
Probab. Th. Rel. Fields 80, 619-632 (1989) erobabmty 
T h e o r y  ~:L~d,,e,d. 
�9 Springer-Verlag 1989 

Uniform Consistency of Automatic 
and Location-adaptive Delta-sequence Estimators 

Deborah Nolan 1, and J. Stephen Marron 2 , ,  
1 University of California, Department of Statistics, Berkeley CA 94720 
2 University of North Carolina, Department of Statistics, Chapel Hill, NC 27514 

Summary. The class of delta-sequence estimators for a probability density 
includes the kernel, histogram and orthogonal series types, because each 
can be characterized as a collection of averages of some function that is 
indexed by a smoothing parameter. There are two important extensions 
of this class. The first allows a random smoothing parameter, for example 
that specified by a cross-validation method. The second allows the smoothing 
parameter to be a function of location, for example an estimator based on 
nearest-neighbor distance. In this paper a general method is presented which 
establishes uniform consistency for all of these estimators. 

I. Introduction 

Kernel density estimators, histograms, and orthogonal series estimators are well 
known methods for estimating a density. All three can be represented as an 
average over independent observations from the unknown distribution. The 
kernel estimator averages kernel or density functions centered on the observa- 
tions; the histogram is an average of indicator functions; and the orthogonal 
series estimator averages products of pairs of functions belonging to a finite 
subset of a complete orthonormal system. In Sect. 2, notation is introduced 
to represent all of these averages in the general framework of delta sequence 
estimators, as introduced by F61des and Revesz (1974) and Walter and Blum 
(1979). 

All three averages are essentially local in character. The effective width of 
the local average is crucial to the performance of these estimators (see Tapia 
and Thompson, 1978; Prakasa Rao, 1983; Devroye and Gy6rfi, 1984; and Silver- 
man, 1986). This window width is called the bandwidth for the kernel and 
the binwidth for the histogram, and for the orthogonal series estimator, it is 
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typically controlled by the cardinality of the subset (see Wahba, 1981 for an 
interesting variant of this). In general, it is called the smoothing parameter. 

To establish uniform consistency of these estimators, the most convenient 
assumption placed on the smoothing parameter is that, for each n, it is determin- 
istic and constant with respect to location. See Bertrand-Retali (1974) and Silver- 
man (1978) in the kernel case, Revesz (1972) and Kim and Van Ryzin (1975) 
in the histogram case, Bleuez and Bosq (1976) in the orthogonal series case, 
and for general results of this type, see F61des and Revesz (1974). 

For practical applications, the assumption of a deterministic smoothing pa- 
rameter is not realistic, because any reasonable choice of the smoothing parame- 
ter must, at least implicitly, be estimated. References to data-based or automatic 
choices for the smoothing parameter, most of which assume that it is constant 
with respect to location, may be found in Stone (1984), Marron (1985), Hall 
and Marron (1987a, b) in the kernel case, Rudemo (1982) and Stone (1985) 
in the histogram case, Hall (1986, !987) in the orthogonal series case, and Bur- 
man (1985) and Marron (1987) in the general case. 

An intuitively appealing variant of the constant smoothing parameter is 
the location-adaptive parameter. For example, where the data are relatively 
dense, some improvement in the bias can be made with a small window width, 
but in locations where the data are sparse, a larger window width reduces 
the variance. Unfortunately, this flexibility complicates the estimator, because 
the amount of smoothing is indexed by an entire function instead of simply 
a constant. The nearest-neighbor kernel estimator (Loftsgaarden and Quesen- 
berry, 1965; Mack and Rosenblatt, 1979) is one approach to this problem. 
Section 2 describes several other approaches. 

Note that it is possible to combine the above two extensions of the usual 
estimators. In particular, one could consider using a random smoothing parame- 
ter in a location adaptive estimator. This case is not treated here. 

While there is a large literature on consistency of density estimators, nearly 
all of it is in the deterministic and location-constant case. Exceptions to this 
are in Devroye and Wagner (1980) and Devroye and Penrod (1984a) where 
kernel estimators with a random location-constant bandwidth are treated, and 
in Devroye (1985) where one particular location-adaptive kernel estimator is 
examined. This paper presents a general method for the simultaneous treatment 
of all of the above estimators within the framework of delta-sequence estimators. 
Our results contain many previous theorems as special cases. 

