistics of Xt  . . . . .  X, .  

Theorem 2.3. {D,(C, #V)},>=m is a reverse submartingale with respect to the 
sequence of a-fields A, = cr {X<,), X ,  + 1, X,  + 2, ... }, i.e., for m < k <_ n, with probabil- 
ity 1 

(2.12) E {D k (C, #F) I A,} > D, (C, #F). 

Proof Use the reverse martingale property (Serfling (1980), p. 180) of the U- 
statistic # , (C) -#e (C) ,  for each fixed CsC,  to get 

E{Dk(C, #v) lA.} >sup  IE{(#k(C)--gF(C))IA.}[ =D,(C,  #v)- []  
CeC 

In the case m = 1 this reduces to Lemma 5 of Gaenssler (1983)�9 
We now examine extensions to the multi-sample case�9 Consider c indepen- 

dent collections of independent observations {X~t), ..., =-,,Y<I)tJ, ..., {X(~), ..., X(~)} 
taken from d f ' s  F ~), ..., F (~, respectively�9 

Let a kernel h(x~ ~), �9 �9 Xm~<l)',... ," X~, ..., X<C)~,,~, mapping IR m~ +'''+m~ to N be 
given, put F = (F (~) . . . .  , F<~)), denote by HF the d f  of 
h(X~ ~), X (~)" �9 X((), X<~)~ and define the relevant empirical d f  by 

� 9  m I ~ � 9  � 9  ~ m e / ,  ]-1 
(2.13) He(y ) = (nj)<mj) ~ 1 {h(X!~, Y<~) �9 �9 ~!~) X ~.~ ~<~,~ 

yelR, where n =(n 1 . . . .  , no) and the sum is taken over all (n~)(mj)= nj (n j -1 ) . . .  (nj 
- m j + l )  mj-tuples (ijl . . . .  , i~m) of distinct elements from {1, ..., nj}, l<=j<_c. 
Finally, put k,--  min {[nl/ml] . . . .  , [nc/mc]}. 

It turns out that Theorem 2.1 has the following extension. 

Theorem 2.1". There exists a finite constant C~, not depending on F or h, such 
that 

(2.14) P{ l lHe- I4 f l lo~>d}<( l+4C*k~/2d)  e x p { - 2 ~ d 2 } ,  d >0 ,  n>m�9 

Proof Using an extension to generalized U-statistics by Serfling (1985a) of a 
representation given by Hoeffding (1963) for U-statistics, we have as an extension 
of (2.5) the representation 

(1%)! 

(2.15) = 1 %)! He), 
i = 1  

where each H~ ) is a classical empirical d f  based on k e i.i.d, terms having d f  Hs 
The remainder of the proof  is analogous to that of Theorem 2.1. []  
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However, getting an extension of Corollary 2.1 is somewhat more complicat- 
ed when c may be > 1. For this purpose, following Serfling (1985 a) we introduce 
the following constraint on the array {(hi . . . . .  he)}. 

Definition 2.1. An array {(ni, ..., n~)} e N  ~ satisfies Condition A if 

log max (hi . . . .  , n~) 
(2.16) +0 as min(n i, ..., n~)~ oo. 

rain (nl, -.., n~) 

(This is trivially satisfied in the case c = 1 and in general is not very restrictive.) 

The no ta t ion"min(n l ,  .., nc) CA) ,, �9 , oO shall denote restriction under Condition 

A. 

Corollary 2.1". There exists a f inite constant C~, not depending on F or otherwise 
on h, such that with probability 1 

(2.17) limsup k~/2(lognl ...n~) -1/2 LiHz-HzlI~o<C ~. 
(A) 

rain (n~ . . . . .  n ~ ) ~  oo 

(Here m = ( m l ,  . . . ,  mc). ) 
The proof is a straightforward application of the Borel-Cantelli lemma. 
For weighted discrepancies, the proof of Theorem 2.2 carries over to the 

present situation and yields. 

Theorem 2.2*. Under the assumptions of  Theorem 1, we have with probability 1 

(2.18) ][(Hz--H!)/q Hzil oo --> O, min (na, n~) (a) o . . . ~  )00. 

To extend Theorem 2.3, we must restrict attention to ordered elements from 
the partially ordered array {n~}. We define #,,~ #F~ and D,(C,~ gv)~ in similar fashion 
as before, and we define A, to be the a-algebra generated by A~ ), iN j_< c, where, 
with XIJ,) ) = (X,~! 1, -.-, X~! ,  ) the vector of order statistics of X] j), - X(J) y 1, j ,  j " ' ' ,  nj ,  

A(nJj) - -  k ' y ( J )  U) y ( J )  - - tx~ ' (nj ) ,  X n j +  1~ 2 X n j + 2 ~  "" "}"  

Then it is known (see Sen (1977), p. 288) that for fixed BeB, the generalized 
U-statistic array {~(B)--/If(B)} is a reverse martingale w.r.t, the a-field A,, 
i.e., with probability 1, E {/~ (B)-- ~ (B) [ A,} = h (B)-- #g(B), for n_> k > m. HenCe 
we have 

Theorem 2.3*. {D~(C, pf)} is a reverse submartingale w.r.t, the a-field A~, i.e., 
for m < k <- n, with probability 1 

(2.19) E {D~(C, ,uZ) I Ae} >= D~(C, ,ue). 

