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Summary. We construct a "Brownian  mot ion"  taking values in the Sierpinski 
gasket, a fractal subset of IR 2, and study its properties. This is a diffusion 
process characterized by local isotropy and homogeneity properties. We 
show, for example, that the process has a continuous symmetric transition 
density, pt(x, y), with respect to an appropr ia te  Hausdorff  measure and obtain 
estimates on pt(x, y). 

1. Introduction and Statement of Results 

The Sierpinski gasket (introduced in Sierpinski (1915)) is a "fractal"  subset of 
]R 2. Let A o be a (closed, convex) triangle of unit side. Let A 1 be the set obtained 
from A o by deleting the open convex triangle whose vertices are the midpoints  
of the edges of A o. Thus A 1 consists of 3 closed convex triangles with side 
�89 Repeating this procedure one obtains successively A2, A 3 . . . .  (Fig. 1 shows 

A2 and A3). Let A = (~ An: this is the (bounded) Sierpinski gasket. 
n = 0  

The following construction, which builds an unbounded set up from a 
sequence of graphs, is, however, more convenient for our purposes. 

Let ao=0 ,  a l = ( 1 , 0 )  and a2=(�89 ~-23), let Fo={ao ,  al,a2} be the vertices 

of an equilateral triangle in the plane of side one, and let Jo be the closed 
convex equilateral triangle with vertices F o. Define inductively 

Fn+l=Fnw(2nal+Fn) w(2naz+Fn), n = 0 ,  1 . . . . .  

(Here, and throughout  the paper  we use the notat ion y+A= { y + x :  xEA} and 
h A =  {2x: x~A}.) Thus Fn c 2n J0 . Now let 

G'o=U Fn 
n = O  
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A 2 A 3 
Fig. 1 

0 1 

G (2) 
Fig, 2 

and let Go be G; together with its reflection in the y-axis. Let 

G , = 2 - " G o ,  nEN, Go~= U G,, G_~={0} ,  
n = 0  

and let G=cl(G~): G is the Sierpinski gasket. It is easily seen that G is a 
closed connected subset of IR 2. In the inductive definition of F.+ ~ we have 
always chosen to translate F. to the east and north-east. This does give 2 G - -G  
but the results of this paper remain valid for gaskets in which a general choice 
of directions of translation are made at each stage. 

Let G (~ be the graph with vertices Go and with an edge between x and 
y in Go if and only if [ x - y[ = 1 and the line segment joining x and y is contained 
in G. For  neZ let G~")=2 -"  G C~ See Fig. 2. 
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Each vertex in G (~ has valency 4: that is, is joined by an edge to four 
other vertices in G (~ 

Notation. For xEG,, let N,(x) denote the four neighbours of x in G ("). 

A G,-triangle is the closed set of points in G that lie inside an equilateral 
triangle which is a translation of 2-"Jo and whose vertices are three neighbouring 
points in G ("). Let J ,  denote the set of G,-triangles. 

Let #, denote the measure on G which assigns mass (~-)3-" to each point 
in G,, An easy induction argument shows that if A ~Jm, 

(1.1) card(G, ~A)=�89 n - m + 1  + 3) 

so that lira #,(A)=3 -m. 
n ~ c ~  

The following lemma summarizes the required measure-theoretic properties 
of G. 

Notation. dy = log 3/log 2 = 1.58496... 

Lemma 1.1. (a) There is a unique measure # on {N~ 2, ~-~-(]R2)) supported on G 
such that #(A.)= 3-n for all A . e ~ ,  nETZ. 

(b) {#.} converges to # in the vague topology: that is 

lira y f d # .  = y f d #  forall feCr((G). 
n ~ o D  

(c) p is a multiple of the Hausdorff xaJ-measure on G. Thus, in particular, 
G has Hausdorff dimension dy. 

Proof (a) and (c) follow from the Carath4odory extension theorem and Eggleston 
(1953). 

(b) is easy to check using (1.1). [] 

Our aim in this paper is to construct and study a diffusion process, X, 
on G, which arises as the limit of simple random walks on the graphs G ("). 
The reasons for our interest are: 

(1) Mathematical. Mathematically rigorous constructions of X have been 
given by Goldstein (1987) and Kusuoka (1987). Although X is a diffusion on 
~2 it lives on a set G c I R  z with Lebesgue measure zero. As we will see, it 
has very different properties from the well-known diffusions obtained by the 
differential equation approach as in Stroock-Varadhan (1979). Like the increas- 
ing diffusion studied by Salisburg (1986), this shows that the theory of higher 
dimensional diffusions remains a wilderness (Breiman (1968)). 

(2) Applications in mathematical physics. There are now a large number 
of papers in the physics literature dealing with random walks and diffusions 
on fractals. See Rammal and Toulouse (1982) for an introduction and some 
physical motivation. This literature suggests that much of the behaviour of a 
random walk on a fractal F is captured by two constants associated with F. 
The first, dl, is the fractal dimension of F (for regular fractals like G, this is 
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the Hausdorff  dimension of F), while the second, denoted d,, is called the spectral 
dimension of F. d, is defined in terms of the "density of states", that is, the 
asymptotic frequency of the large eigenvalues of the Laplacian on a bounded 
region of F (for G, the Laplacian is the infinitesimal generator of X). A third 
quantity, denoted d~, and called the dimension of the walk, is given by 

dw-- m 

Notation. Throughout  this paper let 

ds = 2log 3/log 5 = 1.36521..., 

_ 2dr  

ds 

dw = 2 ds/d ~ = log 5/log 2 = 2.32193... 

= 1/dw = log 2/log 5 = 0.43068... 

We will see that these constants, as defined here, do have the meaning asso- 
ciated with them in the physics literature. 

The following stopping times play an important  role in the study of G-valued 
processes. 

Notation. Let X(t)  be a continuous time or discrete time G-valued process. 
For  me2g, set 

T_ml(x)=o, T" (X )  = - T~'(X)=inf{t>__O: x(t)e G,.}, 
r ~ (x) =inf{t__> 0: X(t)  = 0}, 

T~'~ 1 (x) =inf{t  > T~"(X): X ( t ) e G m -  {X(T~m(x))}}, i>0 ,  

W/m (X) = T/" (X) - T/m_l (X), i ~ 1. 