The method of proof consists of separating the difference between the estima- 
tor and the target density into stochastic (i.e., variance) and nonrandom (i.e., 
bias) components. Empirical process techniques are employed to handle the 
variance component, whereas the bias is handled by an appropriate adhoc meth- 
od for the specific example. Both components are shown to converge to zero 
uniformly over location and over a wide range of possible smoothing parameters. 

Conditions for the uniform convergence of the variance component are pre- 
sented in Sect. 3. They are no more restrictive than those commonly imposed 
on a deterministic sequence of window widths. Section 4 includes a variety 
of examples of delta-sequence estimators with automatic and location-adaptive 
parameters. In this section, the conditions from Sect. 3 for handling the variance 
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component are checked; also of interest, are the techniques for showing the 
bias component is negligible. The examples are first formally introduced in 
Sect. 2. Section 5 contains the proof of the result stated in Sect. 3. 

2. Examples of Delta-sequence Estimators 

Let 41, ..., 4, be independent observations from an unknown distribution P 
on R e with density p. A delta-sequence estimator of p(x) can be written in 
the form 

~(x)=n -1 ~ 6~,x(~) 
i=1 

where 6)..~ is chosen so that the expected value of/~(x) converges to p(x) uniform- 
ly in x and 2, for 0 < 2 < f t ,  and fl,~0. 

Examples of delta-sequence estimators include: 

(2.1) Kernel estimators. Define for some kernel K: R ~R ,  

6A,x (~i) = ~ - 1 K ~ . , ~ ( ~ i  ) 

where Kx,x(~)= K ( ~ )  and ~ K = l. 

(2.2) Histogram estimators. Histograms provide simple examples of delta- 
sequence estimators. Consider the histogram with equal binwidths, in one dimen- 
sion. Let I j(.) be the indicator function for the bin [( j -1)2,  j 2), j EN and 2 > 0. 
Then 

6~,~(~i) = ~ 2-11j(x) Ij(~i). 
- o o  

The extension to higher dimensions is straightforward. 
Two estimators closely related to the histogram are: the histospline estimator 

of Boneva, Kendall and Stefanov (1971), Wahba (1971, 1975), Van Ryzin (1973), 
and Scott (1985a), and the average shifted histogram of Scott (1985b). These 
are not explicitly treated here. 

(2.3) Orthogonal series estimators. Consider the orthogonal series estimator 
for the continuous density p on [a, b]. In this case, 

m 
6m.~(~,)= Y. ~j(~,)~j(X), 

j = l  

where {~j} is a complete orthonormal system on [-a, b], consisting of eigenfunc- 
tions of a compact operator on L 2 [-a, b]. Notice, for convenience we allow the 
slight abuse of notation 6,,,x rather than 6m ix. This estimator is an approxima- 
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tion for ~ cj~j(x) where the infinite sum over {q~j(x)} is approximated by 
j = l  

the sum over the first m eigenfunctions, and where c j, the inner product of 

p and q6j, is approximated by n-1 ~ ~j(r 
i=1 

Whether 2 is automatic or not, these three estimators have the intuitively 
unappealing feature of doing the same amount of smoothing at each location. 
There are several ways to relax this assumption which we illustrate through 
modifications of the kernel estimator. 

(2.4) Location-adaptive estimators. Define 

61,x(~i) = ,~(x)- 1 gi(x),~(~i ) 

where s is a random function of location. One example treated here is where 
s is the distance from x to its k th nearest neighbor among 41 . . . . .  r (Fix 
and Hodges, 1951; Loftsgaarden and Quesenberry, 1965; Mack and Rossenblatt, 
1979). Another example is a plug-in estimate of the pointwise optimal band- 
width; see Woodroofe (1970), Krieger and Pickands (1981), Hall (1983b), and 
Muller and Stadtmuller (1987). One more possibility, not explicitly treated here, 
is local cross-validation, see Hall and Shucany (1988), Mielniczuc, Sarda and 
Vieu (1988) and Vieu (1988). More specifically, note that for a particular location 
x, the minimizing bandwidth for mean square errors, provided p is twice differen- 
tiable, is asymptotic to 

[ cK p(x)  n -  

where cK=d~K2/~yaK. This motivates plugging in a pilot estimate of p(x) and 
V a p(x) to produce a random location-adaptive estimator. 

The location-adaptive version of (2.2), the histogram of equal bin counts, 
is also examined in Sect. 4. 