Remark 2.1. In this section we have presented certain Glivenko-Cantelli results 
having general interest and application. Some further a.s. results of a more 
specialized nature are developed in the subsequent sections of this paper; see 
Lemmas 3.2 and 3.3. 
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3. A Strong Law for Generalized L-Statistics 

Let HF and H,  be defined as previously in terms of a kernel h: Nm----~- and 
X~, ..., X,  i.i.d. F, and let W,, 1 < ... < W,,,(,,~ denote the ordered values of 
h(Xi,, ..., Xi,,) taken over the he,,) m-tuples (i~ . . . . .  i,,) of distinct elements from 
{1, ..., n}. A wide class of parameters of F can be represented usefully as T(Hv), 
where T(.) is a functional of the general form 

1 

(3.1) y(o)= ~go~(O)dK(t), Oedf, 
0 

where g: R ~ I R  is Borel-measurable, K is a signed measure on (0, 1), and for 
each t in the support of K, T~(.) is a classical L-functional: Tt(G) 

1 

= ~ G-I(s)dmt(s), where G- l ( s )=  inf {x:G(x)> s} and mt is a signed measure 
0 

on (0, 1). This functional was introduced by Janssen et al. (1984), who established 
asymptotic normality results for the corresponding statistics T(H,) for estimation 
of T(HF). 

Our purpose here is to establish strong convergence, and in fact we shall 
let K( ' )  in (3.1) depend on n, thus considering the functional 

1 

(3.2) T.(G) = S go Tt(G ) dK.(t). 
0 

We shall take the measures dK(t), dK,(t) and dMt(s) to be the differentials 
of 

d 

(3.3) K( t )=  i d(u)du+ ~ ajl{t<pj}, 
0 j = l  

d 

(3.4) K,(t) = i J,(u) du + ~ a~ 1 {t<=pj}, 
0 j = l  

0 < p j < l ,  j = l ,  ..., d, 

0 < p ~ < l ,  j = l  . . . .  ,d,  

and 

dt 

(3.5) Mt(s)= i Jt(u)du+ ~ atjl{s<ptj}, 
0 j = l  

0 < p t j <  1, j = l  . . . .  , dr, 

thus permitting both smooth and discrete weighting of quantiles G-1 (s) in Tt(G) 
and of functionals go Tt(G) in T(-). This covers essentially all cases of interest. 
Note that in the special case of (3.2) corresponding to Tt(G) = G- 1 (t), the statistic 
T,(H,) may be expressed in the form 

n(m) 

(3.6) F, c,~ g(N,  3. 
i = 1  
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Conversely, any statistic of form (3.6) may be represented as T~(H,) with T~(G) 
=G-~(t)  and some choice of dK,(t) (not necessarily unique) satisfying e,i 

i[n(m) 
= ~ dK,(t); e.g., take (3.4) with d = 0  and J,(t)=n(,,)c,i for (i-1)/n(m~<t 

( i-  1)/nCm ) 

<i/n(m), 0 < t < l .  The class of statistics given by (3.6) may be termed "linear 
combinations of functions of generalized order statistics." For the case g(x)= x 
it gives the "generalized L-statistics" (which includes both U-statistics and classi- 
cal L-statistics) introduced by Serfling (1984), who established asymptotic norma- 
lity results. For the special case re=l ,  h(x)=x, (3.6) gives the class of "linear 
combinations of functions of order statistics", for which van Zwet (1980) proved 
strong convergence results under very tight conditions, confining attention to 
the case that dK,(t)=J,(t)dt. The present treatment extends van Zwet's by 
allowing limits dK(t) to have a discrete component (considering K( ')  as a limit 
of K.(.)), and considering arbitrary kernels h and functionals T~(G) other than 
G-l(t), and retains van Zwet's general scope of allowing the transformation 
g(-) to be an arbitrary Borel-measurable function. We establish a very general 
and far-reaching deterministic result (Theorem 3. i), which we apply in Corollaries 
3.1 and 3.2 to two broad classes of statistics: Examples 3.1, treating the general 
class given by (3.6), and Examples 3.2, treating some spread estimators of Bickel 
and Lehmann (1979). 

