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Summary. The limiting behavior of one-dimensional diffusion process in an 
asymptotically self-similar random environment is investigated through the 
extension of Brox's method. Similar problems are then discussed for a ran- 
dom walk in a random environment with the aid of optional sampling from 
a diffusion model; an extension of the result of Sinai is given in the case 
of asymptotically self-similar random environments. 

Introduction 

Let Z =  {~(x), xs7Z} be a sequence in (0, 1), that is, Se(0, 1) z, and let us consider 
a random walk {X,, n = 0, 1 . . . .  , ~}  in the environment Z such that 

P~ {Xn+ 1 = x "]- 1 I N n = x }  = ~(x), 

~{x.+l=x-llX.=x}=l-~(x),  xeZ. 

We consider a product probability measure Q =  I l q x  on (0,1) ~, where qx is 
xe~ 

a given probability measure in (0, 1) independent of x. Thus {~(x), x e Z ,  Q} 
is a family of i.i.d, random variables. The full distribution governing {X,} is 

= S Q (dS)~ .  Sinai [13] proved the following:if 

E Q {log 1 ~ -  ~ (x)!}=u, 

0<EQ~ log I -  ~(x) 2~__a 2 < oe, 
(I ~(x) I J 

then a 2 (log n)- 2 X.  has a limit distribution as n ~ ~ .  
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Recently Brox [2] obtained a similar limit theorem for the one-dimensional 
diffusion process X(t, W) described by the stochastic differential equation 

dX(t)=dB(t)-(1/2) W'(X(t))dt, X(0)=0, 

where W= {W(x), x~lR} is a Brownian environment independent of a Brownian 
motion B(t). Schumacher [11, 12] obtained a similar result for a considerably 
wider class of self-similar random environments (including symmetric stable 
ones) and stated, without detail of proof, that Sinai's result can be derived 
from the diffusion case with the aid of optional sampling. 

It was known that the limit distributions for Sinai's and Brox's cases are 
the same, but its explicit form had been unknown until Kesten gave it in I-9]; 
the same result as Kesten's was obtained also by Golosov as we have heard 
from Kesten; see also [3, 14] for the corresponding results in a similar but 
different model. 

In [7] we discussed the following: 
(A) The limiting behavior of X(t, W) for a general random environment 

W which is asymptotically self-similar. 
(B) Derivation of a result of Sinai type for a random walk from the diffusion 

setup. 
The discussion in [7] were divided into two cases: a special case and a 

general case. However, in [7] the proof  was given only in the special case and 
the results in the general case were stated without proof. 

The purpose of this paper is to give full proofs to the results announced 
in [7] for the above problems (A) and (B) in the general case. In the special 
case (which still covers the case of symmetric stable environments), there exists 
a valley containing 0 whose bot tom consists of a single point. However, in 
the general case the following (i) and (ii) can happen. 

(i) The bot tom of a valley is not a single point but a compact set. 
(ii) There are no valleys containing 0. 

Our definition of a valley is somewhat complicated, but still by making use 
of a method similar to Brox [2] we can prove our main theorems; for example, 
the distributions of (log t)-~X(t) are tight (as t ~ c ~ )  where ~ is the exponent 
of the asymptotic self-similarity of the environment. 

In Sect. 1 we give the definition of a valley of an environment and state 
our main theorems. In Sect. 2 we study some properties of valleys and in Sect. 3 
prepare some estimates for an exit time from a valley of X(t, ). W). In Sects. 4 ~ 7 
we prove our main theorems. 

1. Main Results 

Before stating main results we introduce some notations and definitions. Let 
IK be the space of nonempty compact subsets of ~ equipped with the Hausdorff  
metric p defined by 

p(K1, K2)= in f{e>0 :  K 1 c Ue (K2)  , K 2 c Ue(K1) } 
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for K 1 , K 2 e I K  , where U~(K) denotes the open e-neighborhood of K in N (cf. 
Borsuk [1] or Nadler [10]). The space H( is a locally compact separable metric 
space. Denote by W the space of real valued right continuous functions on 

with left limits and vanishing at 0. The space W is a Polish space with 
the Skorohod topology. For  We ~W, we set 

W*(x)= W(x) v W(x--)  and W,(x)= W(x)A W ( x - )  1. 

We define a space W* of environment as the set of We W satisfying 

lim { W ( x ) -  inf W} = lim { W ( x ) -  inf W} = oe. 
x--, co [0,  xl x ~  - co [x, O] 

Let We W ~. Then W = (r ~,  e) is called a valley of W if the following four 
conditions (i)-(iv) are satisfied. 

(i) r Ib, e e K ,  

- o e < a - < a + < b - < b + < c - < c +  < ~  and a+ <c -, 

where a - = m i n  ~, a + = m a x  ~; b e and c +- are defined similarly in terms of 
and r 

(ii) I f  we set W,~ = max W*, W~ = min W, and We = max W*, then 
[ a - , a  + ] 

(1) w~> w~, w~> w~, 

(2) W~ < W, (x) < W* (x) < W, 

w~< w,(x)< W*(x) < G 

[ b - , b  + ] [ c - , c  + ] 

for every xe(a +, b-),  

for every xE(b +, c-) ,  

(3) (a) r W*(x)=W,},  
(b) lb={xe[b- ,b+]:  W,(x)=W~}, 

(c) e={xs[c-,c+]: w*(x)=w~}. 

(iii) I f  a + =b- ,  then W(b-)=  W~ and W(a + - ) =  W,, 
I f  b + =c- ,  then W(b + - ) =  W~ and W(c-) = W,. 

(iv) H(a- ,  b +) v H(c +, b-) < (W~- W~)/x (W~- W~), 

where 

1 

= r a i n  {a, b}. ~ lo  

/ sup {W(y')-W(x')} 
[ x < x ' < = y ' < y  

U(x,y)={ sup {W(y')- W(x')} 
y < y ' ~ x ' < x  

if x < y  

if y < x  

i f x = y .  

W(x - )  = l i ra  W(x - e). s u p  W =  s u p  { W(x) :  x E I},  i n f  W =  i n f  { W ( x ) :  x c I}.  a v b = m a x  {a, b }, a / x  b 
r I 
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For  a valley V=(c t ,  t), r D(V)=(W,~-Wb)A(W~--W~) is called the depth 

of V and A ( V ) = H ( a - , b + ) v H ( c + , b  -)  is called the inner directed ascent of 
V. Throughout  the paper we use the abbreviation: D = D ( V ) ,  A = A ( V ) ,  Di 
= D(Vi), A~=A(Vi),  etc. It is clear that A < D .  

Remark 1. For  a valley V = (r t), r of We W *  the following statements (i) and 
(ii) are easily verified. 

(i) sup W* <= W,~ v W~. 
[b-  ,b + ] 

(ii) If @ Ib 2 > 1, then sup W* < W,/x l/V,; 
( b - , b  +) 

if @ r > 1, then inf W. > W~; 
( a - , a - )  

if 4~ �9 > 1, then inf W, > W~. 
( c - , c  +) 

A valley V=(c t ,  b ,  r of W is said to contain 0 if a + < 0 < c - .  Two valleys 
V1 =(oh,  Ibl, r and Vz=(c t  2, l)z,  e2) are said to be connected at 0 if r162 2 
and az ( = C ( ) < O < a f  (=c+). 

Next we introduce a scaling map. For  fixed a > 0  and 2 >  0, let -c~ be the 
map: W ~  W defined by (z~ W)(x)=  2 -1 W(2"x), x eR .  For  a probability mea- 
sure v on W we denote by -c~ v the image measure of v under the map z]. 
A measure v is said to be self-similar with exponent ~ > 0 if z~ v = v for any 
2>0 .  

Proposition 1. (i) Let We W e and r> O. Then either the following (a) and (b) 
holds: (a) there exists a valley V = (eL, t), r of  W containing 0 such that A < r < D, 
(b) there exist two valleys V 1 = (~ l ,  Ibl, r and V 2 = (a2 ,  lbz, r of  W connected 
at 0 such that A1 v A 2 < r < D1/x D 2 . 

(ii) Let v be a self-similar probability measure on W with v ( W * ) =  1. Then 
there exists a subset ~V ~ of W ~ with v(~V~)= 1 such that for any f ixed We ~V ~ 
and r > 0 ,  either the following (a) or (b) holds: (a) there exists a valley V=(ct ,  It), r 
of W containing 0 with A < r < D ,  (b) there exist two valleys V 1 =(~x, ~ l ,  r 
and V 2 = (r Ib2, r of W connected at 0 such that A 1 v A2 < r < D 1/x O 2 . 

This proposit ion will be proved in w 2. 
Given We W, we consider a stochastic differential equation 

(1.1) d X ( t ) = d B ( t ) - ( 1 / 2 )  W'(X(t)) dt, X(O) =0 ,  

where B(t) is a l-dimensional Brownian motion. The meaning of (1.1) is not 
clear a priori since the derivative W' does not exist in general. By a solution 
of (1.1) we mean a diffusion process starting at 0 with generator 

w d /  w~ d \  d d ,  
(1.2) (1/2) e ( ) - - / e -  ( ) - - |  �9 

dx \ d x ] =  dm ds 

2 ~ A = the  c a r d i n a l i t y  of  the  set A 
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x 

where s(x)= ~ eW(~)dy and m(dx)=2e-W(~)dx .  Such a diffusion can be con- 
0 

structed from a Brownian motion by a scale-change and time-change (see [6]). 
We denote the diffusion by X(t ,  W). 

We are now in a position to state our main theorems. 

Theorem l. Let W e W * ,  WaeW, 2 > 0  and let us assume that W ) - - ~ W  3 as 

2-~ o0. Then the following (i) and (ii) hold. 
(i) I f  V=(~t,  ~,  e) is a valley of  W containing 0 with A <r  1 < r  2 <D, then 

for any open set U including lb 

lim inf P{X(e ~, 2 W~)e U} = 1, 
2--+oo r e I  

where I = Jr1,  r2] .  

(ii) I f  V1 =(Irl.1, Ib l ,  e l )  and V2=(~2,  1b2,1~2) a r e  valley of  W connected at 
0 with A 1 v A2 < rt < r2 < D1 A D2, then it holds that for any open set U including 
Ibl u ~2 

lim inf P { X (e ~, 2 W,)e U} = 1, 
2 ~ o o  r e I  

where I = [r 1, r2]. 

Theorem 2. Let p and v be probability measures on W and let us assume that 
v ( W ~) =  1. I f  z~# converges to v as ).--+co for some a>0 ,  then there exist Borel 
measurable mappings 

such that 

(i) for any ~ > 0 

b~" W--*K 

P{)~-~X(e;', W ) e  U~(lb z (W))} --* 1 

in probability with respect to It as • ~ 00, 

(ii) the distribution of  the K-valued random variable Ibm. on (W, #) converges 
as 2--+oo to that o f  the random variable Ib(W) on ( W  *, v). Here Ib(W) is given 
as follows: when W has a valley V=(et ,  Ib, e) containing 0 with A < 1 < D  (case 
(a) in (ii) of Proposition I), then Ib(W)=Ib. On the other hand when W has two 
valleys V 1 =(oh, lbl, el) and V 2 =(r 2, lb 2, r connected at 0 with A 1 v A 2 < 1 
< D 1 A D 2 (case (b) in (ii) of Proposition i), then Ib (W)= ]b I k.) ]t) 2 .  