(2.5) Location-adaptive estimators indexed by the observations. Define 

6X, x(~i) : ~ (~ i ) -  1Ki(r ' 

where the random scale parameter is a function of the location of the observa- 
tions. For example, ,~(~i) may be either the distance from ~i to its k th nearest 
neighbor among the observations (Breiman et al., 1977), or an estimate of 
rt~p(~i)-i/2 for some e > 0 (Hall and Marron, 1988). 

In addition, let ,~(x, ~i)=n~'~(x)l/n-1/2p(~i)l/2, where /~ is a pilot estimate 
of p, to produce a hybrid of the two location-adaptive estimators (Abramson, 
1982a,b). 

3. Statement of Results 

We will prove that for A,= {6x,~: e,-<_2_-<fl,, x ~ R  d} 

sup [/~x(x)--p(x)[ ~ 0 almost surely. 
An 
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With the supremum over both 2 and x we can establish consistency for location- 
adaptive estimators, such as (2.4) and (2.5). Convergence for random parameters, 
such as automatic or data-based choices for 2, also easily follow from this result. 

Split the difference above into the bias ]px(x)-p(x)] and the variance ]p~(x) 
-pz(x)L, where pz(x)=P6z,~. We use linear functional notation to express 
[6~,x(y)P(dy) as P6z,~ and 1/n~6~,x(4i) as P,6~,~. Theorem 1, below, provides 

i 

the uniform convergence result for the variance term. Its proof relies on finding 
an approximating class for A = {6~,~: 2 > 0  and x s R  a} that replaces the supre- 
mum over 2 and x by a maximum over a smaller collection of strategically 
chosen functions. To handle the wide variety of estimators introduced in Sect. 2, 
we present two techniques for constructing this approximation: bracketing and 
covering. 

The bracketing technique takes advantage of smoothness assumptions on 
& If 6~,~ is Lipschitz in 2 and x then brackets can be easily found. Orthogonal 
series estimators provide examples in the next section. The bracketing technique 
bounds each 26x,~ above and below by a pair of functions which are close 
in an I2(P) sense. That is, each 26~,~ must have a bracket f t<26~,~<fu where 
P[fU-f~] is at most 5, say. For given e, the collection of brackets is denoted 
B(e). Theorem 1 imposes conditions on the cardinality of the bracketing class, 
#B(e), called the bracketing number. 

The second technique uses combinatorial methods to approximate A (Dudley 
1978; Pollard 1984). Here, a collection of functions A (5, P,) is found where each 
26a,~ is within e in an D(P,) sense of a member of A(e, P,). Notice A(e, P,) is 
a random subclass because P, depends on 41,-.. ,  4,. However, for the delta- 
sequence families of interest, there is a constant bound on # A (5, P~), regardless 
of n. 

(1) Theorem. Let p be a bounded density on R d, and let A, be a collection 
of delta-sequence functions. I f  

(i) n a,/log n ~ 0% 
(ii) supP[b~,x[ is bounded, 

A 

(iii) sup sup [26z,~(y)[ is bounded, 
A y 

(iv) either log # B (e) = O (log e- 1) or log # A (e, P~) = O (log e- 1), as e ~ 0 then 

sup [/~(x) -p~(x)[ ~ 0 almost surely. 
A~ 

The conditions on p for the convergence of the variance component are 
quite weak, but the bias component requires more from the density. These 
additional requirements appear in Sect. 4 with the examples. Condition (iv) 
places a bound on either the bracketing or covering number. The classes B(e) 
and A (s, P,) are approximations to the entire class A, not A,. However, uniform 
convergence of/3~(x) to p(x) is on the restricted subset A,. 

In the examples that use the covering technique, the class A has the property 
that 

A(e, Q)< Ae -v  
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for constants A and V that depend only on supa,y126z,~(y)l, not on e or the 
measure Q. This property was dubbed "Euclidean" in Nolan and Pollard (1987). 
Clearly, if {26~,x} is Euclidean then it meets the covering number condition 
on its cardinality. The covering number condition could be weakened, but our 
applications do not require it. Techniques for showing specific collections of 
delta functions are Euclidean are delayed until Sect. 4. 

To prove Theorem 1, we treat the variance term as an empirical process 
indexed by A. To see this, reexpress ~a(x)-p~(x)  as (P,-P)6z,~ where P, repre- 
sents the empirical measure which places mass n-  1 on each of the observations 
~1 . . . . .  4,. Empirical process techniques are employed in Sect. 5 to prove this 
result. 