To obtain (under appropriate assumptions) that wpl 

(3.7) T.(H.)-- T,(He) --+ O, n ~ o% 

and also that T,(HF)--+ T(HF), we build upon the very insightful treatment of 
van Zwet (1980), but also separate the roles played by functional analysis and 
Glivenko-Cantelli theory. First we show that (3.7) holds deterministically with 
H F replaced by an arbitrary d fG and {H,} replaced by an arbitrary sequence 
{G,} converging weakly to G and satisfying other technical restrictions. This 
is the "functional analysis" part. Then we show that {H~} satisfies wpl the 
conditions imposed on {G,,}. This is the "Glivenko-Cantelli" part. The idea 
of separating the functional-analytic and probabilistic components of the strong 
convergence problem for L-statistics was introduced by Wellner (1977), who 
obtained a general strong law for L-statistics as a corollary of extended Gliven- 
ko-Cantelli theorems which he developed for the empirical df  F,, such as we 
have extended in Sect. 2 to the empirical df's H~ and H,. However, the assump- 
tions of his theorem are not quite sharp, imposing for'example (1 + e)-moment 
conditions for the sample mean. The development by van Zwet (1980) leads 
to an appropriately sharp strong law but entails unseparated functional-analytic 
and Glivenko-Cantelli components. However the separation of these compo- 
nents permits in a straightforward fashion important extensions to nonclassical 
versions of empirical df's such as our H,.  Therefore, we take special care to 
achieve this separation, without sacrificing sharpness. We shall first develop 
the functional-analytic theory for the functional T,(G) given by (3.2), then treat 
the matter of substitution of an empirical d f  H, or I4,. 

We now state for the case of continuous g our key functional-analytic theorem 
for the functional T,(.) defined by (3.2), (3.4) and (3.5), and the functional T(-) 
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given by (3.1), (3.3) and (3.5). (Extension to the general case of arbitrary Borel- 
measurable g requires some additional details and development, which we dis- 
cuss briefly at the conclusion of Sect. 4.). The relevant functions {Jn(t), 0 < t < 1}, 
{Jr(s), 0 < s < l }  for fixed t, and {Tt(G), 0 < t < l }  will be viewed as functions 
f:(O, 1)--->• and we shall denote the Lp((O, 1), B(o, 1), 2) norms of f by H flip 

= [f(t)JVd in the case 1 < p <  oo and = ess sup If[ in the case p = oo, where 

2 denotes Lebesgue measure on ((0, 1), B(o ' 1)). For the functionals Tt(G), 0 < t < 1, 
it will be convenient to use the notation m~(t)=Tt(G), 0 < t < l .  Due to the 
complexity of the functional T, (G) as well as of the restrictions on the sequence 
{Gn} approaching G, it will be convenient to state the corresponding sets of 
assumptions prior to the formulation of the theorem. 

The conditions to be met by the functional T,(G) are 

Assumptions (3.8). Consider the sequence of functionals {T,('), n__> 1} given by 

(3.2), (3.3) and (3.4), put Ao= 0 An, with An={t:  0 < t < l ,  J , ( t )#0} and At 
n = l  

={s: 0 < s < l ,  Jr(s)#0}, 0 < t < l ,  and let G be a given d f We assume, with l < p 
<oo, p - l + q - l = l ,  1 < / 3 < o o , / ~ - 1 + ~ - 1 = 1 ,  that 

(3.8.a) [I Jr lip < oo, each t~Ao u {Pl ,  .--,  Pd}; 

(3.8.b) sup rlJnllv< oo if 1 <p__< oo, 
n 

or {Jn('), n >  1} is uniformly integrable if p= 1; 

(3.8.c) G- t is continuous at s = Pts, 1 < j < dt, for all t e Ao 

except for t in a 2-null set, and for t = Pl .... , Pd- [] 

For a sequence of df 's  {G,} for which T,(G,)-- Tn(G) --* 0 is to be established, 
we will require 

Assumptions (3.9). Let {Gn} and G be d f ' s  and q, Cl, Ao and At as in Assumptions 
(3.8). We assume Gn=~ G and 

(3.9.a) {(G~-I) ~, n >  1} is uniformly integrable on At, 

each t ~ A o u { p l  . . . .  ,Pd}, if I<C1<O0; or 

sup II G,- 1 1Atll o~ < oo, each t e A  o • {Pl, ..., Pd}, if 0 = oO ; 
n 

(3.9.b) {(goma.) q, n > l }  is uniformly integrable on Ao i f l=<q<o�9 or 

sup[l(gom~.)lAoll~ / fq=oo .  [] 
n 

Theorem 3.1. (i) Assume g continuous. Suppose that the sequence of functionals 
{T,(.), n=> 1} given by (3.2), (3.4) and (3.5) satisfies Assumptions (3.8)for a d f  G, 
and that the sequence of  d f ' s  {G,} satisfies Assumptions (3.9) for G. Then 

(3.1o) T~(a , ) -  T,(d) ~ 0, n ~ .  
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(ii) Suppose that the conditions of part (i) are satisfied and that there exists 
a function 

(3.11) 

such that 

JeLv((O, 1), B(o ' 1), 2) 

t t 

(3.12) ~ J,(s)ds--* ~ J(s)ds, all t~(O, 1). 
0 0 

Then, for T(.) given by (3.1), (3.3) and (3.5) we have, assuming ][ (g o ma) 1A o ]1 q < 0(3, 

(3.13) T~(G) ~ T(G), n ~ oo, 

The proof of Theorem 3.1 is deferred to Sect. 4. 
Turning now to the stochastic component of our development, we put {Hn} 

and HF for {Gn} and G. The main issue, then, with Assumptions (3.8) assumed 
with respect to HF, is to verify that with probability 1 {H,} is a sequence 
of df's satisfying Assumptions (3.9) and thus to conclude that T(H,)---, T(Hv) 
wpl. Besides the probability space ((0, 1), B(o, 1), 2) which is central to the func- 
tional-analytic treatment, we now also have a probability space (f2, A, IP) on 
which our basic r.v.'s {Xi} are defined. Thus we shall be speaking of almost 
sure convergence in two possible senses, a.s. [IP] or a.s. [2]. Our goal is to 
establish that T~(H,) - .  T(HF) a.s. [~].  