We will write T~ m and ~ if the process X is clear from the context. 
Note  that if X(t) is continuous, then Y~=X(T~"(X)), i > 0  is a path in G~"): 

that is, Yi~G", and Yi+~N"(YO for each i>0.  

Definition. A simple random walk on G, is a G,-valued Markov chain { Y~: r 
= 0, 1 . . . .  } with transition probabilities 

{10 p ( y ~ + l = y [ Y = x )  = if yeN,(x)  
otherwise. 

Let II, be a simple random walk on Go, starting at 0. If m =< 0 and Y//= 2" Yrr-, 
then Y is again a simple random walk on Go. This property of Y, called decimh- 
tion invariance by Goldstein (1987), is crucial to the study of processes on 
G. It is related to the following property of G. Let f ( t )  be a continuous path 
in G with f ( O ) E G A J  o. Then f can only leave G ~ J  o through one of the three 
vertices of Jo. In the terminology of the physics literature, G has "finite ramifica- 
tion". Thus, for a continuous or discrete time process on G, the times of succes- 
sive hits on G, provide a natural collection of renewal times, and the behaviour 
of the process can be recovered from its values at these times. 

The speed at which Y moves across G o is given by 

Lemma 1.2. E(T~'(Y))= 5 I"1, m<O. 
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(See Lemma 2.2: a simple calculation shows E ( T  1- ')= 5 and the above result 
then follows from decimation invariance). 

This suggests we consider the processes 

(1.2) x(n)(t)=2-nY[5nt] t~O, neT],, +. 

Theorem 1.3 (Goldstein (1987), Kusuoka (1987), Theorem 2.8 below). The pro- 
cesses X (~) converge weakly to a process X.  X is a continuous non-constant G- 
valued process, starting at zero. 

Here the weak convergence is on the space of cadlag G-valued paths with 
the Skorokhod J1 topology. In fact, the proof in Sect. 2 gives an almost sure 
construction of X as the uniform limit of a sequence of nested random walks. 
It is motivated by the construction of Brownian motion given in Knight (1981, 
p. 10). The construction can easily be adapted to define X with Xo=x~G~o.  
Let px denote the law of X, starting at xsGoo, on the canonical space of paths 
s C(N+,  G). A coupling argument in Sect. 2 shows that x - .PX is uniformly 
continuous on Go~ and hence has a unique continuous extension to G. In fact 
PX is the weak limit of {X(")}, providing we introduce initial points X(")(0) 
= x, ~ x (x, e G,) (see Kusuoka (1987) or Theorem 2.14 below). 

We now summarize the main properties of X derived in this paper. Assume 
X~ (co) = co (t) is defined on the canonical space s and write E ~ for expectation 
with respect to PX. The transition semigroup P~ and resolvent U~. are defined 
by 

P t f ( x ) = E x f ( x t ) ,  U ~ f ( x ) = E  x S e-'~sf(Xs)ds, f ebB(G) .  
0 

Theorem 1.4 (Goldstein (1986), Kusuoka (1987), Theorem 2.15, 2.21 below). (a) 
X is a continuous, strong Markov process with state space G. 

(b) X is a Feller process: that is Pt maps Cb(G) into Cb(G ) for each t >O. 

(c) X is #-symmetric: that is, 

~ g ( x ) P t f ( x ) ~ ( d x ) = ~ P t g ( x ) f ( x ) # ( d x )  forall  f, g~CK(G ). 

Our derivation of Theorems 1.3 and 1.4 were carried out independently of 
the work of Goldstein (1987) and Kusuoka (1987), but we acknowledge the 
priority of their results. Our construction of X is similar in spirit to the almost 
sure construction of Kusuoka but there are several technical differences between 
the two proofs. 

The set G does not have very many global isometries. It is invariant under 
reflection in the y-axis, and, for each n~2g we have 2"G= G. There is, however, 
a large class of local isometries, arising from the fact that every G,-triangle 
is a translation of (2-"Jo) c~ G, and invariant under rotation by 2 ~z/3, and reflec- 
tion in an axis perpendicular to one of its edges. 

It is clear that the random walks X (") are locally invariant with respect 
to these local isometries, and this property is inherited by X. In Theorem 8.1 
we prove that this invariance, relative to a suitable class of local isometries, 
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determines X in the class of diffusions on G up to a linear change of time. 
By analogy with Brownian motion on IR a, which, up to a linear time change 
is the unique translation and rotation invariant diffusion of IRa, we call X Brow- 
nian motion on G. 

The key to many properties of X are good estimates on Pt. Here is our 
main result. The proofs are given in Sect. 7. 

Theorem 1.5. There is a function pt(x, y), (t, x, y)e(O, oo) x G x G such that 

(a) Pt is the transition density o f  X with respect to #, i.e., 

P~f(x)=~f(y)p~(x ,y)12(dy)  foral l  x e G ,  t>O, feCb(G).  

(b) p,(x, Y)=Pt(Y, x ) fo r  all (x, y ) eG  x G, t>0 .  

(c) (t, x, y) ~ pt(x, y) is jointly continuous on (0, Go) x G x G. 

In fact, 

(1.3) [p t (x ,y ) -p t (x ' , y ' ) ]<=Cl .a t - l [ (x ,y ) - (x ' , y ' ) ]  a~-a~ for all t>0 ,  (x,y),  
(x', y ' )eG x G. 

(d) For each (x, y), t ~ pt(x, y) is C ~ on (0, oo), and for each k e N  

#k 
(t, x, y) --. y) 

is jointly continuous, and for t f i xed  is H61der continuous of index d w - d  I in 
(x, y). 

(e) There are constants cl. 2 . . . .  , Cl. s such that 

(1.4) c 1.2 t -  asl2 exp { - cl.3 (I x - y I t - a/d~)d~/Cdw- ~)} < Pt (X, y) 

<C1.4 t -ds/2 exp {--CI.5(Ix--y[ t-1/dw) aw/(aw-1)} for all t>0 ,  (x, y )eG x G. 

Remarks. 1. In the above theorem and throughout  this paper cl.a, ci.z, ... denote 
fixed constants in (0, oo) introduced in Sect. i. ca, c2 will represent constants 
whose value may change from line to line in a proof. I x - y [  denotes the Euclide- 
an distance between x and y in G or in G x G. 

2. dw - d s = 0.73697..., d~/2 = 0.68261..., dw/(d,~ - 1) = 1.75647... 