The following corollaries are immediate consequences of Theorem 1. Corol- 
lary 2 contains results for the random location-adaptive smoothing parameter. 
The convergence of the bias and variance are incorporated into the corollary. 
To do this, we impose the extra conditions that ft,, the upper bound on 2, 
tends to 0 and that p is uniformly continuous. Corollary 3 is needed for the 
location-adaptive estimator where 2 is a function of the observations. In this 
case, the estimator no longer belongs to the delta-sequence family, but this 
presents no problem given the continuity-like conditions on 6x(.). 

(2) Corollary. Let p be a uniformly continuous bounded density on R e. Let /~ 
be a random scale parameter, possibly a function of x. I f  fl~>:_/~(x)>=~ for all 
x, eventually, almost surely; if f l ,~O;  and if the conditions of Theorem 1 hold, 
then 

sup [/),t(~)(x)--p(x)l ~ 0 almost surely 
x 

(3) Corollary. Suppose P~tx) is a uniformly consistent delta-sequence estimator 
for p. Let H(7)={x:  p(x)=7} and let Sx,r be the indicator function for the sphere 
centered at x with radius r. Consider the function 6x(.),x('). If, given e, there 
exist 7 and r such that 

(i) sup [6~<y),x(y)-J~r a.s. 
xEH(~),y 

(ii) sup I n-1 ~ 6~t~,),x(~i)l<e a.s. 
H ( y )  c i = 1 

then 

sup] n-1 i c~(e,),~(~D-p(x)l ~ 0  a.s. 
x i = 1  

4. Examples 

To establish uniform consistency for a specific estimator, show the bias is negligi- 
ble and bound the size of the approximating subclass (condition (iv) of Theo- 
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rem 1). As mentioned earlier, we handle the bias by whatever adhoc method 
is appropriate for the example. As for the approximation problem, we rely 
on either the bracketing or the covering approach outlined in Sect. 3. For the 
covering approach, we bound {6z,~} by showing it is a Euclidean class; tech- 
niques presented in Nolan and Pollard (1987) for establishing the Euclidean 
property for classes of functions are referred to as needed. Alternatively, the 
bracketing approach takes advantage of smoothness assumptions on 6. 

4.1. Kernel Estimators 

Recall the kernel estimator defined in (2.1). According to Lemma 22 of Nolan 
and Pollard (1987), the collection of translations and rescalings of a function 
of bounded variation is Euclidean. Any bounded, absolutely integrable kernel 
function of bounded variation, meets all the conditions of Theorem 1. Then 
i3 is consistent for a uniformly continuous p, if we restrict 2 to lie between 
~, and ft, with n~,/log n--* oe and/?,---, 0. Corollary 2 implies that/3~ is consistent 
for random ,~, such as that chosen by cross-validation. See Hall (1983a) and 
Matron  (1985, 1987) for access to the literature on this topic. 

4.2. Histogram Estimators 

Here, we change notation slightly from the definition of the histogram estimator 
in (2.2). Let Ix,x be the indicator function for the bin [(j - 1 )  2, j 2) that contains 
x, and recast the histogram as: 2-1P, I~,x. For any uniformly continuous p, 
the bias converges to 0 uniformly over ft,__> 2 > 0 if ft, ~ 0. With the additional 
restriction that 2 > ~, and nov,/log n ~ 0% we only need to check either the brack- 
eting or the covering number bound to obtain consistency uniformly over x 
and ~ , < 2 < f l , .  

It is easy to bracket this collection of indicator functions. Given e, the indi- 

cator function for {lYl >c}, where c is chosen such that ; p >  1 - l e ,  can bracket 
- - c  

Ix,x for locations x in the tails of the density. Next, find 2* small enough to 
bound sup PIa.,x by some fraction of e. These indicators together with a subset 

x 

of their unions can bracket the remaining I~,~. Altogether, there are at most 
a constant multiple of ~- 2 brackets. 

The covering number approach also provides a simple solution. Consider 
the collection A of intervals on the real line. This collection has the special 
property that there exists a polynomial p (-) for which 

{ A ~ F :  AeA}<-<p(~F) 

for any finite subset F of R. That is, the intersections of F with intervals 
in A produce at most p(~F)  distinct subsets of F. The indicator functions 
for a collection of sets with this property is a Euclidean class (Dudley, 1978; 
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Nolan and Pollard, 1987, Lemma 19). Because the class of indicator functions 
for the half open intervals on R contains {I~,~}, it follows that A is Euclidean, 
and therefore, the covering number bound is met. 