We shall use the property of empirical df's that the support of H,  must 
belong to that of He. The support of a df  G is defined to be S(G)= {x: G(x+e) 
> G(x-e),  all e>0}. The following is easily checked. 

Lemma 3.1. I f  G O and G1 are (right-continuous) df's with S(G1)~ S(Go), then 

(3.14) G?~(t)=Gol(Go(G~l(t))), t~(0, 1). 

In verifying conditions (3.9.a) or (3.9.b), it is convenient (and unrestrictive 
from a practical standpoint) to assume that the sets Ao and A ,  0 < t < l ,  are 
intervals in (0, 1). The results we give below will be specific to the cases that 
the interval in question is either the open interval (0, 1) or (contained in) a 
closed interval [a, b] in (0, 1). 

Lemma 3.2, Let l<=O<oc. If, for all t eAow{pl ,  ...,Pal}, either all At=(0 , 1) 
and ][H~IH~<~ or all Atc[a,b] ,  then a.s. [~]  the sequence {H,} satisfies 
(3.9.a); i.e., for n sufficiently large {(H~-I) ~, k >=n} is uniformly integrable on At, 
each t eAou{p  1 . . . .  ,Pd} if 1=<~<oo, and supI tHkl lA,  H~<oO, each 

k>_n 
teAo w {Pl . . . . .  Pd}  i f  ~l = 0(3. 

Proof. First consider the case A,=(0, 1), t eAow {Pl . . . .  , Pd}. For ?/= 0% we have 
by Lemma 3.1 that 

IIHn- tll ~ = sup ]H~- '(t)[ = sup ]HF 1 o Hv o H~- l(t)[-<_ IIH[ 111 ~. 
t t 
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For ~ <  0% we have 

1 

IlHn-1H~ ~-- ~ IHs d t  = ~ [yl rl d H n ( y  ) = gl(-m~ 2 Ih (X i l  . . . .  , X i ~  )I~1, 
o N 

so that jrH,-arl~ is a u-statistic with kernel Ihl ~ and a.s. lIP] converges to 
pIH~ljl~<oo by the SLLN for U-statistics. Hence, by a standard result, a.s. 
[P]  the functions {(H~ 1)+, k >  n} are uniformly integrable on (0, 1), for n suffi- 
ciently large. 

If A t c [ a , b ] ,  for all t e A o w { p  1 . . . . .  Pa}, take 0 < a - ~ ,  b + e < l  continuity 
points of H~ 1. Then a.s. [P ]  sup I H,- 1 (t) la+r < ]Hi7 ~ (a-- e)[ + [H~ 1 (b + 5)[ for all 

t 
n sufficiently large. Therefore in this case (3.9.a) is immediate. []  

Verification of (3.9.b) in general form is rather troublesome, but in practice 
it can be checked ad hoc for typical cases of the functionals {Tt(G), teAo}, 
under effective restrictions on g and A0 which do not preclude the motivating 
applications for this investigation. For such purposes the following result is 
useful. 

Lemma 3.3. Assume g continuous. Suppose that (3.8.a), (3.8.c) and the conditions 
of  Lemma 3.2 are satisfied. Assume that a.s. I-P] 

(3.15) limsup sup] ~ (H,)I < oo. 
n~ av teAo 

Let l <=q<vo be given. Then a.s. [P]  the sequence {H,} satisfies (3.9.b); i.e., 
for n sufficiently large {(g o rank) ~, k > n} is uniformly integrable on A o if 1 < q < oo ; 
or sup I[(gomHk) 1Aoll~ < 0(3 if q =  oo. 

k>n 

Proof. We have a.s. [P]  

(3.16) IJ(g o ran,) 1aoJI ~ < suplgo TJH,)I ~ sup Ig(x)l 
t~Ao xeB(H.) 

where B(H, )= {TJH,), teAo}. By (3.15), for all but a finite number of n's, B(H,)  
is contained in a compact set, whence by continuity of g the term on the right 
in (3.16) is bounded for n sufficiently large. Thus for q =  oo the conclusion of 
the lemma follows from (3.16). If 1 __<q< ov (3.16) implies for 5 > 0  a.s. [P]  boun- 
dedness of [[(goHs -1) lAo[Iq(l+e) for n sufficiently large. This is sufficient for the 
desired uniform integrability. []  

With these tools, we now can give two very general convergence results. 
We first deal in Corollary 3.t with strong convergence of T,(H,), with T,(-) 
given by (3.2), for the important special case TJG)= G-l( t) .  Secondly, Corollary 
3.2 deals with the strong convergence of T,(H,), with TJG) an L-functional. 
Both results are specializations of Theorem 3.1 to the stochastic sequence {H,}. 