3. The transition density of standard Brownian motion on IR a satisfies (1.4) 
with d~=d(=dy)  and dw=2. 

4. It is perhaps interesting to note that there has been some confusion in 
the physics literature over the power of I x - y [ t -  ~ that appears in the exponential 
in (1.4) (see Banaver and Willemson (1984), Guyer  (1985), O'Shaughnessy and 
Procaccia (1985)). 

5. (c) and (e) imply that X is a strong Feller process. 

6. Integrating (1.4) we have that (see Theorem 4.3) 

(1.5) cl.6 exp { - ca.7 (6 t -  ~)awltaw- 1)} < p~(] X t -  x I> 6) 

<=ct . s exp{ -c l . 9 ( f t -7 )  dw/(aw-1)} V0, t>0 ,  xeG.  
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Thus the tail of the distribution of ] X t - x [  is thinner than an exponential but 
fatter than that of a Gaussian law. 

Corollary l.6 (see Corollary4.4). There are constants cl.io, c1.11 such that 
c~.1o t2/dw< E x IX,-xl2<=c~.xl t2/dw for all x~G, t>0 .  

Since 2/d~,- 0.86135 < 1, we see that the mean square displacement is sublin- 
ear in t. This is called sub-diffusive behaviour in the physics literature. 

Kesten (1986) studies random walks on percolation clusters, and proves that, 
in two different cases, the random walk on the incipient infinite cluster has 
subdiffusive behaviour. It is proved there that this subdiffusive behaviour is 
due to the random walk spending most of its time in the "dangling ends". 
For  the Sierpinski gasket there are no "dangliI'~g ends", and the subdiffusive 
behaviour must have a different cause. 

It is now easy to use (1.4) or (1.5) to deduce various sample path properties 
of X. 

Corollary 1.7. There exist constants c 1.12, c 1.13 such that for all x ~ G 

(1.6) Cl.12<=lim sup I X s . X t l / ( l s - t l V ( l o g l / I s - t l ) 1 - ~ ) ~ c 1 . 1 3  
~$00<_s<_t<_T 

Is-tl<_,~ 

for all T > 0 PX-a.s. 

The paths just fail to be H61der continuous of order y (<  �89 so the following 
result is not surprising. 

Corollary 1.8 (see Theorem 4.5 and Remark 4.6). The paths of X are of  infinite 
quadratic variation. In particular X is not a semimartingale. 

Further results on the local modulus of continuity of X and the dw-variation 
of the paths are obtained in Sect. 4. 

There are two main ingredients in the proof of Theorem 1.5. The first is 
the study of the law (under po) of 

W=inf{s:  IX(s)[ = 1} = Z~ 
Let 

Z , =  min {i: IX(T?)I = 1}.  

Then {Z,} is a simple branching process with Z 0 =  1 and EZ 1 = 5 (in fact Z 1 
is equal in law to T I t ( Y )  - see the remarks after Lemma 1.2). Therefore Z , 5 - "  
converges a.s. as n--+oo and it is easy to see that the limit is W. In Sect. 3, 
techniques from the theory of branching processes are used to derive estimates 
on the (smooth) distribution and density functions of W at zero. These estimates 
suffice for the derivation of (1.5) and the path properties of X in Sect. 4, including 
Corollaries 1.6, 1.7 and 1.8. The Laplace transform of Wexhibits some surprising 
oscillatory behaviour at infinity (see Sect. 3 for details). This oscillatory behav- 
iour is the main (but not the only[) reason for our inability to obtain exact 
constants in (1.4), (1.5) and (1.6). 

The second ingredient in the derivation of Theorem 1.5 are the potential 
theoretic calculations on X ~") and X in Sect. 5 which lead to the existence and 
regularity properties of the resolvent densities of X. Of course most of these 
results follow from Theorem 1.5 but they are logically prior. 
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Theorem 1.9. There is a function ua(x, y), (2, x, y)~(O, oo) x G x G such that 

(a) uz is the resolvent density of X 

Uaf(x)=yf(y)ux(x,y)#(dy) forall x~G, 2>0,  f~Cb(G). 

(b) u~(x, y)=u~(y, x) for all (x, y)eG x G, 2>0.  
(c) (2, x, y) ~ uz(x, y) is jointly continuous on (0, ~)  x G x G. In fact 

(1.7) I u). (x, y) - u2 (x', y')] < C 1 . 1 4  [(X, y) - -  ( X  t , y t ) [  dw - dy 

for all (x, y), (x', y') in G x G. 
(d) There are constants cl.ls, c1.16, c1.~7, c~.~8 such that 

(1.8) cl.ls 2 ds/2-1 exp { -  q.16 2 ~ [x -y[}  <ua(x, y) 

<=C1.172ds/2-1exp{--Cl.182~[x--y[} forall 2>0,  (x,y)~GxG, 

and in particular 

(1.9) Cl.15*~vds/2-1~U2(X,X)~C1.17 2ds/2-1 forall 2>0,  xeG. 

Remark. d j 2 - -  1 = - 0.31739 . . . .  

Let T + = inf{t > 0: Xt = x} be the hitting time of x. The calculations in Sect. 5 
also give 

Corollary 1.10. (a) For each x in G, pX(T+ = O)= 1. 
(b) For each x, y in G, pX(T S < Go)= 1, and {t: X t = y  } is Pl-a.s. perfect and 

unbounded. Thus X is point recurrent. 

Remark. It is clear that X must hit the points in Goo : otherwise, since G - G ~  
is totally disconnected it would be unable to move. The content of the corollary 
is that X also hits the points in G -  G~. 

The estimates (1.7) and (1.9), together with a version of Garsia's lemma 
for a fractal (Lemma 6.1), lead easily to the existence and continuity of the 
local time of X. 

Theorem 1.11. There exists a jointly continuous version, LT, xEG, t>=O, of  the 
local time of X. L satisfies the density of occupation formula: 

i g(Xs)ds= ~ g(x) LT#(dx), 
0 G 

and has modulus of continuity given by: for each N>O there exists 6N(CO)>O 
such that 

1 
[L~-LY t [<cHs[x - - y [~ (a~-d~) log - -  if t < n  and ]x--yl<bN(co ). 

Ix-yl 
The proof is given in Sect. 6. 
The results of Sect. 3 and 5 are combined to prove Theorem 1.5 in Sect. 7. 