Remark 2. In Theorem 2, v becomes automatically self-similar with exponent 
~>0.  

We proceed to the random walk problem. Let W~ be the set of W ~ W  
which are step functions flat on each interval (n/2~,(n+l)/2~), nEZ. Given 

3 W~--* W always means the convergence in the Skorohod topology 
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W~e W~, we consider the solution XX(t, 2 Wx) of the stochastic differential equa- 
tion 

d X ( t ) = d B ( t ) - ( 1 / 2 )  2 W/(X(t)) dt, X(O) = xe~. .  

Let 

and 

F0~ = F~%x = inf{t > 0: X~(t, 2 W~)eZ/2 ~} 

- 

n = l ,  2 . . . . .  

We define new random variables by 

(L3) ) Y[(n)=Y[(n ,  2 W ~ ) = X  ~ Fk~, 2 W~ , n=O, 1,2 . . . . .  
k =  

We write Yz(n)= Y~ 2 Wx) and Y(n)= Y~ WO for simplicity. 

Theorem 3. Let We  W ~, Wxe W~, 2 > O, and let us assume that Wx ~ W as 2 ~ ~ .  
Then we have the following (i) and (ii). 

(i) I f  W=(~t, ]b, e) is a valley of  W containing 0 with A <r~ < r  z <D, then 
for any open set U including 113 

lim infP{Yx([ea~], 2 W~)e U} = 1, 
2--*~ r e I  

where I = [ra, r2]. 

(ii) I f  vr 1 =(eh,  ]bl, r and ~r2=(~2, ]b2, e2) are valleys of  W connected at 
0 with A1 v A 2 < rl < r2 < D1 A DE, then for any open set U including ]b 1 w 113 2 

lim infP{ Ya([e~r], 2 W~)e U} = 1, 
,.I~oo r e I  

where I = [rl, r2]. 

Theorem 4. Let # be a probability measure on W1 and let ~ ,  n> 2, be the image 
measure of  # on W~'og, under the map zl~og,. Suppose that #~ converges weakly 
to v as n ~ oe for some c~ > O. Then there exists a sequence of  Borel measurable 
mappings 

]b,: W l o K ,  n > 2 ,  

such that 

(i) for any e > 0 

Y(n, W) } 
P [(logn) ~ e~(]b . (W))  ~ 1  

in probability with respect to # as n ~oo ,  
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(ii) the distribution of  the N-valued random variable It), on (W1,/l) converges 
as n ~ c o  to that of  the random variable lb(W) on (Wg, v) which is defined as 
in Theorem 2. 

Given W e W  l, we see easily that {Y(n, W), n>0} is a Markov chain on 
2g with the transition probability 

where 

P { Y(n + 1, W) = x + 11 Y(n, W) = x} = ~ (x), 

P { Y(n + 1, W) = x -  11 Y(n, W) = x} = 1 - ~ (x), 

(1.4) ~(x)=( l  +eWt~)-wt~'-l)) - i ,  xe2g. 

Therefore Theorem 4 can be rephrased as in the following theorem, which is 
an extension of Sinai's theorem. 

Theorem 5. Let {((x): xeZ} be a family of  random variables with values in (0, 1). 
Let {Y(n, 4), n=O, 1, 2, . . .}  be a Markov chain on • with the environment {~(x), 
x e Z } .  Define VV~e W1 by 

1-r xe~ 
We(x)- W~(x-) = log ~(x) ' 

Wr is f ia t  on each interval (n, n + 1), n e2g. 

Let 12 be the probability distribution of  W e and let #~ be the image measure of  
12 under the map h~og,, n>2 ,  ~>0.  I f  12~, converges to a probability measure v 
on W with v(W *~) = 1 as n--+ 0% then there exists a sequence of  Borel mappings 

such that 

(i) for  any e > 0 

lb,: (0, 1)Z~lK, n__>2, 

P{(log n) -~ Y(n, ~)~ U~(Ib. (~))} --* 1 

in probability with respect to 12 as n ~ o o ,  

(ii) the distribution of  lb, converges, as n ~ o o ,  to that of  Ib(W), which is 
defined as in Theorem 2. 

2. The Proof of Proposition 1 - On Valleys 

We prepare two lemmas in order to prove Proposition 1. 

Lemma 2.1. Let r > 0 and WE W e. Then the following dichotomy occurs. 
(i) There exists a valley V of  W containing 0 such that A < r <__ D. 

(ii) There exist two valleys V 1 and V 2 of  W connected at 0 such that A 1 v A 2 
<r<=D i A D 2. 
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Proof The proof is not difficult although tedius. Let 

T, =sup{x<O: W*(x)- inf W>=r}, 
(x, 01 

T2=inf{x=>0: W*(x)- inf W>=r}. 
[0, x) 

In the above (and also in the below) inf W and inf W should be understood 
(o, o] [o, o) 

as W, (0) and 0, respectively. 
We notice that 0 < Tz < oe and - o e  < T~ < 0 by the definition of W *. Now 

set 

b I =inf{0_->x> Tt: W,(x)= inf W}, 
(x, 0] 

b2 = sup {0 < x < T z : W, (x) = inf W}, 
[0, x) 

V~ = W, (b,), i = 1, 2, 

=~sup{W*(x): b, _-<x<0}, 
M1 (0,  

~1 fsup {W*(x): O<-x<b2}, 
2 ---- ~ 0 ,  

~sup{bl <x_<0: W*(x)=M1}, 
al ={0,  

a2={ionf{O<x<b2: W*(x)=M2}, 

if bx < 0 
if bl =0,  

if b2>0 
if b2 = 0, 

if b~<0 
if b 1 =0,  

if b 2 >0 
if b2 =0. 

Next we define the following sets: 

ct(1)={x: Ta<=x<=O , W*(x)=MI} , 

ax(2)= {x: O<_x<_ 7"2, W*(x)= M2}, 

Ib(1)={x: 0>x>T1,  W,(x)=V,}, 

lb(2)={x: O< x< T2, W,(x)= V2}. 

We notice that if T~ < 0, then 

(2.1) H(TI, b(1)+), H(0, b0, H(0, b2), H(T2, b (2)-)<r.  

In fact, if H(Tl, b(1)+)>r, then for any positive integer n, there exist x, and 
y, such that T, <x,<y.<b(1) + and 

(2.2) W(y.)- W(x,) + 1/n > r. 
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If X,, y, -~ T1 as n ~ 0% then by the right continuity of W, (2.2) implies a contradic- 
tion. Therefore we can assume that x, ~ Xo and y,-~ Yo as n-~ oo. Then 

(2.3) Tl<Xo<Yo<=b(1) + or T l=xo<Yo .  

Thus employing (2.2) we see that 

w* (yo)- v, > w* (yo)- w,  (Xo) > r. 

This contradicts the definition of T~. Thus we obtain the first inequality. In 
the same manner we can prove that H(Tz ,b (2 ) - )<r .  Other inequalities are 
clear by the definition. 

Now the proof  is divided into the following four cases: 

[I] T l < 0  and I/1>V2 

[I'] T a < 0  and 1/1<V2 

[II] T~<0 and 1/1=V 2 

[-III] T t =0 .  

The proof  in the case [I] is divided into seven subcases [ I - lJ - [ I -7] .  
[I-1] If M2 > MI and M 2 < V~ + r, then V = ({ T~ }, Ib (2), {Tz} ) is a valley contain- 
ing 0 with A < r __< D. 

Since M2 < V1 + r <  W*(T0 and V2 < V1, we have 

(2.4) W~= V2< W,(x)< W*(x)< W*(T~) for T~ < x < b ( 2 ) - .  

As is easily seen, 

(2.5) W~= V2< W,(x)< W*(x) < W*(T2) for b(2) + < x <  T 2. 

By using (2.1), we see 

H(T1, b2)=< H(Ti,  b(1) +) v sup{M 2 - W(x): T 1 < x  < a2} v H(0, b2)< r. 

Since H ( T  2, b(2)-) < r by (2.1), we have 

A = H(T~, b2) v H ( T  2 , b (2)-) < r. (2.6) 

By the assumption, 

D = (W* (T2)-- V2)/, (W* (T1)-- V9 
>(W*(T2)- V2) A (W*(Ti)-  Vi)>r. 

Therefore we see that the valley W=({T~},Ib(2), {T2}) is a valley containing 
0 with A<r<=D. 

[I-2] If M2>M1,  M2>= V~ +r and a 2 > 0  then ~r=({T~}, lb(1), {a2})is a valley 
containing 0 with A < r = D. 
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We notice that a2-<_b(2)-. We have 

( 2 . 7 )  W * ( T 1 ) > W * ( x ) > W , ( x ) > W ~ = V 1  for T l < x < b l .  

Since for every x e(O, a2), Mz  - W,  (x) < r < Mz - 1/1 by the assumption, we have 

W,(x) > V1 for O < x < a  2. (2.8) 

Thus 

(2.9) 

K. Kawazu et al. 

W~< W,(x)<<_ W*(x)< W*(a2)= W~ for b(1) + < x < a 2 .  

Clearly we have 

H(a2, b(1)-)<(M2--  inf W,) v H(a 1, b(1)-)<r .  
[0, a2] 

Since H(T~, b(1) +) < r by (2.1), 

(2.10) A = H(T~, b(1) +) v H(a 2 , b(1)-) < r. 

By the definition and the assumption, we have 

(2.11) O = (W*(T~)-- 1/1)/x ( M 2 -  V~)__> r. 

Thus (2.7), (2.9), (2.10) and (2.11) imply the assertion I-I-2]. 

[-1-3] If M2>M1, M2 >1/1+r and a2=0,  then we show that V 1 
=({T~},Ib(1),et(2)) and V2=(r lb(2), {T2}) are two valleys connected at 0 
with A 1 v A2 <r<_< D1A D 2. 

We notice that M 2 = 0  and b2>0. Obviously M 2 = 0  and, if b2=0, then 
M2 = V2 = 0. Therefore 0 = M2 => 1/1 + r implies V 1 < 0. This contradicts V2 < V1. 
Note that a (2) § < b (2)-. Since M2 - 141, (x) < r for every x e (0, a (2) +) and r < - V 1 
by the assumption, we have 

W,(x)  > V1 for every xe(0, a(2)+). 

Thus V 1 satisfies the condition (2) in the definition of a valley. To prove A~ < r, 
we observe that 

n(a(2) +, bO<H(a(2)  +, 0) v sup { W(x) -  W(y): bl < x  < 0 < y < a(2) § } v n(0,  b~) 

=<(M 2 -  inf W , ) v n ( O ,  bO<r.  
( 0 , a (2 )  + ) 

Since H(T1, b(1)+)<r by (2.1), A1 <r.  Therefore V 1 is a valley with A 1 <r<=D 1. 
Clearly V 2 is a valley with A 2 < r__< D 2. This is the assertion [-I-3]. 

[-I-4] If M2=MI>=VI+r ,  then Vl=({T~},~(1),r and V z 
=(r are two valleys connected at 0 with A x v A z < r  
<=D1A D 2. 
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Apparently bl <a(1)- ,  a(2) + <b(2)-  and W,(x)> VI for every xs(0, a(2) +) 
since M 2 -  W , ( x ) < r <  M2-1/1 by the assumption. Thus it is enough to show 
that A 1 v A 2 < r < D  1/xD2. 