Note also, that, with HF and { H , , n > l }  for G and {G,,n=>l}, we have 
by our Glivenko-Cantelli result (Corollary 2.1) that H,=*~H r a.s. [P] .  
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Corollary 3.1. Assume g continuous. Let T( . )  and {T,(.), n >  1} be given by (3.1) 
and (3.2) with T t (G)=G-l ( t )  and dK(t), dK,(t)  as in (3.3) and (3.4). Suppose 
{J,('), n>_l} satisfies (3.8.b), HF satisfies (3.8.c) and that either A0=(0, 1) and 
IlgoH~lllq<OO or Aoc[ao ,  bo] c(0, 1), where l<p<=o% p - l - t - q - l = l .  Also let 
J ( ' )  be determined by (3.11) and (3.12). Then a.s. [~'] 

(3.17) T,(H,) ~ T(HF), n ~ oo. 

Proof. To apply Theorem 3.1, we verify that Assumptions (3.8) and (3.9) hold 
a.s. [IP] for {H,}. Since Tt(G)= G- ~(t), we have Jr(s)=0, each t eAo u {p~ . . . .  , pa}, 
so At=~b and (3.8.a) and (3.9.a) are vacuous. Since, mG=G -1, (3.9.b) simply 
means that a.s. [IP] {(g o r ie l )  q, k>n}  is uniformly integrable on Ao for n suffi- 
ciently large if 1 < q < oo ; or sup I](g ~ H~ 1) 1A oLI ~ < OO if q = OO. For the case 

k>_n 

Ao=(0, 1), (3.9.b) follows by repeating the first part of the proof of Lemma 
3.2 with H2 ~ replaced by g o H21 and H~ 1 replaced by g o H i  2. If Ao c [ao, bo] 
we argue as in the proof of Lemma 3.3. [] 

Remark 3.1. Note that our corollaries remain valid if we take A o = 0 A, for 

some N e N .  ,=N 

Examples 3.1 

Linear combinations of functions of generalized order statistics. Corollary 3.1 
essentially covers the class of statistics (3.6), which includes some classical collec- 
tions of statistics as well as new varieties of recent interest in the literature. 
We present several examples. 

(i) Linear combinations of functions of order statistics. Here m =  1, h(x)= x. For 
this specific choice and taking Ao=(0, 1) Corollary 3.1 reduces to Corollary 
2.1 of van Zwet (1980), specialized to the case g continuous. (Following the 
proof of Theorem 3.1, in Sect. 4, we discuss extension to the case of arbitrary 
Borel-measurable functions g(.).) Confining attention to the case g(x)=x,  we 
mention the sample mean (take J,(t)--1, d=0 ,  and assume 11F-1[11<oo, i.e., 
F has finite mean), the sample median (take J,(t)-= 0, d = 1 = a 1, P l = 1, and assume 
that F -  1 is continuous at �89 i.e., that �89 is the unique solution of F (x--) < �89 < F (x)), 
trimmed means (J. (t) = (n/(n - 2 [c~ nl)) 1 {[c~ n]/n <= t < ( n -  [~ n])/n}, d = 0), Gini's 
mean difference (J,(t)= (n / (n -  1))(4t-2), d =  0 and assume qLF- lit 1 < oo), etc. 

(ii) U-statistics. Apply Corollary 3.1 with g(x)=x,  J , ( t )= l ,  d=0 ,  assuming 
]kH; 1 kll < o% i.e., E [hi< oo. Hence the corollary reduces to the strong law of 
large numbers for U-statistics, obtained by Hoeffding (1961). 

(iii) Trimmed U-statistics. Apply Corollary 3.1 with g(x)=x,  

J, (t) = (n(m)/(n(m) - 2 [c~ n(,,)])) 1 { [c~ n(m)] < n(,,) t =< n(,,) - [c~ n(,,)] }, d = 0. 

In particular, a "trimmed variance" is given by taking m=2,  h(xl ,  x2)=�89 
--X2) 2. 
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(iv) Another spread measure. Apply Corollary 3.1 with g(x)=x, J,(t)=O, d = l  
= a l, P l = �89 and m = 2, h (x 1, x2)= ] x l -  x21. This yields a spread measure consid- 
ered by Bickel and Lehmann (1979), the relevant parameter being the median 
of the distribution of IX 1 - X2[. 

(v) Generalized Hodges-Lehmann location estimators. Apply Corollary 3.1 with 
g(x)=x, J,(t)=-O, d =  1 = a l  and h(xa . . . . .  x , , )=m-l  (xl + ... + x,,). (For m =  1 this 
gives the sample median and for m = 2  the classical Hodges-Lehmann estima- 
tor.). []  

Corollary 3.2. Assume g continuous, Let T(') and {T,(.), n >  1} be given by (3.1) 
and (3.2) with dK(t), dK,(t) and dMt(s ) as in (3.3)-(3.5). Suppose that the weight 
functions satisfy (3,8.a) and (3.8.b) and that HI, satisfies (3.8.c), and 
Ll(gomHF) l~o[]q< oO. Further suppose for all t eA  o w {Pl, ..., Pe} either At=O, 1) 
and [IHelI[~<oo or Ate[a ,  b]; where l<p<=oo, p - l + q - l = l ,  1</5___~, /5 -1 
+ ~ - 1 =  1. I f  a.s. [~]  Tt(H,), teAo, satisfies (3.15), then a.s. [~]  

(3.18) T,(H,) --+ T(HI,), n ~ oo. 