The essential idea is to use the first entry decomposition 

(1.10) pt(x, y)= i g~,y(s) Pt-s(Y, Y) ds, 
0 
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where gx, y(s) is the density of Ty + under px. If x+y,  then the path must cross 
some G,-triangle to reach y from x. Thus gx,y is the convolution of the C ~ 
density of 5 - " W  with another distribution. The results of Sect. 3 provide us 
with good estimates on the (necessarily) smooth function gx,~- From (1.10) we 
have 

(1.11) p~(x, y) < sup gx,, (s) j Ps(Y, Y) ds. 
s < t  0 

To control, and in fact rigorously define, the second term on the right side 
of (1.11) we use the estimates on u~. in Sect. 5. 

This estimate on pt(x, y) is good if [ x - y [ > t  ~, but for [ x - y l < t  ~ (and in 
particular for pt(x, x)) more work is required. Our basic idea is to let X go 
away from x until it hits a moving boundary and then use (1.11) on the return 
journey to y. 

In Sect. 9 we take a brief look at the infinitesimal generator, ~4, of X, acting 
on its domain ~(~r in the Banach space Co(G) of continuous functions on 
G vanishing at oo. Theorem 1.5 gives a large class of functions in @(d) :  ux(', y) 
and Pt(', Y) are in N ( d )  for each yEG, t, 2>0 .  In fact Pt solves the heat equation 

(1.12) Op, (x, y)= ~(pr y))(x) 
Ot 

(see Theorem 7.10). Nevertheless, it seems difficult to obtain an explicit descrip- 
tion of a non-constant  function in ~ ( d ) .  (1.7) can be used to show each function 
in ~ ( d )  is H61der continuous of order d,~-d I (Theorem 5.22). We also show 
that functions in N ( d )  are almost everywhere H61der continuous of order dw/2 
- e =  1 .16096. . . -e  for any e > 0  (see Theorem 9.1 for a precise statement). This 
will imply that if f e N ( d )  is the restriction of a C 1 function on ]R z to G, then 
f is constant. The functions in ~ ( d )  appear to be Cantor-like functions on 
G. (The standard Cantor  function on [-0, 1] is, in the sense of Theorem 9.1, 
almost everywhere H61der continuous of index e for any c~ > 0). 

We expect that the methods and results in this paper extend to a large 
class of finitely ramified fractals. For  example there is no problem in extending 
these results to the higher dimensional analogues of the Sierpinski gasket. These 
extensions are discussed in Sect. 10. It is interesting to note that even though 
the Hausdorff  dimension of the gasket embedded in ]R d is log(d + 1)/log 2 which 
approaches oe as d ~ oo, the process still hits points and has a jointly continuous 
local time. 

On the other hand infinitely ramified fractals such as the Sierpinski carpet 
appear to be much more difficult. Barlow and Bass (1987) have studied Brownian 
motion on the Sierpinski carpet but their results are much less complete. 

We close this section by introducing some notat ion to allow us to work 
in G without introducing coordinates. 

For  each m, G is the union of Gin-triangles and hence each point, x, in 
G lies in a Gin-triangle, A,,(x). If x~G--G,~, Am(x) is unique, if x~Gm--{0} let 
Am(x ) denote the G,,-triangle containing x whose projection onto the x-axis 
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% 

w 1 z 1 z 3 w 4 

Din( x ) 
Fig. 3 

is closer to zero and, finally, let Am(O)=2-mJoc~G. Each vertex of a given 
G"-triangle, A", has 4 neighbours in G", and thus A" intersects exactly three 
other G"-triangles, one at each vertex point. The exact configuration of these 
three triangles depends on the choice of A,,, but A" and two of these neighbour- 
ing triangles will form a G"_ l-triangle. Let D"(x) be the union of A"(x) and 
its three neighbouring triangles in ~ .  See Fig. 3. 

If A c G, 0A denotes the topological boundary of A, where A is considered 
as a topological subspace of G. For  example in Fig. 3 OD"(X) = {wl, w2, w3, w4}. 

If x, yeG, let d(x, y) denote the length of the shortest path in G from x 
to y. d is a natural metric on G which we call the gasket metric. If x, yeGm 
then d(x, y) is clearly the length of the shortest path in G (") from x to y. An 
elementary argument shows that for such x, y, 

(1.13) Ix-y[ ~d(x, y ) ~  c1.19 [ x -  y I . 

These inequalities now extend easily to x, y E G. The gasket metric is therefore 
equivalent to the restriction of the Euclidean distance to G x G. Nonetheless 
it will sometimes be convenient to work with d. If Ba(x, r)={yeG; d(x, y)<r}, 
then note that for xeG",  Ba(x, 2 - " )  is the union of the two G"-triangles which 
intersect at x. 

Finally PG(' , ' )  is a metric on C((0, oe), G) which induces the compact-open 
topology on this function space. 

2. Construction of  a Brownian Mot ion  on the Sierpinski Gasket 

Notation. If X is a continuous time or discrete time G-valued process, let 

and for A c G, let 
~~ (x)=o-(x=: ~ t ) ,  

T(A, X)-- inf{t ~ O: X(t)eA}. 



Brownian Motion on the Sierpinski Gasket  553 

2 a  2 

0 = a o a 1 2 a 1 

Fig. 4 

We write Ty(X) or Ty (if there is no ambiquity) for T({y}, X). 
Let S" = S"(X) = T@D"(X(O)), X). 
In the next two results { Y~: r = 0, 1, 2, ...} denotes a simple random walk 

on G o , starting at zero. We begin with the simple but crucial property of decima- 
tion invariance mentioned in the Introduction. 

Proposition 2.1. For each meN, 

Y"(i)= Y(T~-m(Y)), ie~+, 

is a simple random walk on G-re. 

Proof. An elementary argument using the Markov property, shows that TI-"(y) 
has an exponentially small tail at infinity and in particular is finite a.s. The 
strong Markov property shows T~-"(Y)< oe a.s. for any i e N  and hence Y"(i) 
is well-defined. 