H(a(2) +, bl) 

< H(a(2) +, 0) v sup { W(x) -  W(y): bl < x < O < y < a ( 2 )  + } v H(O, b 0 

<H(a(2)+,O)v(Mt  - inf W,)vH(O,b~)  
(0, a(2) + ) 

<H(a(Z)+,O)v(M2 - inf W,)vH(O,  bt) 
(0, a(2) + ) 

d r .  

H(a(1)-, b2) 

< H (a (1) -, 0) v sup { W(y) - W(x): a (1) - < x < 0 < y < b2 } v H (0, b 2) 
< ( M 1 -  inf W,)v(M2--  inf W,)vH(O,  b2) 

(a (1 ) - ,  0) (a(1) - ,  0) 

=<(M1-- inf W,)vH(O,  b2) 
(a(1) - ,  0) 

d r .  

The above estimations together with (2.1) imply that 

A1 = H(T1, b(1) +) v H(a (2)+, b0 < r 
and 

Az = H(a(1)-, b2) v H(T2, b (2)-) < r. 

Since D 1/x D 2 > r, we have obtained the assertion [I-4]. 

[I-5] If Ms > Mz and M~ < 1/1 + r, then V = ({ T~ }, 1t)(2), {7"2})is a valley contain- 
ing 0 with A < r < D. 

By the assumption and (2.1) we have 

H(T~, ba) < H(T~, b(1) +) v sup { W(y)-- W(x): T 1 < x < y, b (1) + < y < b2} 

<=H(T1, b(1) +) v (M, - 171) v H(0, b2)<r 
and 

H(T2, b(2)-) < r, 

from which [I-5] follows. 

[I-6] If M 1 > M 2 ,  M 1 ~ V 1 -]-r and aa <0, then W=(at(1), lb(2), {Tz} ) is a valley 
containing 0 with A < r < D. 
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It is enough to prove that A < r =< D. As is previously done, 

H(a(1)-, b2) 

=<H(a(1)-, 0) v sup {W(y)-  W(x): a(1)- <x<O<y<bz} v H(0, b2) 

_-<(M~- inf W . ) v ( M 2 -  inf W.)vH(O, b2) 
(a(1) - ,  0) (a(1)-, 0) 

< r  

and 
H(T2, b (2)-) < r. 

It follows that A = H (a (1)-, b2) A H (T2, b (2) -) < r. On the other hand 

D = (W* (T2)- 1/2) A (M1 -- V2)>r. 

[I-7] If MI>M2, M~>V,+r and a l = 0 ,  then Yl=({T~},Ib(1),ct(1)) and Y2 
=(r b(2), {T2} ) are two valleys connected at 0 with A 1 vA2<r<=D a AD 2. 

Clearly sr i is a valley with A~ <r<=Dt since b(1) + =<a(1)-. The only thing 
we have to show is only that sr  2 satisfies A2<r<D2. We see that 

H(a(1)-,b2)<=U(a(1)-,O)v(M2-- inf W,)v H(O, b2) 
(a(1)-, 0) 

<H(a(1)- ,O)v( i~-  inf W,)vU(O, b2)<r 
(a(1)-,0) 

and 
H(T2, b(1)-)<r (by (2.1)). 

This shows that A 2 < r. We also have 

D 2 = ( M  1 - V2) v (W* (T2)- V2)>r. 

The proof in the case [I'] is omitted, since it is similar to that in the case 

[U. 
Now we proceed to the case [II]. Since the proof is similar to the previous 

argument, we only list results. 

[II-1] If M2>MI and M2< V2+r, then V=({T~}, Ib(1)wb(2), {T2})is a valley 
containing 0 wth A < r__< D. 

[I1-2] If ME>M1 and M2>V2+r and a2>0,  then W=({T~},~(1),{a2})is a 
valley containing 0 with A < r_< D. 

[II-3] If M2>MI, M2 > V2+r and a2=0,  then ~ r  =({T~}, Ib(1), r and V 2 
= (r b(2), {T2}) are two valleys connected at 0 with A1 v A2 < r <DI A D2. 

[II-4] If MI=M 2 and M2> V2+r, then Vl=({T~},lb(1),ct(1)wct(2)) and V 2 
=(r {T2}) are two valleys connected at 0 with A 1 v A 2 < r  
< Da ADz. 
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Finally we treat the case [III]. We need more notations. Set 

7'= sup {x < 0: W* (x) - inf W >= r}, 
(x, 0) 

g= in f{x :  0 > x >  T,, W,(x)= inf W} 4, 
(x, 0) 

~= w. (~), 
~={x: o__~__7; W,(x)= ~}, 
~4=sup{W*(x): O>_x >_b"}, 

5 = sup {0 -> x _> b: W* (x) = ~r}, 

~={x: 0_>x_>~, w*(x)=~}. 

We notice that 7 '<0  by the definition. The proof  is divided into four subcases 
[III-1]-[III-4] .  

[ I l l - l ]  If b=0 ,  then we show that W=({7'}, t)(2), {T2}) is a valley containing 
0 with A <r<_D. 

Since g =  0, we have 

(2.12) W * ( 7 ' ) > W * ( x ) > W , ( x ) > W ( O - ) > r  for every x E(T,, 0). 

Thus what we have to notice is that A < r_< D. First we show 

(2.13) H(T,, 0) < r. 

If H(T,O)>r, then for every positive integer n, there exist x,  and y, such that 
7 ' < x , < y , < 0  and 

(2.14) W(y,) - W(x,) + 1/n > r. 

We may assume that x,--*x o and Y , ~ Y o  as n--,oo. By W~W, it is impossible 
that Xo = Yo = 7" or 0. Hence it holds that 7'< Xo < Yo < 0 or 7'< Xo = Yo < 0. Then, 
from (2.14), we obtain 

w* (yo)- w ( o - )  >__ w* (yo)- w,  (Xo)_-> r. 

This contradicts the definition of T. Thus we have (2.13). By using (2.12), (2.13) 
and (2.1) we see 

A : H(T,, b2) v H(T2, b(2)-) 

= H(T,, 0) v H(0 ,  b2) v H(T2, b (2 ) - )  < r. 

Since D = (W* (7')-- V2) A (W* (T2)-- V2) => r, the proof  is established. 

[III-2] If b <  0 and ~ > W(0--), then V = ({5}, b(2), {T2}) is a valley containing 
0 with A<r<=D. 

4 The infimum of the empty set is understood to be 0 
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[III-3] If g<0 ,  / ~ = W ( 0 - )  and ~ ' + r > M ,  then it is also clear that V 
= ({ ~ }, lb (2), { T2} ) is a valley containing 0 with A < r < D. 

[III-4] If b'<0, ~ = W ( 0 - - )  and F'+r</~r,  then Va=({7"~},l~,~t) and V2 
= (~t, b (2), { T2}) are two valleys connected at 0 with At v A2 < r < Da A D2. 

Therefore we have proved Lemma 2.1 completely. 
Given We W * and r > 0, set 

]B~ = IB~ (W) = { b e ~(: there exists a valley (r b ,  e) of W with A < r __< D}. 

Lemma 2.2. For every We W e and r> 0, N~ is locally finite in the sense that 
for every compact set K in ~ ,  

~% {IbelB~: bc~K#O}< oo. 

Proof First we notice that for every ]bl, Ib26~r ,  ]bl:~Zlb2, it holds that 
[bx, b~]c~[b2,b]]=O. Suppose that it is not true. We can assume that b~- 
< b ;  <b~- without loss of generality. Then clearly W~__< W~2 with respect to 
the corresponding valleys Vt =(r ~ t ,  el) and V2 =(r Ibz, e2). On the other 
hand, b l  _-< a~- ___< b 2 and W* (af) - Wb~ > r. This implies A t > r, which contradicts 

the definition of N~. 
Thus, for any b~,Ib2elB ~ with b~- < b ; ,  we see 

(2.15) sup {W(x)-W~,}>r,  i=  1,2. 
b~ <=x<-bs 

This implies the local finiteness of ]13 r. In fact, suppose that for a compact 
set K oN,, there exists a countable sequence of sets Ib,elgr such that b ,  c~ K + 0 
and b ,  ~e lb,, for n . m .  Then {b, + } is a bounded sequence. After taking a suitable 
subsequence, it can be assumed that either the following (i) or (ii) holds: (i) 
b~- < b. + < b~-+ t ---- b,++ ~ for all n > 1, or (ii) b++ t ~ b~-+ t < b,-- __< b, + for all n > 1. If 
(i) holds, then (2.15) implies that W has no left limit at b =  l imb,  +. This is a 

n---~ o~ 

contradiction. If (ii) holds, then from (2.15) it follows that there exists 
x,e(b,++ t, b2) such that 

(2.16) W (x , ) -  W~. > r/2. 

On the other hand, from the definition of W~., there exists y,e[b~+l, b +] such 

that 

(2.17) W(y,) < W~~ + r/4. 

Let b =  lim b~-. Then from (2.16) and (2.t7) it follows, letting n--,oo, that W(b) 
n ~ o o  

<= W(b) - r/4. This is again a contradiction. The proof of Lemma 2.2 is finished. 

Lemma 2.1 implies (i) of Proposition 1. So we prove (ii) of Proposition 1. 
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Let r>0 ,  We W* and let V=(r lb, e) be a valley of W with A < r < D .  
We define r (~), lb (~) and e (~) as follows: 

r W*(x)= sup W*} 
[b~,b-] 

if there exists the nearest left neighboring point ]b I of lb. in ]]r and ~(~) = { - oe} 
otherwise; 

lb (r) = ]13; 

e(~)={x:b+<x<_b2,  W*(x)= sup W*} 
[b +,bf ] 

if there exists the nearest right neighboring point IN 2 of lb in ~3~ and r {oe} 
otherwise. Then, V (r) = (r (~), Ib (~), e (r)) is a valley of W with A < r < D. 

It is easily seen that (i) if W has a valley N containing 0 with A < r < D ,  
then V (~) is a valley containing 0 with A (') < r < D (~), and (ii) if W has two valleys 
V1 and N2 connected at 0 with A i < r < D ~ ,  i = 1 , 2 ,  then V~ ~) and V(a ~) are two 
valleys of W connected at 0 with A! ~) < r < D~ ~), i = 1, 2. 

We define the mappings ~ ( =  ~i,w): (0, oe)--+lR 4, i=  1, 2, by 

(2.18) ~i: re(0, oo) 

(a (,') +, b(,') - ,  b(, ") +, c (,') - ), 

(a!,)+, bir)-, ~h(r)+, C~)-), 

if Whas a valley 
containing 0 such 
that A < r =<D 
if Whas two 
valleys connected 
at 0 such that 
A1 v A2 < r < D 1  ADz. 

Owing to Lemma 2.2, 1B /={b- :  IbeN,} are locally finite sets decreasing in 
r. This implies that ~i, i=  1, 2, are step functions which have finitely many 
jumps in each bounded interval away from 0. 