The Class of indicator functions for A also contains the indicator functions 
for histograms with equal bin counts. First, we formally define this histogram 
estimator. Restrict p to the interval [ -  1, 1]. Choose k(n) to divide n and define 
2 as k(n)/n. Let 4(o be the ith order statistic from the sample 41 . . . .  ,4 , .  Consider 
the intervals: (4(kj-k), 4(kj)] for j = 2 ,  3 . . . . .  2 -1, and the end intervals [0, 4(1)), 
[4(1), 4(k)], (~(~-1), 1] for j  = 0, 1, 2-1 + 1, respectively. Define B~, ~ as the indicator 
function for the interval that contains x. Then our estimator is 
n-1~  B~,z V(B~,x)-1 where V(B~,a) is the length of the corresponding interval, 

J 
SBx,~(y) dy. This collection of indicator functions for intervals of random widths 
meets the covering number condition of Theorem 1 because it is a subset of 
the collection of indicator functions for half open intervals. We postpone the 
verification that inf (4(k j)-- 4(k j-k)) n/log n ~ oe until the tools developed for 

2_<j_<2- 1 

the nearest neighbor estimator are available. 

4.3�9 Orthogonal Series Estimators 

For simplicity of presentation, we treat only the cosine series where ~ =  cos n j(') 
and p is continuous, symmetric on [ -  1, 1] and of bounded variation. Then, 
for r e > l ,  

�9 7g 

6m,x (y) = sin n (m + �89 (x -- y)/2 sin ~ (x -- y). 

By construction, the bias is negligible for the collection of orthogonal series 
estimators: A,={6,,,x: x ~ [ - 1 ,  1], L,<m<= U,}, if L , ~ o e .  Also, if n/U, logn 
~ o e  then, because A, is a collection of smooth functions, all that needs to 
be checked is the bracketing number condition. 

For large m, we can bracket m-16,,,0 above by 

f U = l  for [y[< 1/N 

l [ s i n  2 y] -  lotherwise. 

The constants M and N are chosen to make Sf"P small. This bracket works 
for all 6m,x with x near 0. Similarly, brackets can be found for the remaining 
locations. As for m small, the differentiability of cosine offers a crude bracket 
in x for each m: 

m -1 ~ cosnj (x+h-y)<m -1 ~ cosnj(x-y)+Mh<rn-16",x+~. 
j = l  j = l  
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where h < eM-1. Combine the brackets in x for large and small m to construct 
B(e) with cardinality at most a multiple of z-s. The bracketing condition is 
met; we have the desired consistency result. 

By Corollary 2, any random choice for m that falls between L, and U,, 
almost surely, provides a consistent estimator for p. See Hall (1987) for possible 
examples. 

4.4. Location-Adaptive Estimators 

Theorem 1, or Corollary 2, is applicable to the nearest neighbor estimator, 
which is a version of (2.4). First consider the uniform kernel with unit support. 
That is, let Sx, k be the indicator function for the sphere centered at x that 
contains k(n) observations, and let rk(x) be the radius of this sphere and V(Sx,k) 
be its volume. Then V(S~,~)- 1 p~ S~,k is a kernel estimator with a random location- 
adaptive scale parameter; call it/~(x). Note, P, Sx,k=k/n for all x. Consistency 
of this estimator is not a direct consequence of Theorem 1, because in regions 
of low density the distance rk(X) need not shrink as n increases, even when 

we require k--.  0. However, Theorem 1 does provide the consistency result indi- 
n 

rectly. See Devroye and Wagner (1980) for another version of this proof. 
Uniform continuity of the density is necessary to ensure/~(x) remains small 

in low density regions. Without loss of generality suppose sup p(x)< 1. Consider 
X 

the event {13(x)-p(x)>e for some x}, or equivalently, the event {V(S~,k) 
k 

< -  [p(x)+e]  -1 for some x}. It is a subset of 
n 

1 n - ~- e (p (x) + e)], V(Sx, k) < k e- 1 for some x} 

{ l k V(Sx,k)<ks_l fo r somex}  V(S~'k)[p(x)+ le] <P"S~'k--4en' n 

{(p, 1 k n for some x}. -P)S~,k>~e n, V(Sx,k)<ke -1 

The last inclusion follows from the uniform continuity of p, and the shrinking 
of the spheres {S~,k}. Therefore {/~(x)-p (x)> e for some x} is contained in 