Go aBa(O, 2") is symmetric in the y-axis and Goc~(+2mJo) is symmetric in 
the perpendicular bisector of __ 2 " J  o through the origin (recall Jo from the begin- 
ning of Sect. 1). These symmetries and a simple counting argument show that 
Y(T i-"(Y)) is uniformly distributed over the four points in 0Bd(0, 2"). Of course 
the same is true if 0 is replaced by any starting point in G_".  The strong 
Markov property of Ynow completes the proof. [] 

Notation. If meN,  let 

N~=Ts H~= E l(y~=o). 
O<r<Nm 

N and H will be used to denote random variables equal in law to N1 and 
H1, respectively. Let 

f(u)=E(uN), h(u)=E(u n) for ueE0, 1]. 
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Lemma 2.2. (a) f (u) = u2 ( 4 -  3 u)- ', h (u) = 3 u (5 - 2 u)- 1. Therefore N -  1 is a geo- 
metric random variable with mean 4 and H is a geometric random variable with 
mean 5/3. 

(b) E(Nm)= 5 m, E(Hm)=(5/3)". 

Proof. (a) Let {ai: i=0 ,  1, 2} and F 1 be as in Sect. 1, and let a 3 =a 1 +a 2. By 
reflection in the y-axis, N is the first time a random walk on F~, starting at 
zero, hits {2 al ,  2 a2}. See Fig 4. Let f i(u)= Ea*(uU), where the superscript denotes 
the starting point. Condition on the first step of the random walk and note 
that f l  = f2 by symmetry to get 

fo(u)=uA(u), A(u)=(u/4)(fo(u)+A(u)+ f3(u)+ l), 

fa (u)= (u/2)(A (u)+ 1). 

Solving for fo(u), one gets fo(u) = u 2 ( 4 -  3 u)- 1. 
A similar argument works for h. If hi(u)=E"*(un), where H is the number 

of times a random walk on F 1 hits zero before hitting {2 aa, 2 a2}, the correspond- 
ing equations are 

Let 

Then 

(2.1) 

ho(u)=uhl(u), hl(u)=(�88 1), 

h3(u) = (�89 + I). 

(b) Consider E(H,,). For m~N,  inductively define stopping times by 

Vg'=O, U}"=min {r> V~_ 1 �9 Y~eG-m- {0}}, 

v~m = rain {r > U~z: Y~ =0} A Nz+ 1. 

Hm,~=~l(Vim<~r<U~+l, Yr = 0), ieZ+. 
r 

E(Hm+~)=E ~ I(Y(V/~)=O)Hm,~ 
\ i = O  

=E(~ I(Y(V~)m =O))E(H)m, 
\ i = 0  

the last by the strong Markov property at Vii m. If Ym(i)= Y(T~-m(Y)), then 

(2.2) I(Y(V~m)=O) = ~ l(ym(i)=O,i<N,~+l) �9 
i = 0  i = 0  

Decimation invariance (Lemma 2.1) implies 2 - "  ym(.) is a simple random walk 
on Go. The left side of (2.2) is therefore equal in law to H. (2.1) and (a) imply 
E(Hm+ 1)=(~) E(H,.). 

A similar argument works for E(N.). [] 
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Proposition 2.1 and the Kolmogorov Extension Theorem imply there is a 
family of discrete time processes, {J~(n, x): xeG, ,  ne2g}, defined on some 
(f2o, F0, P) such that 

(2.3) {)~(n, x)(i), ie~+) is a simple random walk on G,, starting at x. 

(2.4) I fm<n  and xeGm, then 

X(m, x)(i)=X(n, x)(Tim(X(n, x))), i>O. 

(2.5) If x, x'eG, and x+x' ,  then Jr(n, x) and Jr(n, x') are independent. 

To obtain regularity in the initial point x, we couple the random walks 
so that if they enter Gm at the same point, they then trace out the same set 
of points thereafter. If xe  G,, and n>m, let 

(2.6) X(n, x)(i) =)~ (n, x)(i) if i =< T m- 1 (JT(n, x)). 

This last time therefore equals T m- 1 (X(n, x)). Also let 

(2.7) X(n, 0)(i)= )~(n, 0)(i) for all i~2g+. 

To complete the definition of X(n, 5c), if xeG,  set 
X(n, x)(i)= X(n, X(n, x)(TJ(X(n, x))))(i- TJ(X(n, x))) 

if TJ(X(n, x)) < i<_<_ TJ(X(n, X)) + T ~- l(X(n, X(n, x)(TJ(X(n, x))))) 

= T j-  1 (X (n, x)) - oo <j <_ n, 
and 

(2.9) X (n, x)(i)= X (n, O)(i- To(X (n, x))) 
if i> To(X(n, x))= lim TJ(X(n, x)). 

j--+ oo 

(2.8) is well-defined by (2.6) because X(n, n)(TJ(X(n, x)))eGj if TJ(X(n, x))< oe. 
Note that (2.8) and (2.9) together define X(n, x)(i) for all ie2g+. 

Some easy consequences of this definition are as follows: 

Lemma 2.3. (a) X (n, x) is a simple random walk on G,, starting at x. 
(b) We have 

(2.10) X(n, x)(i)=X(n, X(n, x)(TJ(X(n, x))))(i-- TJ(X(n, x))) for i> T~(X(n, x)), 
--  oQ < j < n ,  x ~ G . .  

(c) I f  n , j~Z and n>j, then a(X(n,y),yeGj) and a(X(n,x) ( ' A T  ~ 
(X (n, x))), x ~ G,) are independent a-fields. 

Proof. (a) Use (2.5) and the strong Markov property of a simple random walk 
o n  G n . 

(b) This follows from (2.8), (2.9) and an easy induction argument. 
(c) If -oo<k<_m<n and x~G,,, then the above definition implies that 

X(n,x)(. /x Tk(X(n,x))) is a(J((n, y): y~Gm-Gk)-measurable and X(n, x)(. 
+ T -~176 (X(n, x))) is a(J~(n, 0))-measurable. Take m=j and k = -oQ to see that 

(2.11) X(n,y)~a(X(n,y'):y'EGj) for y~Gj. 
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Take k = j  and m = n to see that if x e G,, 

X(n,x)(.  /x TJ(X(n,x)))~c~(~(n,y'): y' eG,-G~) for xeG, .  

This together with (2.11) and (2.5), implies the result. [] 

It is not hard to see that (2.4) (the nesting property) remains valid if )~ 
is replaced by X. We provide a proof for the skeptics. 

Lemma 2.4. Let p, m, n~;g, p<m<_n and x~Gm. Then 

(2.12) X(m, x)(i)=X(n, x)(Ti"(X(n, x))) for all ie7Z+ 

(2.13) X(m, x)(TP(X(m, x))) is independent of the choice of m(>p) 

(2.14) T p-1 (X(m, x) ) -  TP(X(m, x)) = T p- l(X(m, X(m, x)(TP(X(m, x))))) 

(2.15) TiP(X (n, x))= T~p(x(m,x))(X (n, x)). 