Proof We only have to verify that Assumptions (3.9) hold a.s. [P ]  for {H,}. 
For (3.9.a) we use Lemma 3.2 and (3.9.b) is immediate from Lemma 3.3. []  

Examples 3.2 

Some spread estimators of Bickel and Lehmann. We consider here some function- 
als T(.) for which T(H,) gives statistics of the type proposed by Bickel and 
Lehmann (1979) as measures of spread for a d f  F not necessarily symmetric 
about  any known point, and for which asymptotic normality has been proved 
by Janssen, Serfling and Veraverbeke (1984). 

(i) Consider the functional 

1 

T(F) = ~ IF-  1(0 -- F -  1(1 -- t)[' dK (t). 
o 

Bickel and Lehmann (1979) suggest the case 7 = 2 and K (') uniform on [fl, 1 - f l ] ,  
where 0 < fl < �89 giving 

(3.19) Tp(F)=(1--2fi) -1 S [F- l ( t ) - -F- l (1- - t ) ]  2dt" 

The corresponding statistic is given by 

n - [ #  n ]  

(3.20) Tp,(F.) = (n -- 2 [fl n])-1 ~ (X,,~ -- X,, ,_ k) 2. 
g = [ # n ] +  1 

Then (3.20) is of form (3.2) with the specializations h(x)--x (making H e = F  
and H,  =F,);  g(x)=x2; J,(t)=(n/(n--2[fln]))l{[fln]/n<t<(n--[fln])/n}; 
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A o c [ f l - ~ ,  1 - f l + q ] c ( 0 ,  1) for some t l>0;  d = 0 ;  and for each tGAo, 4(s )=0 ,  
At : 4), dr= 2, at: = 1 = - at2 , Pt l  = t = 1 -P t2 ,  i.e., Tt(G) = G-  : (t) -- G-  * (1 - t). To 
apply Corollary 3.2 we take p = 0% q = 1 and need only verify the assumptions 
I[mF lta- , ,  1 -~+@[ 1 < oo and (3.15). 

Now in the present case me(t)= F-1  ( t ) -  F -1  ( 1 -  t), and we trivially have 

lime Ira- , . , -a+,]l l  1 __< 2(]F-  ~ (fl--q)l + I F - I (  I - / ?  + it)l) < oo. 

Condition (3.15) reduces to a.s. [IP] that 

limsup sup I F , - l ( t ) - F , - l ( 1 - - t ) l < o o ,  
n~oo ze[a-., 1-fl+q] 

which follows easily by arguments used above. Finally note that the difference 
between 

n-[an] 
Ta. :(n-- 2 [fln]) -1 

k=[~n]+l 
(X,, k--X,, ,-k+ 1) 2, 

the spread estimator for (3.19) proposed by Bickel and Lehmann (1979), and 
T~,(F,) tends a.s. to zero. Therefore, we obtain, without any assumption on F, 
that a.s. [P]  T~, ~ T(F), n --* oo. 

(ii) Consider the functional 

T ~ ( G ) = ( I _ ~ _ ~  ) 1ifl[G-l(21)]2dt, 

where 0 < e < � 8 9  Biekel and Lehmann (1979) introduced another 
spread statistic which is given by T,e(H,), for the kernel h(x l ,  1 2 ) = 1 1 - 1 2 .  
In this case Hv is the symmetric (about 0) d f  of X -  X', for X and X' independent 
r.v.'s with d f F .  The functional T~r is of form (3.1) with g ( x ) = X  2, J(t) 
=lAo( t ) / (1--a-- f l ) ,  A0=[a ,  i - - i l l ,  d = 0 ;  and for each tGAo,  Jt(s)~O, At=q5 , 

d t l = l = a t l ,  p t l = } ( t + l ) ,  i.e., T t ( G ) = G - I ( ~ - ) .  To apply Corollary 3.2, we 

take p = 0% q = 1 and we have 

= H i  ( 2 )  :-a] 1/c~+1\ ( ~ )  ]kmR l[~,l_a]lll 1 t 1 1[~, ~ H ;  ~ )  + H )  -j 1-- < oe. 

Condition (3.15) reduces to a.s. [~]  limsup sup H~-lI t+l | / \  .-,oo ~[~, 1-al \ ~ -  ]1 < o% which 

again follows by previously used arguments. Thus we conclude, without any 
assumptions on F or Hv,  that a.s. []P] T~(H,) ~ T~p(HF) , n ~ oo. [] 

Extensions to the multi-sample case are straightforward, now that the func- 
tional-analytic and "Glivenko-Cantelli" parts of the problem have been sepa- 
rated. The relevant basic Glivenko-Cantelli theorem giving ]]/-/~-Hr] [ --. 0, and 
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t h u s / / , ~ / / v  a.s. [IP], is available in Corollary 2.1" of Sect. 2. The SLLN for 
U-statistics used in Lemma 3.2 becomes replaced by the one for "generalized" 
U-statistics (Sen (1977) and McConnell (1987)). Introducing other appropriate 
notions regarding convergence with multi-dimensional indices, and imposing 
appropriate restrictions, one can obtain for the functional given by (3.1) that 

a.s. [P ]  T(Hn)~  T(Hs as min(nl, ..., no) (A) > 00. The detailed treatment of the 

multi-sample case will be pursued elsewhere. []  

4. Proof and Extensions 

In the proof of Theorem 3.1 the following basic convergence lemma will be 
instrumental. 