Let v be a self-similar probability measure on W with exponent ~ > 0  and 
v (W #)=  1. It is easily seen that for r > 0  and 2 > 0  

(2.19) 

Thus we have the scaling property 

(2.20) {2-~ V(zr)(W), r>0, v} ~ {V(')(W), r>0, v}, 

where & means the equality in distribution. 
If r is not a jump point of ~bi(W ), We W *, then 

A ( r ) ( W ) < r < D ( r ) ( w )  or A I r ) ( W ) < r < D ! r ) ( W )  
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according as W has a valley containing 0 for r or W has two valleys connected 
at 0 for r. Therefore, in order to complete the proof of Proposition I (ii), it 
is enough to show that, for i = 1, 2, 

pi(r) :=v {r is a jump point of ~i} = O. 

Since the set of jump points of ~i is locally finite, 

j i ,=inf{r> 1 : ~i has a jump at r} 

is strictly larger than 1. Therefore we obtain 

pi(r)<v{ji<r}J,O as r [1 .  

By the scaling property (2.20), pi(r) is independent of r > 0. Consequently pi(r)-O, 
i=1 ,2 .  

Keeping in mind the definition of a valley, we can easily verify the following 
1emma. 

Lemma 2.3. Let V =  (et, Ib, r be a ,;alley of We W #. Then for any e > 0, there 
exists a set of  numbers 

~+ =6+(~), 

satisfying the following: 

(i) (1) 

(2) 

(ii) 

(iii) 

(iv) 

a +=a+(e),  6-+=6-+(e), b-+=b-+(e), 
c =c  (~) ,  a - = e - ( ~ )  

~+ <a+ <_~+ <=E- <_b- <=b -, 

6+ <_b+ <_b+ < ~ -  <_c- <_~ _ = _ _ 

~+ <~+,  6 -+ <t~ -+, 6-  < ~ - .  

~+(e)T a+, 6+-(e)Tb -+, 6~(~)'fc-, 

a+(e)$a +, t)+-(e)~b +-, d - (e )~c- ,  as e~O. 

inf W ~  W~c-e, inf W ~  W~--e. 
(a+ ,h+) (~, ,,~-) 

sup {W(x): x e ( 6 - ,  b- )  u (6 +, b+)} < W~+e. 

3. Some Lemmas  for Exit Times 

Throughout this section, we maintain the assumption of Theorem 1, that is, 

W ~ W * ,  W ~ W ,  2 > 0 ,  
and 

W~ ~ W as 2 ~ ~ in the Skorohod topology. 
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Thus there exist e~>0 and 9x, 2>0 ,  such that ex$0 as 2 ~ o e ,  ~o~ is an order 
preserving homeomorphism on IR, and 

(3.1) sup I Wo qo,~ (x) - W~ (x)[ + sup ](p,~ (x ) -  x[ < e~.. 
xeN_ x ~ R  

From now on, we fix these {~, 2>0} and {q)a, 2>0}. 

Let m(dx)=2e-W~X)dx and s(x)= feW(y)dy. Let {B(t), t>0} be a standard 
0 

one dimensional Brownian motion and set 

(3.2a) 
1 t 

L(t, x)= l im- -  ~ ltx, x+~l(B(s)) ds, 
el.O ~ 0 

(3.2 b) A(t) = i e -  2w(s- '(B(s))) ds 
0 

Then 

= ~ e -2w(s- l(X))L(t, x) dx. 
R 

(3.3) X(t, W) = S-I(B(A-I(t))) 

is a diffusion process starting at 0 with speed measure m(dx) and scale function 
s(x). 

Now we set for zMR 

(3.4) xz(t, W)=z + X(t, w z) 

where W~(y)= W(y + z)-W(z).  Then X~(t, W) is a diffusion process with genera- 
tor (1.2) starting at z. 

For  a < c, let 

and 
z(a, c )= in f{ t>0 :  B(t)6(a, c)} 

L(a,c,x)=L(z(a,c),x), x e ~ .  

Then the following lemma can be proved by using the well-known scaling rela- 
tion of B(t) (see [-2]). 

Lemma 3.1. For every 2 > 0  and a, celR, it holds that 

{2 L(a, c, x), x ~IR} a___ {L(2 a, 2 c, 2 x), x sN.}. 
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x 
(3.5) sx(x) = ~ e ~w~y) dy, 

0 

(3.6) A~(t) = i e-2gwatsY ,(B(s)))ds 
0 

= ~ e-2~w~(s~l(~))L(t,x)dx, 
R 

x~( t )  = x (t, ,~ w~.) 

= s~- 1 (B (Af 1 (t))), 

X ~ ( t ) = x + X ( t ,  2 W[), xe]R,  

T~.(a, c ) = i n f { t > 0 :  Xz(t)r e)}, 

T~ (a) = inf {t > 0: X~ (t) = a}, 

Tx (x; a, e) = inf {t > 0: X~(t) r (a, e)}, 

T~(x; a ) = i n f { t > 0 :  X~(t)= a}. 

As is easily proved, we have the following lemma. 

Lemma 3.2. (i) Let a < 0 < c. Then 

Tz (a, c)= A z ('c(s a (a), s x (c))) 

= i e-~W~(z) L(s~(a), s~(e), s~.(z)) dz. 
a 

(3.7) 

(3.8) 

(3.9) 

(3.1o) 

(3.11) 

(3.22) 

where 

(3A3) 

(3.14) 

(ii) Let a < x < c. Then 

c - x  

Ta(x; a, c)= 5 e-aW~(z) L(s~(x; a--x), s,(x; c--x), sa(x; z)) dz 
a - - x  

a= f e_~W,(Z)L(~(x; a), ~a(x; c), ~a(x; z)) dz, 
a 

x + z  

sa(x; z)= ~ e~W~(r)dy=e -aw~(x) f eXW~(Y)dy, 
0 x 

x 
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L e m m a  3.3. Let W = (r 1), r be a valley of  the environment W with inner directed 
ascent A and let 5 > 0 .  Let F a and F 2 be arbitrary closed intervals included in 
(a +, b + ] and [b-,  e-), respectively�9 Then, for any suffieiently small ~ > O, 

(i) 

(ii) 

(iii) 

(iv) 

inf P{T~(x; 5(-~),/{(~)) = T~(x;/{(~))} -~ 1, 
x~F1 

inf P { Tz (x; 5~),/~(~)) < e z (a +.)} ~ 1, 
xaF1 

inf P{Tz(x; ~ ) ,  d~))= Tz(x; ~(~))} -~ 1, 
x~F2 

inf P { Tz (x; ~(~), 5(~)) < e z(a + o)} ~ 1 
xeF2 

as 2--+oo, where 5~)=~p;l(5+(e)), /~)=q~j-l(/~+(e)), etc. are defined in Lemma 
2.3. 

Proof Set F~ = [u ,  v] c ( a  +, b+].  W e  may assume that u is a continuity point  
of W wi thout  loss of generality. We choose a positive number  e o so that  L e m m a  
2.3 holds with e = e o  and e o < W ~ -  sup W. Let e > 0  be an arbi trary number  

[u,b+) 
such that 0 < 4e < e o A 6. Then, noticing (3.1)and (iv) in L e m m a  2.3, we have 

sup { Wz (y): y ~ (u,/{(~))} _-< sup { Wo q~a (y): y e (u, b(~))} + ea 

< sup { W(y): y ~((u),/~ +)} + e~ 

< W,~- eo + e + ez 

for sufficiently large 2 by the continui ty of W at u. In the same manner,  using 
(3.1) and (iii) in L e m m a  2.3, we have 

inf{Wx(y): ye(5~), a(~))} __>inf{Wo r ye(5(~), d(~))} -~x  

=>inf{W(y): ye (5  +, d+)} - e z  

__> W ~ , - e - ~ .  

Thus we see that, for every x~F~, 

P{T~(x; 5a) , {~))< T,~(x; /~(~))} 

( b(~) \ 11 b(~> \ 

x / l \ ~ ( ~ )  / 

b(+z) \ I/~&) \ 

u / 1 \ ~ ( ~ )  / 

< ( c - - a +  ) e) . (2  e + 2e .~_ Co) ...+ 0 

= (ci + - 5  + - 2 e ~ )  
as 2--+oo. 
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Let us prove the formula (ii). We employ a two dimensional Bessel process 
{R (t), t > 0} starting at 0. Then it is known (cf. [6], p. 75) that 

(3.15) { L ( - - ~ ,  1, l - - t ) :  O<_t<_l}a={R(t)2: 0=<t=<l}, 

(3.16) {tR(t-1): t>O} a={R(t): t>0} .  

Let us fix x~F1 and set, for ~(~)_<y=</~(~), 

= 

3(y) = 1 - ~ (y) 

b&) 
=sz(x;b~)) -1 j eaW*(~)dz. 

Y 

Then, by (ii) in Lemma 3.2, we have 

b(+~) 

Tz(x;a~), b~)) -  -e S e-ZW~(')L(ga(x; a~)), ~z(x;/~)), ~z(x; y ) ) d y = K  1 +K2,  

where K 1 and K 2 a r e  the integrals over (a(~), x) and (x, b(~)), respectively. By 
Lemma 3.1, we have 

(3.17) K1 =a $a (x;/~(~)) i e -  ~ w~(y) L(o (~(~)), 1, ~ (y)) dy 
a(?a) 

<ga(x; /~))  i e-aW~(y) L( - 0% 1, o(y)) dy 
g, (+a ) 

b(+~) i <= S e~W~(Z)dz e-ZWa(X)dysupL(-~176 
x ~(+~) t <- o 

v ' ( ~ ) - - " ( ~ v  ~ o~'v ~ t - -  o% 1, t) ,  
t=<o 

where we used the following estimate 

sup { W~ (z); x < z </~)} - inf { W a (y); 8~) < y < x} 

<sup{W(z);  ~o~(x)<z<b+}-inf{W(y); a + < y  < rp~(x)} 

+ 2e + 2~z (by (3.1) and (iii), (ii) in Lemma 2.3) 

< A + 2 e + 2 ~ a .  
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On the other hand 

(3.18) K 2 ~ ~z(x;/)(~)) ~ e-~Y~(')L(~(5~)), 1, ~(y)) dy 
x 

b&) 
<gz(x;/~(~)) ~ e-aW~(') L(--oo, 1, 1-Z(y))dy  

x 

(by (3.15) and (3.16)) 
b(+~) 

a= gz(x; /~(~)) S {e-~W~(')~(y)} S(y) R(~(y)-1)z dy 
x 

= ~ 5(Y) R(~(Y)-I)2dy ~ e~(W~(~)-w~(y))dz 
x y 

"+ ~+ 2 e,~(A+2e+2e.Oj2~ <_(b(a)-a(a)) 

where 

(3.19) 
i,&) 

J~= ~ ~(y) R(~(y)-a)2(1)~)-x) - l  dy 
x 

and we used the estimate 

sup {W~(z)- W~(y): x<y<z<t;(~)} 
< sup {W(z)-- W(y): a + < y < z < / )  +} +2~ z 

(by (3.1) and (iv) in Lemma 2.3) 

< A + 2 e + 2 e ~ .  