Proof I f j  =< m, x e Gj and i < T J- 1 (X (m, x)), then 

x (m, x) (i) = ~7 (m, x) (i) = ~7 (n, x)(T~" 07 (n, x))) 

This shows Ti"0~(n, x)) < T j -  1 ()~(n, x)) and so 

X (m, x)(O = X (n, x)(T,"(Y; (n, x))) 

(by (2.6) and (2.4)). 

(by (2.6)), 

(2.16) X(m,x)(i)=X(n,x)(Ti")X(n,x))) if i<TJ-~(X(m,x)), xeGj, j<m.  

The last equality follows from the former because Yi (n, x)= X (n, x) on 
[0, T j -  1 07(n ' x))] by (2.6). 

Let m, n, x be fixed as in the statement of the Lemma. We will prove that 
for p<m, 

(2.17) X(m, x)(i)=X(n, x)(Tim(X(n, x))) for i< TP(X(m, x)), 

by backwards induction on p. (2.17) holds with p = m - 1  by setting j = m  in 
(2.16). Assume (2.17) holds for some p < m, let k = T p (X (m, x)) and y = X (m, x) (k). 
(2.17) implies 

(2.18) Tkm(X (n, x))= TP(X (n, x)) 

and hence 

(2.19) y = X (m, x) (k) = X (n, x) ( T p (X (n, x))) e 6p. 

(2.10), (2.18) and (2.19) give us 

(2.20) Tk"+ i(X(n, x))-- TP(X(n, x))= T~"(X(n, y)), ieZ+, 

and 

(2.21) T p-1  (X (m, x)) -- TP(X (m, x)) = T p-1 (X (m, y)). 
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If i< T v- 1 (X(m, x))-- TP(X(m, x)), then 

X(m, x)(k+ i)=X(m, y)(i) (by (2.10)) 

= x(n ,  y)(~m(X(n, y))) 

(by (2.16) with j = p because (2.21) shows i<  T v- I(X (m, y))) 

= X(n, y)(T~m+i(X(n, x) ) -  TP(X(n, x))) (by (2.20)) 

=X(n, x)(T~%~(X(n, x))) (by (2.10) and (2.19)). 

(2.17) now holds for i < T v- 1 (X (m, x)) and hence for i < T -  ~ (X (m, x)) by induc- 
tion on p. 

To prove (2.12) for i>=T-~(X(m,x)), argue as above with y = 0 ,  k 
= T-~176 x)) and use X(m, 0)=X(m,  0). Here are the details: 

X (m, x)(k + i)= X (m, 0)(i) ((2.10) with j = -- oo) 

=X(n, O)(T~m(X(n, 0))) (by (2.4), (2.7)) 

= x (n, o)(ry+ i(X (n, x ) ) -  T - ~ ( X ( n ,  x))) 

(by the analogue of (2.20) with p = - oe) 

=X(n, x)(Tk"+i(X(n, x))) (by(2.10)). 

This completes the proof  of (2.12). (2.I9) implies (2.13), (2.21) is (2.14) and (2.15) 
is immediate from (2.12). []  

Notation. In view of (2.13) we may let YP(x)=X(m, x)(Tv(X(m, x))), m>p, xeG,,. 

Lemma 2.5. (a) I f  x~G~, m, n e ~  and n>m, then {Wi"(X(n,x)): i~N} are i.i.d. 
random variables whose common distribution does not depend on x. I f  x~Gr~, 
they are jointly independent of X (m, x). 

(b) I f  x~Gm and i~N, then r-~ Wim(X(m+r, x)) is a supercritical branching 
process starting at 1 (when r=0 )  and with offspring distribution equal to the 
law of N. 

Proof (a) The strong Markov property of X(n, x) and the (local) translation 
and rotational invariance of X(n,x) imply that {Wim(X(n,x)): ielN} are i.i.d. 
and have a common law independent of x. If x~G,,, the joint independence 
with X(m, x) follows by a symmetry argument. For  example, by reflecting in 
an appropriate axis, one sees that given W~'(X(n, x))=k, X(n, x)(T~'(X(n, x))) 
equals any given vertex in N,,(x) with probability �88 Now proceed in general 
using the strong Markov property. 

(b) Fix xeG,, and iEN. It follows from (2.15) that 

Tim(X(m+r + l, =+r X))= T~?(x(,,+~.~))(X(m+r+ 1, x)), r e ~ + ,  
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and therefore 

(2.22) W~'~(X (m + r + 1, x) 

= ~ l(j<=Wim(X(m+r,x)))W~7.(x(,,+r,x))+j(m+, X ( m +  r + 1, x)). 
j = l  

By (a), conditional on X (m + r, x), the summands in (2.22) (excluding the indicator 
functions) are i.i.d, and equal in law to W("+'(X(m+r+l),x), which in turn 
is equal in law to N. (b) follows. []  

Remark 2.6. The above proof  shows that (b) holds for any family of simple 
random walks {X(mo +r, x): reX+}, providing X(mo + r, x) is a random walk 
on Gmo +~ starting at x e Gm o, and the nesting property (2.12) holds for mo-< m ___ n. 

Notation. If n e Z  and xeG, ,  let X,(x)(j5-")=X(n,x)(j)  and extend X,(x) to 
[0, oo) by linear interpolation. Hence X,(x)(')eC([O, oo), G). 

Proposition 2.7. Let me2~ and xe  G=. 

(a) For each i~N, wim(X,(x)) converges a.s. and in L 2 as n o d  to a random 
variable W~m(x) which is strictly positive a.s. 

(b) {W/re(x): i~N} are i.i.d, random variables and are jointly independent of 
x,.(x). 

(c) W/"(x) is equal in law to W~ 5 -m. I f  

(2.23) (a(s)=e(e-SW~ Re(s)>0,  

then 0 is the unique characteristic function satisfying 

(2.24) r for Re(s)>0,  q5 ' (0)=-1 .  

Proof Fix me2g, xEGm and ieN.  I f r e N  then 

(2.25) Wi"(Xm+~(x)) = 5 -"(5-~ Wi=(X (m + r, x))). 