{(P~--P)S~,k> ek 4nn for some x with V(S~,k) < ~ ~}. 

k 
Now apply Theorem 1 with 6~,x=Sx, k/2, and 2,(x)=~+V(Sx,k). (Theorem 1 

n 
still applies even though/~ is not quite a density estimate.) Check the nonobvious 
conditions of the theorem. If k(n)/log n--, oe then condition (i) is met. That leaves 
condition (iv). In (4.2) we saw that Lemma 22 of Nolan and Pollard (1987) 
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implied the collection of indicator functions for the intervals in R is Euclidean. 
Similarly, the collection of indicator functions for spheres in R e is also Euclidean, 
and so the subset of indicator functions for the spheres with volume less than 

k 
e - is Euclidean. This convergence result implies sup/3(x)-p(x) < e almost surely. 

n x,k(n) 

A similar argument works for showing inf/)(x)-p(x) > - e  almost surely. To- 
gether they give uniform consistency, x,k(,) 

A sketch of the proof for more general kernels now follows. We require 
that K be bounded and that: K(lxl)=0 for Ix[ > 1. Without loss of generality, 
take sup K(x)< 1. Restrict attention to a compact region H~ = {x:p(x)> e}. The 

x 

previous result claims that ,~(x)= V(S,,k) meets the conditions of Theorem 1 
on H~, eventually, almost surely. As for x in the complement of H,, use the 
crude upper bound of 2e for/)(x). 

Abramson (1984) proposed using a metric other than Euclidean distance 
to determine V(S~,k). Let p be a metric o n  R d and let tlk(X ) be the p-radius 
of the smallest p-sphere centered at x that contains k observations. Then the 
kernel estimate becomes 

n 

Abramson (1984) considered a metric of the form p(x)=pl(xO ... Pd(Xd) where 
the xj are the components of x and pj is an invertible distortion of the data. 
Review the previous proof for dependences on Euclidean distance: place the 
additional assumptions on p that it be uniformly continuous with respect to 
p, and insist p ( x - y )  shrink to 0 continuously as [ x - y [ ~ 0 .  This estimator 
is uniformly consistent as well. 

Hall's (1983b) version of the plug-in estimator (2.4), based on nearest neigh- 
bor distances, is a refinement of the nearest neighbor estimator. With a slight 
modification that protects the pilot estimates of p(x) and V2P(x) employed 
in ~(x) from exploding in some locations, the methods developed here will show 
that this estimator is uniformly consistent for all uniformly continuous densities 
regardless of differentiability conditions. 

4.5. Location-Adaptive Estimators Indexed by the Observations 

The Breiman, Meisel, and Purcell (1977) estimator is defined as follows: 

\ 

The symbol Si,k represents the indicator of the sphere centered at ~i that contains 
k observations, and rk(~) is the radius of this sphere. Unlike the nearest neighbor 
estimator, this estimator is itself a density. But, because the scale parameter 
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varies with each observation, we need Corollary 3 for consistency. Condition 
(i) permits the replacement of rk(~i) by rk(X) for observations near x and it 
prohibits a large contribution from the remaining observations not near x. Con- 
dition (ii) ensures a crude upper bound on the estimator in the tails of the 
density. The following proof appears in Nolan (1984). See also Devroye and 
Penrod (1984b) for another version of this proof. 

To check these two conditions, we again rely on the previous result for 
the kth-nearest neighbor estimate with uniform kernel. Given e, recall H e is the 
compact region {p(x) > e}. Choose 6 such that if ]x - y ]  < 6 then ]p(x)-p(y)] < e 2. 
For (i), if n is large enough then, uniformly over the buffer region H~-H2,,  
the radii of any Uh-nearest neighbor ball is less than �88 almost surely. This 
implies that, uniformly over H~, all kth-nearest neighbor balls do not intersect 
H2~. Also, on H~, for n large enough, 

k 
where 7 , = - .  Combine these two results with the uniform continuity of p to 

t~ 

bound i0(x) on H2~ above by 

Ix-~,l d) Sx,(~3" 
( l + 4 ~ ) ~ 7 ; l [ p ( x ) + 2 e 2 ] K  71/a[p(x)+2e2_l_1/ , 

i=1 

A similar lower bound is available for iO(x). Apply Theorem 1 with o-,(x) 
=~),[p(x)+ 2e2] -1 and xgH2e. 