Lemma 4.1. Let l<_r<_oo and r - l + s - a = l .  Let the r.v.'s ~, {~n} and {I/n } on 

a probability space (f2, A, IP) satisfy ~n P > ~ and either 

(i) 1 < r <  0% {l~n[ r} is uniformly integrable and sup IPq, ll~< 0% 
n 

o r  

(ii) r = 0% sup [I ~, [] | < oo and {q,} is uniformly integrable. 
n 

Then I J (~ , -~)q , [ l l~0 ,  n--,oo. [] 

Proof of  Theorem 3.1. We first consider convergence of m~,(t)= Tt(G,), n ~ o o ,  
for a fixed teAo w {Pl, .-., Pa}. Note that 

1 d t 

ma,(t) = ~ G; l(s) Jr(s) d s  71- Z ao G21 (Ptj). 
0 j = l  

Note that the convergence G , ~ G  implies (see Lemma 1.5.6 of Serfling (1980) 
and its proof) that 

(4.1.a) G~- ~ (t) ~ G-  1 (t), all continuity points t of G-  1, 

and hence 

(4.1.b) 2{t: G ; l ( t ) ~ G - l ( t ) ,  n--* oo} =0,  

i.e., G2 ~ converges to G-1 a.s. [2] and hence in 2-measure. We apply Lemma 
4.1 with (~2, A, IP)=((0, 1), B(o, ~), 2 ) and ~ = G  -1 1At , ~ n = G n  I lat, t in=Jr,  r=q,  
s=p .  The hypotheses of the lemma are verified using (3.8.a), (3.9.a) and (4.1). 
This yields 

1 1 

a ;  ~(s) J,(s) ds ~ ~ ~- ' ( s )  J,(s) ds 
0 0 
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for all t e A o u  {PI, .--, Pa}- The same is true, by (3.8.c) and (4.1.a) for the other 
part of Tt(G,) and hence also for T~(Gn) itself for all t e A o w { p l ,  . . . ,  Pa}, except 
for t in a 2-null set not including {Pl, .--, Pa}- Thus we have proved that for 
t = p l  . . . . .  Pa and almost all t in Ao, 

(4.2) me. (t) ~ me (t). 

Whence, by the continuity of g, 

(4.3) g o raG, --, g o me in 2-measure. 

Now we apply Lemma 4.1 again, with the same probability space as above 
but ~=(gome)1Ao, ~,=(goma,)1Ao, q , = J , ,  r = q ,  s = p .  The hypotheses of the 
lemma are verified using (3.8.b), (3.9.b) and (4.3), and we thus have proved 

1 

(4.4) j" [go Te(G,)--g o Tt(G)] J,(t)dt--*O, n ~ o o .  
0 

Applying continuity ofg in connection with (4.2) for t =P l ,  --., Pa, and combining 
with (4.4), we obtain (3.10), completing the proof of part (i) of the theorem. 

Regarding part (ii) we use the assumptions (3.8.b), (3.11), (3.12) and the fact 
that g o Tt(G) is assumed to be in Lq in combination with Sects. IV.8.11, IV,13.23, 
IV.13.25 and IV.13.27 of Dunford and Schwartz (1958) to obtain 

1 i 

go Jo(t) dt-  j go tit, 
0 0 

n ---~ o o  , 

and hence (3.13). []  

Remark  4.1. (i) Theorem 3.1 is a deterministic version and generalization, for 
g continuous, of Theorem 2.1 and Corollary 2.1 of van Zwet (1980). 

(ii) As mentioned already in Example 3.1(i), our Corollary 3.1 with m =  1, 
h ( x ) = x  and Ao=(0,  1) reduces to Corollary 2.1 of van Zwet (1980), except that 
for simplicity of presentation we have restricted g to be continuous (note that 
we do not require H/~ 1 to be continuous). Following van Zwet's approach in 
spirit this condition can be removed by an application of Luzin's theorem, 
giving the following extension. 

Corollary 4.1. Corollary 3.1 remains valid for  arbitrary Borel-measurable g satisfy- 
ing 

(4.5) g is continuous at H e  1 (p j), j = 1 . . . . .  d 

and, for  the case A o ~ [ao, bo] c (0, 1), 

(4.6) g is bounded on [ H ;  1 (ao)_ e, H F  1 (bo) + e], for  some e > O. 

Proo f  To prove Corollary 3.1 the continuity of g is used to show, in the case 
T t ( G ) = G - l ( t ) ,  the validity of (4.3) and the boundedness of the r.h.s, in (3.17). 