Use Lemma 2.5(b), E(N)=5 ,  and the convergence theorem for supercritical 
branching processes (Harris (1963), p. 13, Theorem 8.1) to conclude that 

(2.26) 5 " W i m ( X ( m + r , x ) ) ~ " ( x ) a . s .  and i n L  2 as r--+oo, 

17Vim(x)>0 a.s. (Harris (1963, p. 14, Remark 1)), and 

r (s) = E (e-* w?(x)), Re (s) > 0, 

is the unique characteristic function satisfying (2.24) (Harris (1963, p. 15, Theo- 
rem 8.2)). (a) and (c) are now immediate from (2.25) and (2.26). (b) follows from 
Lemma 2.5 (a) and the above convergence. []  

) 
Notation. T]"(x)= ~ W[~(x)for xeG,,. 

i=1  
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W will be used to denote a random variable equal in law to W ~ (x). 
The nesting property (2.12) shows that the set of points traced out by X,  (x)(.) 

converges a.s. as n ~ o o .  Proposit ion 2.7 shows that the time it takes Xn(x) to 
traverse this set of points also converges a.s. as n ~ o o .  We now show that 
these results imply the a.s. convergence of X,(x) in C([0, oo), G) as n--*oo. The 
argument is "sof t"  and may be used to simplify Knight's construction of Brow- 
nian motion (Knight (1981, p. 10)), which has motivated our approach. 

Theorem 2.8. For each xEG~, Xn(x) converges a.s. in C([0, oo), G) as n---,oo 
to a process, X(x). Moreover for all m~2g, xeG,, and je2g+ , 

(2.27) X (x)( TT (x)) = X (m, x)(j). 

Proof Fix n o e N  and xeG,o. By Proposition 2.7 we may choose co outside a 
null set such that 

and 

lim W/" (X, (x)) = Wy(x )>0  for all me2g, i e N  
n ~ o o  

lim T]"(x)-- oo for all meZ. 
j~oo 

Fix m>no and then choose k=k(co) such that TZ'(x)>m, and nt=nx(CO) such 
that 

(2.28) max{T/"(X,(n))--T~m(x)}<min{W["(x): i<k} if n>nl.  
i <=k 

Let n,n'>nl ,  te [0 ,  m] and choose j=j(t)e{1 . . . . .  k} such that Tf"_l(x)<t 
< Tim(x). (2.28) implies that 

~"_' 2 (X.(x))  < t < ~"~1 ( x .  (x)) 

and similarly with n' in place of n. Therefore we have 

(2.29) I X.(x)( t )-  x . ,  (x)(t)] 
<__2 -m+ 2 + I X . ( x ) ( ~ m ( X . ( x ) ) ) -  x . , ( x ) ( ~ m ( x . '  (x)))[ 
= 2 - r n + 2 .  

Since te[0,  rn] and m e N  were arbitrary, this proves the a.s. convergence of 
X,(x) in G([-0, oo), G) as n ~ o o .  To derive (2.27) we used the nesting property 
(2.12) to see that 

(2.30) X,(x)(Tj'~(X,(x)))=X(m,x)(j) for n>m, xeG,,. 

Let n ~ o o  in the above and use Proposition 2.7 to obtain (2.27). []  

Proposition 2.9. (a) For each xeG~o and je2g, lira TJ(x,(x)) =- TJ(x) exists and 
is finite a.s., and "~ ~ 

(2.31) X(x)(TJ(x)) = Y2(x)e Gj. 
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(b) I f  m~Z and x~Gm-Gm-1, then 

Km - 1 (x) 

(2.32) Tm-l(x)= ~" Wim(x) a.s., 
i=1 

where Kin-l(x)= Tm-l (X (m, x)) is a geometric random variable with mean two 
and is independent of {W{~(x): i~N}. 

(2.33) 

and 

(2.34) 

g ( z  m -  l (x ) )  ~--2(5-m),  

E(exp(--)~T'~-l(x))=~)(25-m)(2--~(25-m)) -1 for 2>0, 

where c~ is as in (2.23), (2.24). 

(c) If  j, nETZ, j<n, and xeG,, then 

(2.35) E ( T J ( X n ( x ) ) )  ~ 5 - J /2  

(2.36) P(TJ(Xn(x))>t))<2~exp{-(log2/2)5Jt} foraU t>=O. 

Therefore if je2g and x~G~, then 

(2.37) E(TJ(x)) < 5-J/2 

(2.38) P(TJ(x)>t)<2~exp{-(log2/2)5Jt} forall t~O. 

Proof. (b) Let x e Gin--Gin-1 (m e Z). (2.15) (with p = m -  1) implies that 

(2.39) 77~-l(X(n,x))= ~ l(i<Tm-~(X(m,x)))V~{~(X(n,x)). 
i = I  

Replace X(n, x) with Xn(x) and let n---,co in the above to derive (2.32) from 
Proposition 2.7 (a). It is easy to see that K m ~ (x) has a geometric distribution 
with mean 2. The independence of Kin_ l(x) and the summands in (2.32) is 
immediate from Proposition 2.7 (b). Take expected values in (2.32) to see that 

E ( T m- ~(x)) = 2 E (W~'(x)) = 2(5-~). 

If 2 > 0, then (2.32) and Proposition 2.7 (c) imply 

E (exp ( -  2 T m- 1 (x))) = ~ 2-  k E (exp ( -  2 5-  m W))k 
k = l  

= ~ ( ,~5-m)(2-  ~(,~ 5 -  m))- 1. 

(a), (c) I f j<m<n and xeGm, then (2.14) implies 

(2.40) T;(X,(x))= ~ T'-~(X,,(Y'(x))). 
i = j + l  
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Let n ~ oo and use the a.s. convergence obtained in (b) to get 

lim Ti(X,(x)) =-Ti(x)= ~, Ti-l(X(Yi(x))) a.s. 
n--*oo i = j +  1 

This establishes the a.s. convergence in (a), and (2.31) follows by letting n ~oo  
in 

X,  (x) (T 2 (X n (x))) = YJ (x). 

The strong Markov property of X,,(x) at Ti(X,,(x)) shows that if j +  1 < i < n ,  
and xE:Gn, 

E(Z i- l(S,(yi(x)))lF~162176 ) 

= y T i- I(X.(yi(x)(CO))(CO') dP(co') 

= 2(5-i) 1 (yi(x)(CO)G Gi- 1) < 2(5 -i). 