By easy calculation, we see for every t > 0 

E {t2 R(t-1) 4 } = t -  2 E {lt R(t-1)] 4} = t -  Z E {R(t) 4} =8,  

and hence we have by Schwartz's inequality 

i,&) 
(3.20) E {J~} =< S E {If(y)[ z R (8(y) -1)4} (l)~) -- x) - i  dy = 8. 

x 

Consequently by (3.17), (3.18), (3.20) and Chebychev's inequality, we have 

P{Ta(x; 7,+ (,+ ~....,~(A+,5)~ ~,,()~), '-'(2)1/- ~ ( 

< P { K  1 >(1/2) e a(a +~)} + P { K  2 >(1/2) e a(A + ~)} 
___< P {sup L ( -  o% 1, y) > (1/2) (/~(~) - 5(~))- 2 e).(a- 2~- 2 ~,a.)} 

y_-<0 

+P{Jx>(1/2) (b(;o-a(x)) "+ "+ -ZeX(~-z~-2~)} 
_-<P{sup L(-- oo, 1, y )>  (1/2)(/~+ --5 + +2ex) -2 e x(~ 

y<0  

+32(c---a++2ea)4e-ZZ(o-2"-2"~)-*O as 2-~oo 

uniformly in x e F  1. 
In the same way we can obtain (iii) and (iv). 
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L e m m a  3.4. Let ~ = (r Ib, e) be a valley of the environment W with inner directed 
ascent A and depth D. Let 6 > 0  and F be an arbitrary closed interval included 
in (a +, c-  ). Then, for a sufficiently small e > 0 ,  it holds that, as 2 ~ oo, 

and 

P { Ta (b(~); 8(~),d~)) > e ~(D- ~)} ~ 1, 

P{ T(~'(~); ~(~),8(~)) > e ~w-  ~)} ~ 1, 

infP{T~(x; 8(~),8(~)) > e z(D-a)} ~ 1, 
x ~ F  

where gt~)= p;a(gt+ (e)), @z)= r +(e)), etc. 

Proof Sett ing F1 = F ~ ( a  +, b +] and  172 =Fc~ [b-,  c-), we take  a sufficiently small  
e > 0  so tha t  L e m m a  3.3 holds. R e m e m b e r  tha t  0 < 4 e < &  We can assume w,  
< W~, so D =  W E -  W~. Not ic ing  (3.1) and  (iii) in L e m m a  2.3, we have  for suffi- 
ciently large 2 

(3.21) 

where  

2 - t  log ga(b~); d(~)) 

k&) 
> 2  - ~ l o g  ~" e~W~(Y)dy 

~C~.) 

> 2 -1 log {(d - -- g -  - 2 ez) exp [2 inf { W z (x): 6~) < x < a(~)}] } 

> 2  -1 l o g ( J -  - 6 -  - 2ez) + W , - - e - e x  

>__ w : - e + ~ i ,  

e~ = 2-1  (log (~- - 6 -  - 2 ez)) ^ (log (fi + - 6 + - 2 ca)) - ez 
-- ,0 as 2--+oo. 

In  the same manner ,  recall ing W E < W,,, we have  

(3.22) 2 -1 log Ig~(b(~); 5(~))1 > W E - e + e i .  

Set 

and 

Then  (3.21) a n d  (3.22) imply  tha t  

H ,  > exp {2(W E -- e + e~)}. 
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Then, by  L e m m a  3.1 and (iv) in L e m m a  2.3, we see that  

T (z) .'= T~. (/)(~); 5(~), 5(~)) 

~= H a ~ e -zw~(r) L(3~(5~)), ~a(5~)), 3z(Y)) dy 

b&) 
>Ha ~ e-ZW~(r)L( - 1,1, 2z(y)) dy 

f,&) 

> 
'-'(2)I c *-"2, 

where 

L a = i n f { L ( - -  1, 1, y): ye(~z(~(~)), 32(/~(~)))}. 

Thus  

(3.23) 

On the other  hand, we have 

(3.24) 2~ (6(~))~0, 

because 

T (~) > (b + - 5 + - 2 ez) e~(D- 2~ + ~a-,,) La. 

as 2 ~ ,  and ~z(b(~))=0, 

13z (~'(~)) [ _-< (b~) -- ~'(~)) exp [2 sup { Wx (x): x e [~'(~), b(~)J }] e -  x(w -~ + ~;,) 

< ( b + - 6 + + 2 e ~ ) e x p { - 2 ( W ~ - W ~ + 2 e + e i - e ~ ) } - - , O  as 2--+oo. 

Therefore by  (3.23) and (3.24), which implies L~ > 0 a.e., we obtain  

(3.25) P{V(X)<e ;'(~ <__P{L)<(b + --5  + --2ea) -1 e - a(~ 2~ +~;~-~*)} 

~ 0  as 2--+o0. 

The second formula is obta ined in the same manner.  The third formula is p roved  
as follows. Let xeF.  Then we can assume xeF1. Therefore 

P{Ta(x; "+ > e  z(~ a(~), ~(2)) 
> P{T~.(x; a(~)'+, d~))> e ~( '-~ and T~(x; a(~),- + b(~)) = T~(x; b(~))} 

= P { T2 + Tz (x; b~)) > e z("-  ~) and Tz (x; 8(~), b(~)) = Ta (x; b(~))} 

(where T 2 = i n f { t > 0 :  X~(t+ T~(x; "+ -+ b(z))) r (a(x), ~(~))}) 

> P { T; > e z(D- 4)} + p { T~ (x; 5(~), b(~)) = Tz (x; b(~))} - 1 

(by employing the strong M a r k o v  property)  
"+ . ~ - I -  ~ 

= P{ T~ (b(~), a(a), c(~)) > e ~(~ a)} 

+P{T~(x; 5fi), b(~)) = Ta(x; b(~))}- 1 

as 2--* oe by (3.25) and L e m m a  3.3. 
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4. The Proof  of  Theorem 1 

In this section we prove Theorem 1 by using the coupling method. We maintain 
also the assumption of Theorem 1 throughout this section, that is, 

and 
~--~w 

W e W * ,  W~eW, 2 > 0 ,  

as 2 ~ oo in the Skorohod topology. 

Therefore we also have the relation (3.1) for the homeomorphism ~oa on R 
and the positive numbers ez. 

Let V =  (r b ,  e) be a valley of the environment W. Let e be an arbitrary 
small positive number. We employ the abbreviation 5§  "+ a(z), etc., for 

+ (e), ~-  (~), ~o~- 1(5 + (8)), etc., respectively. 
In addition to the diffusion process X~(t) we also consider a reflecting diffu- 

sion process J(x(t) on the interval [5(~), d(~)] with (local) generator 

(4.1) !e~W~(x) d [ e-~W~(~) d'~ 
dx ~ dx} 

and with initial distribution 

(4.2) m~ (dx) = e- ~ w~(x) dx /  S e- zw~(,) dy. 

Since ma is an invariant measure of the reflecting diffusion Xa(t), the process 
Jfz(t) is stationary. Now we couple the processes X~(t) and )?a(t) as follows. 
Enlarging the basic probability space on which X~(t) is defined, we assume 
that X~(t) and J?a(t) are defined on a common probability space (the enlarged 
probability space) in such a way that (i) X~(t) and )?~(t) move independently 
according to their own probability laws until they first meet each other, (ii) 
after the first meeting time they move together up to the (common) exit time 
from the open interval (5~), d~)) and that (iii) after the common exit time they 
again start moving independently according to their own probability laws. 

Remark. In the above (iii) we may even make the process stop at the common 
exit time since we do not use the process after the exit time. 

It is not hard to construct such a coupling. We denote by Pz the probability 
measure on the common probability space. Let 

a ~ = i n f { t ~ 0 :  X~(t)=)(z(t)}, 

T~=inf{t>=a~: X~(t) ~(5~z), d(~))}, x~[5~), d(~)]. 

Note that e is hidden in -§ a(a)=~o~-l(5+(e)), etc. Then the above (ii) means that 
X~(t)=Xz(t ) for a~_--<t<_-- T~ ~. 

First we show the following lemma for the valley V = (et, Ib, r of the environ- 
ment W. 
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Lemma 4.1. Let U be an arbitrary open set including lb. Then for sufficiently 
small e > O, it holds that 

m ~ ( U ) ~ l  as 2 ~ .  

Especially we obtain 

Proof For every sufficiently small e > 0 it holds that, for every sufficiently large 
2, 

U ~  Uz-'=~0~-l({x: a-  < x < c +, W~ > W ( x ) -  2e}). 

Consequently using, (iv) in Lemma 2.3 with the above e > 0 and (3.1), we obtain 

/ bC.) 
m~(U#)<( ~ ~-~w~(Y)dy)/ ~ e-~W~(Y)dy 

_<-- ( ( ~ -  ~ ) )  e - ~(w~ + z~ - ~ ) / ( ( 6 ~ )  - -  ~ )  e - ~ ( %  +~+ ~z)) 

< ( ~ - - ~ + + 2 e z ) ( t ) - - ~ - - 2 e a ) - ~ e - Z ( ~ - 2 ~ ) ~ O  as 2 ~ .  

To prove the second assertion, it is enough to prove 

(4 .3)  

and 

(4.4) 

Notice that 

m~( ( /~ ) ,~ ) ) )~0  as 2 ~ o o .  

inf{ W~(y): a~)< y < ~'~)} __>inf {W(y): a + < y < ~ - }  - e x >  W~ + 2 t / o -  e ~ 

for some q o > 0  by the shape of the valley. Since b'- < / ) -  and WeSV e, we can 
find b 1, b 2 e N  such that b I N b -  __<b 2, b I < b  2 and 

sup {W(y)' b 1 < y < b  2} N W~ + t/o. 

Therefore, noticing 

sup { W~(y): b~x)<y<b{x)} ___ sup { W(y): b 1 < y < b  2} + e x <  W~+qo +ax, 

we have 

<= ~ e-~W*(Y)dy dy 

Thus (4.3) has been proved. In the same manner, we can prove (4.4). 
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L e m m a  4.2. Let 5 > 0  and let F be an arbitrary closed interval included in (a +, c-). 
Then for sufficiently small ~ > 0 

inf~)~{a~<e~(~+~)}~l  as 2-~o~. 
xei F 

Proof Let us choose  a sufficiently small e > 0  which guarantees L e m m a  3.3 
for F~ = F ~ ( a  +, b+],  Fz=Fc~ [b-,  c - )  and 6/2 in place of 6 in L e m m a  3.3 and 
guarantees also L e m m a  4.1. Let us set F~=F~ c~ {x: x < / ~ ) }  and F;'=F~ c~ {x: 
x > / ~ ) } .  First  we discuss the case xeF~. We have 

inf lPa {a~.__< Ta(x;/~(~))} 
xeFi  

__> infP~ {2z(0)s  Ix , /~ ) ]  and )~a(T~ (x; /~)))  ~ [x , /~) ]}  
xaFi 

__> inf2m~([x, / )~)])--  1 
xeFi  

>__ 2 ma([g~),/;(~)])-- 1 --* 1 as 2 ~  by  Lemma4 .1 .  

Together  with L e m m a  3.3, this implies 

inf IP~ {a~ < e ~(A + ~)} 
xeFi 

> inf IP~{a~_<_ T~.(x;/~(~)) and T~(x;/~(~)) < e  ~(A+~/2)} 
xeFi  

> inf ~'a { a~ < T~ (x;/~(~))} + inf Pz { T z (x;/;(~)) < e a(A + e /a )}  _ 1 
x~Fi xeF1 

~ 1  as 2 ~ o e .  