Finish the argument by checking (ii) of Corollary 3. That is, bound the 
estimator for x on H ~ .  Argue as above to conclude that eventually no observa- 
tion in Hge will contribute to/3(x) for xeH~2~. Now invoke a property of nearest 
neighbors which holds regardless of the unknown distribution: any x can belong 
to at most cak of the kth-nearest neighbor spheres centered on the n observations. 
In one dimension c1=2 , and in two dimensions C2=6. Bound /3(x) by 2cde 
for x in H ~  to complete the proof. 

Finally, with Corollary 3, we have the tools to evaluate the consistency 
of the hybrid estimator of Abramson (1982a, b) defined in (2.5) as well. 

5. Proof of Theorem 1 

Consider the two one-sided inequalities separately, 

P{sup(P.-P) 6z, x>e}, 
A~ 

P {sup (P~-- P) 6z,~ < -- e}. 
A~ 
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Use (ii) to bound the first inequality above by 

(1) V {sup (P, - P) 2 64,~/C~ [~, + P]2 64,~l] > ~} 
A n 

for some constant Ca. 
Suppose the bracketing condition in (vi) holds. Then the collection B(kea,) 

of upper and lower brackets gl and g" for {264,x} exists, and in addition, (iii) 
allows us to assume the elements of B(�88 are bounded by some constant 
C2, say. Then 

(P,-P) 264.~<-_(P,--P)g"+�88 

and 

P]A64,xl~P]g"l- �88 

Apply these two inequalities to the one sided probability above, 

(2) P{sup(P,-P)26~,x/[a,+PI264,xl]>Cle ) 
A. 

< P { max [(P, - P) g" + �88 e a,]/[(1 - �88 e) a, +P]g"  [] > Ca e} 
B(ea,) 

<= ~B(e~,)maxP{(P,--P)g">�89 
B ( e a , , )  

An application of Bernstein's inequality (see B.4 of Pollard, 1984) for the bounded 
random variables g"(~O-Pg" gives, for some constant C3, 

(3) P { ~  (gu(~i)-Pg")>�89 

<exp  [-1Cl  nZ gZ (o:n -}- P lgUlZ -+- ~ Cz ne(o~n + P lg"]))] 
<exp  [ - n C 3  ~,]. 

Finally, the condition on the cardinality of B(�88 gives a finite upper bound 
for the sum 

P{sup(P,--P)64.~>e} =< ~ @B(~.)exp(--C3n~,). 
n = l  An n = l  

The Borel-Cantelli lemma completes the argument for one side of the inequality. 
The other side follows by symmetry, for (P , -  P) 2 5z,x > (P , -  P) g~- �88 e ~,. 

The proof under the alternative covering number condition is similar. The 
differences follow from the empirical process techniques used to approximate 
A; for an exposition of these techniques see Pollard (1984). We briefly outline 
the proof here; it is a special case of Theorem 2 in Pollard (1986). For  simplicity, 
assume 6z,~ is nonnegative. Bound the tail probability in (1) by a tail probability 
of the form: 

P { sup I(P, - P,') 264. ~ I/[~, + (P, + P,') 2 '~4,.] > ~}. 
A 

The P,' represents the empirical measure constructed from a second sample 
th, ... , t/, on P, independent of the first sample {~,. . . ,  ~,. Next replace the 



Uniform Consistency of Delta Sequence Estimators 631 

supremum over A by a maximum over A (1/4ee. ,  P, + P,'). In this case, the approx- 
imating class is random, so the rest of the argument is worked conditionally. 
The quantity (P.-P,')fz,  x has the same distribution as 1/nSai[_fz,x(Xzi) 
-~Z,x(Xzi - t)] where ai = + 1 with probability i and is independent of the sample 
x 1 . . . . .  Xa, from P. Condition on the double sample. The approximating class 
is no longer random, and as in (2), the maximum can be moved outside the 
probability. Fol low the steps outlined in (3) with Hoeffding's inequality applied 
to {aiai} instead of Bernstein's inequality applied to {g"(~O-PgU}; the ai are 
the constants 2 [6~,x(x2i ) -  bz,x(xzi_ 1)]. The proof finishes with the Borel-Cantelli 
lemma as above. 
Acknowledgements. The authors are grateful to the referee for a number of helpful suggestions and 
new references. 
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