92 R. Hehners et al. 

The  la t te r  is still val id  by  (4.6). To  show tha t  (4.3) is still valid,  it suffices to 
p rove  tha t  a.s. [IP] 

lira )o{teAo: Igo H2 ~(t)--go H~Y l(t)J>c~} =0, 
/'1 ~ oo 

every c~ > 0. 

By Luz in ' s  t h e o r e m  we have  for any  e > 0  the existence of  a Borel  set B a n d  
a con t inuous  func t ion  ~ with  Hv(B ) < e  and  such tha t  g = ~  on ] R \ B .  Therefore ,  
wi th  B , =  {t: H2I(t)eB}, 

(4.6) l imsup  2 { t e A o :  Ig o h m - l ( t ) - - g o  H[~(t)l > 5 }  <Hv(B)+limsup H,(B) 
n--+ oo n ~ o o  

+ l i m s u p  2 { t ~ A 0 :  I~,oH~t(t)--~,oH[~l(t)[>5}. 
n ~ o o  

Since H2a(t)---,H[~X(t), n--*oo, a.s. [IP] for all con t inu i ty  po in t s  t of  HiTa( ' ) ,  
the last  t e rm in the r.h.s, of  (4.6) equals  zero. The  sum of  the first two te rms 
is less t han  2e. Hence  the p r o o f  is complete .  [ ]  

(iii) W e  finally no te  tha t  ou r  genera l  deterministic result ,  T h e o r e m  3.1, can  
also be s ta ted  wi thou t  the  con t inu i ty  a s s u m p t i o n  on  g. This  d e v e l o p m e n t  
involves  f o r m u l a t i o n  of  add i t i ona l  convergence  concepts  for  sequences {G,,  n 
> 1} a n d  is omi t t ed  for b rev i ty  here. C o m p l e t e  detai ls  can be found  in H e lme t s  
et al. (1985) and  Set t l ing (1985b). 

References 

Bickel, P.J., Lehmann, E.L.: Descriptive statistics for non-parametric models. IV. Spread. In: Jure~ko- 
v~i, J. (ed.) Contributions to statistics. H~jek Memorial Volume, pp. 3340. Prague: Academia 
1979 

Chung, K.L.: An estimate concerning the Kolmogorov limit distribution. Trans. Am. Math, Soc. 
67, 36-50 (1949) 

Dunford, N., Schwartz, J.T.: Linear operators, vol. I. New York: Wiley 1958 
Dvoretzky, A., Kiefer, J., Wolfowitz, J.: Asymptotic minimax character of the sample distribution 

function and of the classical multinomial estimator. Ann. Math. Statist. 27, 642-669 (1956) 
Gaenssler, P.: Empirical processes. Hayward, Calif.: Institute of Mathematical Statistics, Lecture 

Notes-Monograph Series, vol. 3 (1983) 
Helmers, R.: Edgeworth expansions for linear combinations of order statistics. Mathematical Centre 

Tracts, vol. 105. Amsterdam: Mathematisch Centrum 1982 
Helmers, R., Janssen, P., Serfling, R.: Glivenko-Cantelli properties of some generalized empirical 

df's and strong convergence of generalized L-statistics. Technical Report No. 460, Dept. of Math. 
Sciences, Johns Hopkins University, Baltimore (1985) 

Hoeffding, W.: The strong law of large numbers for U-statistics. Univ. of North Carolina Institute 
of Statistics Mimeo Series, No. 302 (1961) 

Hoeffding, W.: Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc. 
58, 13-30 (1963) 

Janssen, P., Serfling, R,, Veraverbeke, N.: Asymptotic normality for a general class of statistical 
functions and application to measure of spread. Ann. Stat. 12, 1369-1379 (1984) 

McConnell, T.R.: Two-parameter strong laws and maximal inequalities for U-statistics. Proc. of 
the Royal Soc. of Edinburgh 107A, 133-151 (1987) 

Sen, P.K.: Almost sure convergence of generalized U-statistics. Ann. Probab. 5, 287-290 (1977) 
Serfling, R.J.: Approximation theorems of mathematical statistics. New York: Wiley 1980 



Glivenko-Cantelli Properties and Strong Convergence 93 

Settling, R.J. : Generalized L-, M- and R-statistics. Ann. Stat. 12, 76-86 (1984) 
Serfling, R.J.: A Bahadur representation for quantiles of empirical df's of generalized U-statistic 

structure. Technical Report No. 453, Dept. of Math. Sciences, Johns Hopkins University, Baltimore 
(1985 a) 

Serfling, R.J.: A note on convergence of functions of random elements. Technical Report No. 459, 
Dept. of Math. Sciences, Johns Hopkins University, Baltimore (1985b) 

van Zwet, W.R.: A strong law for linear functions of order statistics. Ann. Probab. 8, 986-990 (1980) 
Wellner, J.A.: A Glivenko-Cantelli theorem and strong laws of large numbers for functions of order 

statistics. Ann. Stat. 5, 473-480 (1977). Correction, ibid. 6, 1394 (1977) 

Received February 24, 1986; in revised form March 5, 1988 