Next  we discuss the case xeF~'. We have 

inf ~x {o-~ < e a(a*~) } 
Ff '  

> inf Pa {o-~ < e a(A + ~) and T~ (x; b'(~)) < e a(A + x2)} 
Fi '  

> inf Px {o'[ x + Tx (x; g(~)) < e z(A + ~) and T~ (x; g(~)) < e x(A + e/2)} 

(by using the strong M a r k o v  Property)  

>-- Px {a~ (a, < eZ (a + O)(1 -- e -  ),0/2)} 
+ inf P { T~ (x; ~'(~)) < e a(a + x2)} _ 1 

F1 

1 as 2 ~ oo (by L e m m a  3.3). 
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Here o-~ ~ = inf { t > 0: X~ (T[ (x; ~(~)) + t) = 2 4 ( T~. (x; ~'(~)) + t)}. Thus we obtain 

inflP~{a~<eZ(a+a)}-+l as 2-+00. 
F1 

The estimation over F2 is verified in the same manner. 

The Proof of Theorem I (i). Let ~r = (~, Ib, e) be a valley of W containing 0 with 
A < q < r z < D  and U be an open set including lb. Since a + < 0 < c  -, we can 
pick up a closed interval F such that OeFc(a +, c-). We choose a sufficiently 
small e > 0  such that for 6 with 0 < 5 < (D-rz) /x ( r l - A )  and F, (i) Lemma 3.4, 
4.1 and 4.2 hold and 

(ii) Pz{7"z(8~),da))>eaW-e)}-+l as 2-+o0, 

where the notation T~(a, c) stands for the first exit time from (a, c) after a~ 
for the process Jfz(t). Let re[rl, rz]. Then 

P{X(e xr, 2 Wx)e U} 

= IP;. {X ~ (e~9 e U} 

_-> ]Px {~r ~ _-< e ~'1, X ~ (e ~) e U and e ~:  __< Tx (5(~), ~))} 

= P~ {a ~ =< e i~, ) ~  (e~') e U and e ~ __< ~.(5(~), ~(~))} 

> IPa {a ~ < e ~'} + ma(U) + IP~ {e *'~ < %.(aa) , d(~))} - 2 

--+ 1 as 2-+ o0 (by Lemma 4.2, 4.1 and 3.4). 

To prove the latter assertion of Theorem 1, we prepare another lemma. Let 
us assume that the environment W has two valleys V l = ( e h ,  lbl, %) and V a 
=(r lb2, %) connected at 0. We can pick up continuity pints xl e(a~-, c ; )  and 
x2 e(a~-, c2) of W such that 

(4.5) H(c+,xl)<=A1 and H(a~,xz)<Az, 

where H( ' ,  ") is the function introduced in the definition of a valley (Sect. 1). 
In fact, when b~-<c~-, by the definition of the inner directed ascent, any 

continuity point Xl in (bi-, c~-) satisfies H(c~, x 0 < A 1 since H(c~, bl )< A1. 
We consider the case where b r = b [ = c [ .  Then, since a~<c;  and W~ 

= W(b~-)  by the definition, we can find out a point xl of continuity of W 
such that a~-<Xl <bi-  and W~__< W(x)< W~+A1/2 for every xe[xi,  b;]. There- 
fore H (c~-, X1) ~ A i. 

In the same manner, we can pick up a continuity point x2e(a~, c~-) which 
satisfies (4.5). 

Hereafter we consider a pair (x~, x2) fixed. 

Lemma 4.3. Let ~ > O. Then 

P{Ta(xl,x2)<e~talva~+a)}--+ l as 2-+o0. 
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Proof The method of this proof is almost the same as that of the formula 
(ii) in Lemma 3.3. We employ a two dimensional Bessel process {R(t): t>0} 
starting at 0 and let 

(4.6) 
~ 2  

Tx (x,, x2) = ~ e - ~ w~y) L(sz (xl), s~ (x2), s~ (y)) dy = K i + K i ,  
X l  

where K~ and K~ are the integrals over (xl, 0) and over (0, Xz), respectively. 
Let us consider K~. Choose e > 0  so that 4 e < 6  arid set 

~I(Y) = sa(y) / ls ; . (xx) l ,  

31(Y)= 1 +61(y) 
Y 

= ]sx(x0l-X ~ eZW,~Z)dz. 
Xl 

Then 

(4.7) 

where 

0 

Ki & [s~(xl)] ~ e -~w~') L ( -  1, 6t(x2), 61(y)) dy 
Xl 

0 

< ]sa (x0] ~ e- a w~(,) L(-- 1, 0% 61(Y)) dy 
Xl 

(by the symmetric property of Brownian motion) 
0 

]sa (x0] ~ e- a w,~,) L( -- o% 1, -- 61 (Y)) dy 
X1 

(using (3.15) and (3.16)) 
0 

L ]sx(xl) I ~ e-aWa~y)31(y) 2 e(31(y)-1)2 dy 
X. I 

0 y 

= ~ 31(y)R(~a(y)-t) 2 dy I eX(W~(~)-w~(r))dz 
x l  X l  

< (x2 - xl) 2 e ~(a' + z, + z~) jj,, 

0 

J~ = ~ 3x(y) R(31(y)-1) 2 (--X1) -1 dy. 
Xl 

Here we used the estimation for sufficiently large 2 

sup{~(z) -  W~(y): xl <z<y<0} 
<sup{Wa(z)-- Wz(y): Xx <z<y<k~(x)} 

<sup{W(z)--  W(y): q ~ ( x O < z < y < k  +} +2e~ 

< A l + 2 e + 2 e ~ .  
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In  the same way, we ob ta in  

K~ < (x 2 - -  x 1 )  2 e x(a~ + 2e + 2~. 0 j[,, (4.8) 

where 
oc 2 

J[' = ~ 82(Y) R(Sz(Y)-l)  2 x21 dy, 
0 

x2 

~2 (Y) = sz(x2)- 1 ~ eZW~(~) dz. 
Y 

By using Chebychev ' s  inequal i ty  as in (3.20), we have  

P{ Tz(xl, x2) > e z(A' " ~  +~)} 

< P { / q  > (1/2) e ~ ,  v ~ +.)} + p { K i  > (1/2) e ~"~ v .~ +,)} 

< 6 4 ( x 2 - x x )  4 e -z~(~-2~-2~)--*0 as 2 ~  00. 

The Proof of Theorem 1 (ii). Let  W have  two valleys V x = (~tx, lbl, el) and  s r  2 
=(r b 2 ,  ez) connec ted  at 0 with A =A~ v A 2 < D  1 A D 2 -=D. Let  I = [r~, r2] be 
an a rb i t r a ry  interval  such tha t  A<ra <r z<D and  U be an a rb i t ra ry  open  set 
including b~ u Ib2. We  choose 6 > 0  so tha t  6 < ( r ~ - A ) / x  (D- r2 ) .  Since x~ was 
chosen as an inner  po in t  of  (ai-, c~-), we can find out  a closed interval  F~ such 
tha t  xieF~c(a +, c/-), i =  1, 2. Then  we have, for rEI, 

(4.9) P {X (e ~'r, 2 W~) ~ U} 

> P{Xz(ea')e U, T,~(xl, xz) < e z(a + ~)} 

= P{X~(e~r)~ U, T~(xa, xz) = T~.(Xl) < e z(a +~)} 

+ P{X~(e'~r)~ U, T,~(x~, x2)= T~(xz) < e z(a+~)} 

(by the s t rong M a r k o v  proper ty )  
e X ( A  + 6) 

= ~ P{Tz(xt,x2)=Ta(x~)~du}P{X~'(e~r-u)eU} 
0 

e A ( A  + 6) 

+ ~ P{T~(x~,xz)=Tz(xz)~du}P{X~(e~r-u)~U}. 
0 

By the coupl ing me thod ,  we show that ,  for i = 1, 2, 

(4.10) inf P{X~'(eZr-u)~ U} = 1 +o (1 )  
u e ( O ,  e '~(  A + '~)) 

as 2--.  oo. 

F o r  a suitable posi t ive n u m b e r  e and  for  each i =  1, 2, we consider  a reflecting 
diffusion p r o c e s s  Xi, a(t) on the interval  ~+ "-  [a,z),ci(z)] with genera tor  (4.1) and  
with initial d is t r ibut ion 

/?' mi,~(dx)=e-~W~<~)dx e-~W~(Z)dz. 
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For each i=1 ,2 ,  we couple X~'(t) and Xi, z(t) in the same way as we have 
done for X](t) and )?z(t). The probability measure on the common probability 
space is denoted by lPi, z. Lemma 4.1 and 4.2 are valid with 6>0,  mz=m~,z 
and F=F~, i=  1, 2. We can choose e to guarantee also Lemma 3.4 with Vi, 
6 and F~, i=  1, 2. For  each i =  1, 2, denote by a~',(2) the first meeting time of 
X~'(t) and )(i, ~.(t). Then 

P{X~'(e ~r- u)e U} 

=> ~ ,  z {a~"(2) < e z(A'+~), Xi,z(e z~- u)a U, e ~(~ < Tz(xi; ai(z),'+ d&))} 
1 

> inf ~i, ,  {o-~ (2) < e a(a' + e)} + mi ' a(U) 
xeFi 

+ inf P { Tz (x; ~ffz), c/~z)) > e~tD- ~)} - 2 
x~Fi 

-~ 1 as 2 ~ ~ (owing to Lelnmas 4.2, 4.1 and 3.4). 

Inserting (4.10) into (4.9), we have 

P{X(e~r,2W~)eU}>P{T~(Xl, X2)<e:(A~vA2+~)}+o(1) as 2--.oo. 

This leads to the conclusion by Lemma 4.3. 

5. The Proof of Theorem 2 

5.1. We Prepare Lemmas 

Lemma 5.1. Let S be a Polish space with a Borel probability measure #. For 
any e > 0  and Borel map f from S to the space I(  defined at the beginning of 
Sect. 1, there exists a continuous map f~ such that 

(5.1) E {Pl (f~, f)} = [. P, (f~ (x), f(x)) # (d#) < 5, 

where P,(', ")=P(', ")/x 1. 

Proof. Choose a countable dense family {K~, i=  1, 2 . . . .  } in K and, for each 
K e N ,  let q~,(K)= K l where 

/=min{i :  1 <iNn, p(K~, K ) =  min p(Kj, K)}. 
l < j < n  

Then clearly q~,(K)---,K as n~oo .  Therefore, there exists an n such that 

(5.2) 

We set 

E {Pl (~o, o f  f)} < e/2, 

A!")= {xeS: (9n of) (x)= Ki} 

= {xeS: f(x)eq)21(Ki)}. 
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n 

Then AI "), 1 < i < n, are mutually disjoint and ~ AI ") = S. Choose compact subsets 

F~ (") of AI ") such that '= '  

#(Al")--Fi("))<e/2n, l <_i<_n, 

and if we set 6 = (1/2) min 0ij where Oij is the distance between Fi (") and F) ") 
l<=i<j<n 

in S, then 6 > 0. Therefore we can define a continuous map f~ by 

{0} if xr  0 U~(Fi (")) 

L(x)= / ~ '=~ 
6-Oo'Fi("))  Ki 5 if x~U~(Fi(")), 

where Uo(Fi (")) is the 6-neighborhood of Fi (") and O(x, K) is the distance between 
x and K. Then 

E {P,(L, (p of)} < e/2 

and this, combined with (5.2), implies (5.1). 

Lemma 5.2. Let S be a Polish space and let X,  X ,  (heN)  be random variables 
with values in S. I f  X ,  converges to X a.s. as n--.oe, then, for any N-valued 
Borel function f on S, there exists a sequence { f , } , ~  of N-valued Borel functions 
such that f ,  (X,) converges to f ( X )  as n--+ Go a.s. 

Proof Let # be the probability distribution of X. According to Lemma 5.1 
we can find a sequence {gk} of continuous maps on S to N such that 

E {pt (gk (X), f(X))} = ~ Pl (gk, f )  d# < k-  2. 

Then by the Borel-Cantelli lemma, gk(X) converges to f ( X )  as k-~oe a.s. Since 
X,  converges to X as n ~ o e  a.s., we can choose n~ < n 2 <  ... such that 

P { sup Pa (gk (X,), gk (X)) > k-  1 } < k -  2. 
n~nk  

Therefore by the Borel-Cantelli lemma 

Set 

sup pl (gk ( X,), gk ( X)  ) --" O as k ~ o o  a.s. 
n~nk  

L, , fgl(x) for l=<n<n2 

for nk~n<nk+l ,  k = 2 , 3 , . . . .  

5 The notation rK stands for {rx: x~K} 
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Then 

max p d f , ( X . ) , f ( X ) )  
I lk  --< n '< n k  + 1 

=< max Pl(gk(X,) ,gk(X,))+P~(gk(X),f(X)) 
nk ~:n<nk+l 

=< sup p, (gk (X,), gk (X)) + P l (gk (X), f (X)) --+ 0 
n~tlk 

as k-+oo,  a.s. 

L e m m a  5.3. For any f ixed ~ > O, 2 > 0 and We W,  

{ x  (t, ~ ~ w) ,  t > o} ~ {,z- = x (~t ~ = ~, w) ,  t > o}. 

Proof By the definition of the process we have 

x(t, ~ ~ w) a= s2, I (B (A2 ~ (t))), 
where 

x 

S=, z(x) = ~ e z*1w{y) dy 
0 

t 

A=, z (t) = A=, z (t, B) = ~ e -  2 z~ w<: L ~<n<:))) ds 
0 

and B(t) is a one dimensional  Brownian motion.  Since 

.~.~x 

s~,z(x)= ~ eW<Z=Y)dy=2 -~ S eW<y)dY=2-~s(2~x), 
0 0 

we have s~, ~ (x)= 2-~s-1(2~ x). If we set B,( t )= 2-=B (22~ t), then B~ (t) is a Brow- 
nian mot ion  and we can see that  

s21 (B (A;*a (t, B))) =a s~, I (B, (a  2 z* (t, B,))), 

A,, a (t, B,) = i e-  2 )L,~ z W(s2.1(B•(s))) ds 
0 

k , z ~ t  

= ~ - 2 o ~  f e-2Wts-~(Bts)))ds 
0 

=2-2~A(22~ t, B). 

This implies 

Therefore we obtain 

A~](t, B~)= ~.- 2~ A-1(22~ t). 

- 1  - 1  s,,a(B~(A,,a(t , B~)))=2-~X(22~t, W). 

This shows the conclusion. 
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5.2. The Proof of Theorem 2. Let m(',  ") be a metric in the space of probability 
distributions on N, compatible with the weak convergence. For a Borel measur- 
able mapping I~: W--* N, we write 

(5.3) M(I~) = rn (~(,e(Ib), S(Ib)), 

where s is the distribution of N-valued random variable I~ defined on 
the probability space (W, #) and 5~(Ib) is that of Ib(.) on (W, v), Let 

(5.4) 
1 

q'(2; I~)= ~ #(dW) ~ P{2-~X(e ~', W)r U~(~(W))} dg+ M(l~). 
0 

Set 

(5.5) ~(2) = inf ~(2; I~), 

where the infimum is taken over all Borel measurable mappings lb. Then, for 
each 2 > 0, we can choose a Borel measurable mapping bz(W), such that 

(5.6) ~(2).'= ~(2; Ibx) < ~(2) + 1/2. 

In order to complete the proof of the theorem, it is enough to prove that 

(5.7) lim 7J(,l) = 0. 
).---~ ao 

Let {2,} be any sequence such that 2 , > 0  and )~,~oo as n~oo .  Then, since 
z [ , # ~ v  weakly as n~oo ,  by Skorohod's realization theorem of almost sure 
convergence, we can find W-valued random variables 17V~, and ITv defined on 
a suitable probability space (~, P) having the following properties: 

(a) the distribution of 17V and 17V], are v and ~[, #, respectively, 

(b) 17V~. ~ IYV in the Skorohod topology as n--+ 0% P a.s. 

Since v is a self-similar measure, Proposition 1 shows that 17V has either a valley 
V containing 0 with A < 1 < D or two valleys V~ and V2 connected at 0 with 
A t vAz<I<D,  AD2 a.s. /~. Therefore by Theorem 1, for every e > 0  and for 
any sequence {r,} with r, ~ 1 as n ~ 0% we have 

( 5 . 8 )  P{X(e~"r",2, W~,)r as n ~ o e  a . s .P .  

On the other hand using Lemma 5.2, we can choose Borel functions I~,(W) 
on W to N such that 

(5.9) I~,(I7V2, ) ~ Ib(17V) as n ~ oo a .s .P.  

Thus (5.8) and (5,9) imply 

(5.10) P{X(eZ"r",;~,ffV~)r as n ~ o o  a.s .P.  
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Since 

(5.11) ~ ~ a ( ~., P) ~ (w,, ~ .~ )  = (~, W, ~), 

(5.10) implies that, as n ~  0% 

P {X(e z-% 2, z~. W) r U~ (lb, (z~. W))} ~ 0 in probability #. 

Setting r , = l - 2 e ( 1 o g 2 , ) / 2 ,  to apply the scaling property of Lemma 5.3, we 
obtain 

(5.12) P{2~ -" X(e z., W)r U~(l~,(z~. W))} ~ 0 

in probability/2 as n ~ oo. 

Now (5.9), (5.11), (a) and (b) imply 

(5.13) M(I~,)--*0 as n ~ o e .  

Combining (5.12) and (5.13), we obtain 

This proves (5.7). 

~ ( , ~ . ) < ~ g ( ~ . ; l ~ . ( ~ . ) ) - - , 0  as n - - , o c .  

6. The Proof of Theorem 3 

In this section, we assume that there are W~.eW] and W e W  ~ for some ~ > 0  
such that 

(6.1) Wz ~ W in the Skorohod topology as 2 ~ oo. 

We use the same ez and q)z as in the beginning of Sect. 3. Thus (3.1) holds. 
Remember that for every aelR, aez ) is the abbreviation of q~-l(a). We consider 
the Markov chain { Y~(n,2 W~)} on A-~7Z, defined by (1.3). The proof of Theorem 3 
is similar to that of Theorem 1; we prepare lemmas on exit times of the Markov 
chain from valleys of the environment W and employ a coupling technique 
to complete the proof. 

Now we introduce some notations. Let V = (eL, Ib, e) be a valley of the envi- 
ronment W. We set, for arbitrary small ~ > 0, 

c~ =min{2k  2-~: 2k 2 ~->~)}, 

/~ -=min{2k2-~ :  2k2 ~_>b'(~)}, 

/~ -=max  {2k 2-~. �9 2k 2-~__</~)}, 

d ;  = m a x { 2 k 2 - %  2k2-~<=~)}, 

where k represents an integer, 8+ =8+(e), ~ ' -=  b'-(e), etc., are defined in Lemma 
2.3. 

We can easily see the following lemma. 
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f22a/]a,  X Lemma 6.1. For any x ~ and 2 > O, t z,, ,  n = 1, 2, ...} are i.i.d, random vari- 
ables, for any 2 >  O, and their common distribution is that of  the hitting time 
of  {___ 1} for a Brownian motion starting at O. The distribution has expectation 
1. 

Next we set 

Nz (l~, 12) = min {n ~ N w {0} : Yz (n) r (l~, Iz) } , 

Nz(x; l~, 12)=min{nENu  {0}: Y~(n)r 12)}, 

N ~ ( l ) = m i n { n e N u  {0}: Y~.(n)=l}, 

Nz(x; / ) = m i n { n ~ N w  {0}: YZ(n)=l} 

for 11, 12, l, x~2-~ '~ .  

Lemma 6.2. For any closed interval F =  [u, v] and for sufficiently small e>O 
let 

[ N~(x; 4~-,/~-) i f a + < u < v < b  + , 

N ~ , z = l N z ( x ; ~ ; , g ~ )  if b - < u < v < c - ,  

[ Nx(x; ~t~, U;) if  a + < u < v < c - .  

Then, for any rl > O, 

lim infP{[(22~ FoX + 22" F~ + ... +22~F~C~,~)/N~,z- 11 < , }  = 1. 
2 ~ o o  x e F  

Proof We exhibit the proof in the case where Nx,~=N~(x; a~̂ +, ~'+~j and a + < u 
< v < b  +. We have 

sup P{[(22" ro~ + ... +22"r~x.)/Nx,~ - 11 >~} 
x ~ F  

<sup  P{ sup 1(22 ro  + . . .  +22~r~)/n- 1[ >t/} 
x ~ F  n> Nx,.~ 

__<sup P{N~,z<m} +sup  P{supl (22~ Fo~ + ... § iI >r/} 
x ~ F  x e F  n > m  

for every m > 0. For  large m, the second term is small by the law of large numbers 
owing to Lemma 6.1. The first term can be made arbitrarily small by taking 
2 large enough. 

Lemma 6.3. Let 6 > 0 and let F a and F2 be arbitrary closed intervals included 
in (a+,b +] and [b- ,c - ) ,  respectively. Then, for any sufficiently small e>0,  it 
holds that 

lim inf P {N~(x; c~, /~] )= N~(x;/~-)} = 1, 
2 ~ c ~  x~F1 

lim infP{N~(x; 4~-,/7~-)< e ~(a§ = 1, 
2 ~ o o  xEF1 

lira in f f {N~(x;  ~ ,  ~-)=N~(x;  S~)} = 1, 
2-~ oa x e F 2  

lira infP{N~(x; ~ ,  ~ - ) < e  ~(A+6)} = 1. 
A-->c~ x~F2 
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Proof Set F~ =Fu, v] c ( a+ ,b+] ,  we can assume that u is a continuity point of 
W without loss of generality. Choose Co< W,~- sup W and e > 0  so that 0 < 4 e  

[u,b + ] 

< eo/x 6. Let N~. z = N~ (x; a] , /~-)  temporarily. Then Fo ~ + . . .  + F~, 
= r~(x;  + "+ a~, ba ). The first formula is verified by the same manner as in the proof 
of (i) in Lemma 3.3. Now the second one can be verified as follows: 

inf P{N~ (x; ~i~, b~) < e ~(a +~)} 
xaF1 

infP{Fo~+.. ~ 2~ ~ +22~E~ ~N-a2-2~e~a+~)} = . + Y L ~ < ( 2  / ;  + . - .  u~,~, ~,~ 
xaF1 

> inf P{[(22" Fo~ + ... +22"F~C~.~)/N~,x - 1[ <e} 
x~F1 

+ infP{T~(x; ~-,/~)__< (1 -~)  2 -2~ e ~r - 1 
x~F~ 

-~1 as 2 ~  (by Lemma 3.3 and 6.2). 

We can obtain the other formulas for F2 in the same manner. 
Similarly we can prove the following lemma by Lemma 3.4 and Lemma 

6.2. 

Lemma 5.4. Let 6 > 0 and let F be an arbitrary closed interval included in (a +, c-). 
Then for a sufficiently small e > 0 

lim infP {Nz (x; aa ^ +, ~-) > e ~w - 6)} = 1. 
2 ~ o o  x ~ F  

To complete the proof of Theorem 3, we employ the coupling method again. 
We proceed as in Sect. 4. 

In addition to Y[(n) we consider a reflecting Markov chain ~Y(n) on 
[ f i + , ~ - ] c ~ 2 - ' Z  starting at y, which, so long as it is in ~+ (a~, d~-)~2-~Z, has 
the same transition function as Y[(n). This reflecting Markov chain has a 2-step 
invariant measure mz given by 

K o exp {--4 Wa(a~)} if k = 0 ,  

K o (exp { -- 2 W~ (4 + + (k - 1) 2-  ~)} 

+ exp { -  2 Wz (a~- + k 2-~)}) 
(6.2) m~({a~ +k2-=})=  

Ko exp { - 2 I/V~ (g~- 2-~)} 

0 
where 

(6.3) K o =  2" ~ e-ZW~(Y)dy . 
a~ 

if k is even, 

0 < k < 2 ~ ( d ;  - ai~), 

i f  k = 2"(e ;  - a ~ ) ,  

if k is odd, 

We also consider a reflecting Markov chain ~'~(n) on [tif,  d~-] c~2- ' /g with the 
same transition matrix as that of Y'f(n) and with initial distribution ma. We 
then couple Y[(n) and ~'a(n) as follows: Enlarging the probability space on 
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which Y](n) is defined, we assume that Y;X(n) and Ya(n) are defined on a common 
probability space (the enlarged probability space) in such a way that (i) they 
move independently according to their own probability laws up to the first 
meeting time, (ii) after the first meeting time they move together up to the 
(common) exit time from (~-, d~-) and (iii) after the exit time they again start 
moving independently. We denote by ~a the probability measure on the common 
probability space. Remember that the process Ya depends on e > 0. 

Let us define the first meeting time M~ of Y~(n) and Y~(n) by 

(6 .4)  M ~ = i n f { n ~ N w  {0}: Y~(n) = Y~(n)}, x~ [a~-, ~-]  c~ 2-~2g. 

Before giving the proof of Theorem 3 (i), we list two lemmas. The first one 
is proved in the same manner as in Lemma 4.1. Here we omit the proof. 

Lemma 6.5. Let U be an arbitrary open set including lb. Then for sufficiently 
small e > 0 

m a ( U ) ~ l  as 2--*oo. 

In particular ma([6~-,/~])--* 1 as 2 ~oo.  

Now we see that 

(6.5) lira ~a(~(1)~ U) = 1. 
2--* oo 

In fact, by easy calculation, for l~(c~-, d~-)~ R-~TZ. we have 

lt-'~ (~,~ (1) = l) 

= ~m.~(dy)~{~a(1)-=l l  ~,~(0) = y }  

= m ~ ( l + 2  -~) ~x { Yx (1)= I[ Yx(O)= l+ 2-~} 

+m,~( l -~ . -~)~ 'a{~(1)= l l  ~a(0) = l-- 2 -~} 

=fKo(exp{--  2, W~.(I-2-~)} +exp{--2  W~(I)}) if 12 ~ is odd, 
if 12 ~ is even. 

Here K o is defined in (6.3). Therefore this implies (6.5) in the same manner 
as in Lemma 6.5 compared with the formula (6.2). 

The next lemma can be proved by using Lemma 6.3, Lemma 6.5 and almost 
the same argument as that of Lemma 4.2. 

Lemma 6.6. Let ~ > 0 and let F be an arbitrary closed interval included in (a +, c-). 
Then for a sufficiently small ~ > 0 

lim inf ir'~{M~<e z(A+o)} = 1, 
. ~  oo x ~ F r ~ 7 7 ~ v e n  

where ~e~ven is the set of all 2k/2 ~, k~Z.  

The Proof of Theorem 3 (i). Let V =  (~t, lb, r be a valley of the environment 
W containing 0 with A < r  1 < r 2 < D  and U be an arbitrary open set including 



538 K. Kawazu et al. 

~. Then we pick up a closed interval F such that 0 E F c ( a  +, c-).  We choose 
a sufficiently small e > 0  so that Lemma 6.5 and Lemma 6.6 hold for 6 =  {(D 

- rz) A (rl -- A)}/2 and for the closed interval F. 
We couple Y~~ and ~(n)  on [a~-, g~-]. For  re[r1, r2] , we have 

P{ u 2 W~)E U} 
= g, { yo ([e~.,])e U} 

> g'z { M~ _-< eZ% ~([ea ' ] )  e V and e z'= < Nz(a~, e~-)} 

>=]~z {M~ <__e""} + lPa {~z([eZ'])eU} 
+ P {ea'= < Nz(a], e~-)}-2. 

The first term goes to 1 as 2--* oo by Lemma 6.6 and the third term goes to 
1 as 2 - ,  oo by Lemma 6.4. Since 

_ j m z ( U )  if [e ~'] is even, 

- ~ ~{~'z(1)e U} if [eZq is odd, 

the second term goes to 1 as 2--,oe owing to the formula (6.5) and Lemma 
6.5. 

Lemma 6.7. Let V 1 =-(r Ibl, e~) and V z = (m2, b z ,  e2) be two valleys connected 
at 0 and 6>0 .  Choosing (xl, xz) as in (4.5), we set 

2a ,a=min{2k  2-~: 2k 2-~=>xl} 

22 ,x=max{2k  2-~: 2k2-~__<x2}. 

Then, for every e in (0, 8), we have 

lim P{N~(21,z, 22,~)<exp {2(Aa v A 2 +8)}} = 1, 

Proof. Using an abbreviation N~ for N~(21,~, 2~2,)1, ) for the time being, we see 

P{N~ <exp{2(A  1 v A2 +6)}} 

=e{roo +. . .  + ro <(,~2~roo +. . .  + ;?~r2)N712-2"exp{ ,~ (& v&+6)}} 
>P{T~(xa,x2)<(22"Fo~176 v A2+8)}} 

--> P{1(22~ Fo ~ + . . .  +x~'r~ - 11 <e} 
+ P{Tz(Xl, x2) < (1 -- e) 2 -  2~ exp {2(A~ v Az + 5)} -- 1 

1 as 2--+ oo by Lemma 4.3 and Lemma 6.2. 

The Proof of Theorem 3 (ii). The proof  is similar to that of theorem t (ii). Therefore 
we exhibit only its outline. 

Let ~r 1 -=(r lbl, el) and V 2 =(r z, lbz, e2) be two valleys of W connected 
at 0 such that A < r l < r 2 < D ,  where A = A l  v A  2, D = D I A D  z. Let I=[ra,r2] 
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and U be an arbitrary open set including ~ ) 1 t . . ) ~ 1 2  . We choose 6 > 0  so that 
6<(q-A) /x  (D-r2) and closed intervals F/, i=  i, 2, such that xi~F~c(a +, c7). 
We choose a positive e which guarantees Lemmas 6.2, 6.3, 6.4, 6.5 and 6.6 
for Vi, ~ and Fi, i=  1, 2. We have 

P { Yz ([e4*], 2 Wz)~ U} 

> P { Y4 ([ear]) ~ U, Nz (Xx, 4, x2, z) = Nz (xl, 4) < e4(A + ~)} 

+ P { Y~. ([eZr]) e U, N 4 (21, z, 22, 4) = N4 (22, x) < e z(A + ~)} 

(by the strong Markov property) 

>--- Z P{Nx(2L4, #2,~) = N~(2,.~) = k} P { Y4~',~(Ee ~3 -- k)e U} 
O<=r<e-~.(A+a) 

+ ~ P { N z ( 2 ~ ,  z , 3~2,,0 = N4(x2, . t )  = k} P{Y~.~([e 4~3 -k)~U}. 
04. to(ca(A+6) 

Using Lemmas 6.6, 6.4 and 6.5 and the formula (6.5), we obtain by coupling 
method 

(6.6) inf P{Yf~'~([e4r]-k)sU}=l+o(1) as 2 ~ o o .  
O <_k <e.a,(A +,s) 

Therefore we obtain the estimation 

P{ Yx ([eXr-1, )o W~)e U} 

> P{Nx(21,4,22,~)<e~(a+~ as 

which, combined with Lemma 6.7, implies Theorem 3 (ii). 

)~ --+ oo, 

7. The Proof of Theorem 4 

We prepare the following lemma which can be proved by using the definition 
(1.3), Lemma 6.1 and Lemma 5.3. 

Lemma 7.1. For any fixed e > 0 ,  2 > 0  and W~ Vr 1, 

{Yz(n, 2z~zW, n=0,  1,2, ...}d={2-~Y(n, W), n=0 ,  1,2, ...}. 

The Proof of Theorem 4 

Since # ~ v ,  by Skorohod's realization theorem of almost sure convergence, 
there exist ~/~1ogn-valued random variables ITv, and Vg-valued random variable 

on a suitable probability space (5, P) with the following properties: 
(i) The distributions of IYV and 17V, are v and #,~, respectively, n > 2; 

(ii) 17V, --. 17V in the Skorohod topology as n--* oo P-a.s. 
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Since v is a self-similar measure, Proposition 1 (ii) implies that, /3 a.e., IYV 
has either a valley V containing 0 with A < 1 < D or has two valleys ~r I and 
V2 connected at 0 with A 1 v A2 < 1 <D1 ^ D2. Thus Theorem 3 implies that 

( 7 . 1 )  P{Ylog.(n, logn~l/n)r a s  n ~ o o  P-a.s., 

where b(W) is defined in Theorem 2. Using Lemma 5.2, we see that there exist 
Borel mappings I~, on W to IK such that 

(7.2) ~,(17f,)--+b(17V) as n---,oo, P-a.s. 

Thus 

(7.3) P{Ylog,(n, lognfV,)(~U~(~,(fV,))}--.O as n ~ o o  P-a.s. 

Since 

(7.4) (17V.,/3) ~ (l/V,, ~og. #)a= (~og. W, #), 

the formula (7.3) implies that 

(7.5) P { Ylog, (n, log n .  ~ogn W)  r U e (]~)n ('lT~og n W))} -")" 0 

in probability # as n --* oo. 

Employing the scaling relation of Lemma 7.1, we have 

(7.6) P{(log n)-" Y(n, W)r U~(Ib,(Z~og . W))} ~ 0 

in probability # as n ~ oo. 

Therefore, if we set 

(7.7) b .  ( W)  = ~ n  ('f~og n W) ,  F/= 1, 2, ..., 

then we obtain the first assertion of the theorem. On the other hand, combining 
(7.2) with (i) and (ii), we see that the distribution of random variables lb.(W) 
on (W, p) converges weakly to that of Ib(W) on ( W  e, v). Thus the proof of 
the theorem is completed. 
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