In the last line we have taken expected values in (2.39) and used Lemma 2.5 (a) 
and Proposition 2.7 (c). (2.35) follows easily from this and (2.40) (with m = n). 

Let j, n~2g, j < n  and x~G,. Set t o=5  -i. Note  that 

P (TJ(X. (x)) >= 2 to) 

N E (1 (T i(X. (x)(co)) --> to) ~ 1 (T j (X. (X. (x)(to, co))(to, co')) >= to) dP  (co')) 

(by the Markov property of X.(x)) 

< E(1 (Ti(X.(x)(co))>= to)(5-i/2 to)) (by (2.35) and Chebychev) 

< 2-  2 (by (2.35) and Chebychev again). 

By induction one gets 

P(Ti(Xn(x))>nto)<2 -" for all n~N.  

For (2.36) we may assume t>to (or else the upper bound exceeds one). Choose 
nGN such that nto<t<(n+ 1)t o. Then 

P ( r  i (X, (x)) _> t) =< P (T i (X, (x)) > n to) 

< exp { - n log 2} 

= exp { -- n to (log 2) 5 i} 

=<exp{ -1Og225it} " 

(2.37) and (2.38) follow from (2.35) and (2.36), respectively, by letting n--+oo 
and using Fatou's  lemma for (2.37). [] 

Remark. X(x) is the process we will study. Note that it has not yet been shown 
that Ti(x)= TJ(X(x))(xsGoo), nor that Tim(x)=Tim(X(x))(xEGm). These results 
will be easily obtained once the strong Markov property of X(x) is established. 
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We call the times { T j(X (x)), j ~2~} break-out times for X (x). The above results 
will eventually give us some probability estimates on these times (Lemma 4.2 
below) which will play an important  role in the study of X. 

Corollary 2.10. X(x)(t)= x(YJ(x) ) ( t -  TJ(x)) for all t > TJ(x), 

j ~ Z w { - - ~ }  and 

Proof (2.10) implies that 

X,  (x) (t) = X,  (YJ (x)) (t - T j (X, (x))) 

x~Goo a.s. 

for all t >= TJ(X,(x)), xeG,,  

- -  O0 =_~j~_~ n a . s .  

Let n ~ m and use Proposition 2.9 (a) and Theorem 2.8. []  

To define X(x) for all xEG we want to show it is uniformly continuous 
in probability on G~. 

Lemma 2.11. There is a p< 1 such that if j ~ Z  and Yl, Y2 are neighbouring points 
in Gj+ 1 then 

P(YJ(YO 4: YJ(Y2)) < P. 

Proof By scaling we may take j = 0 .  One only need check that for any y l ,  Y2 
as above there is a strictly positive probability that X(1, y~) and X(1, Y2) enter 
Go at the same point. If y~, yz~G1-Go these random walks, stopped at T ~ 
are independent by (2.6) and this is obvious. If, say, ya~Go then y2~G1-Go 
and clearly there is positive probability that X(1, Y2) first hits Go at yl .  [] 

(In fact one can take _ 17 P -  75, as the reader can easily check). 

Lemma 2.12. Let m~Z, A ~ T,, and Xo ~3 A. Then for j < m, 

P (X (x)(t + T j (X (x))) :# X (Xo)(t + T j (X (Xo))) 

for some t__>0 and some x~A nGoo)<__2p m-j. 

Proof Let m, A,j be as above and OA = {Xo, x 1, x2}. By Corollary 2.10 it suffices 
to show 

P(YJ(x)4: YJ(xo) for some x in A c~ G~)<=2p m-j. 

An easy consequence of (2.10) is that 

(2.41) YJ(Ym(x))= YJ(x) for j<m. 

Since ym(x)~c3d it suffices to show 

(2.42) P(YJ(xl) # YJ(xo)) < p"-J. 
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Note that 

P(YJ(xl) + YJ(xo)] YJ+ 1 (Xl), YJ+ 1 (X0))((D) 

~- 1 (YJ+ 1 (X1)(fD) =~= YJ+ 1 (X0) ((.0)) ~ 1 (YJ(YJ+ 1 (x0(co)) (co') 

~= yj(yj+ l (Xo))(co))(co,)) dP(cs') 

< p  l (YJ+l(x0(cs)+ YJ+l(Xo)(a~)) (Lemma 2.11). 

The next to last line uses Lemma 2.3 (c) (with j +  1 and m in place of j and 
n, respectively) to show that o-(YJ(y): yeGj+l) and o-(YJ+l(x): xeGm) are inde- 
pendent o--fields. (2.42) follows by iterating the above inequality. []  

Notation. L~ oo), G)) denotes the complete metric space of C([0, oo), G)- 
valued random vectors with the topology of convergence in probability. 

P r o p o s i t i o n  2.13. The mapping 

x :  ~o ~L~ co), G)) 

is uniformly continuous on bounded subsets of G~ and hence has a unique continu- 
ous extension to G, which we also denote by X. 

Proof Fix ~>0  and M e N .  Let meZ,  AeTm and x, yeA. We claim that 

(2.43) i f j < m  and YJ(x)= YJ(y), then 

sup I X (x) (t) - X (y) (01 < 2-  j 
t < M  

+ sup {[ X (YJ (x)) (t' + u) - X (YJ (x)) (t') I: 0 <- t' <- M, 0 <-_ u < [ TJ (x) - T j (Y) I}. 

Assume j < m, Yi(x) = YJ(y), let te  [0, M]  and consider four separate cases. 

(i) t< rJ(x) /x TJ(y). 

Then I X (x) ( t ) -  X (y) (t) l =< 2-  i. 

(ii) T i (x) < t < T j (y). 
Then 

[ X (x) (t) - X (y) (t) I < [ X (YJ (x)) (t - -  T i (x)) - -  y1  (x)] + [ y1  (x) - X (y) (t)[ 

(Corollary 2.10) 

< sup IX(Yi(x))(u)-X(Yi(x))(O)I+2 J. 
0 <~ u < T J  0 ' )  - -  T J  ( x )  

(iii) Ti(y) < t ~ Tl(x). As above. 

(iv) Ti(x) v Ti(y) < t. 

Then Corollary 2.10 implies 

IX(x) ( t ) -  X (y)(t)] = IX (YJ(x))(t-  T i (x ) ) -  X (YJ(x))(t-  Ti(y))1, 

which is bounded by the supremum appearing in (2.43). (2.43) follows. 
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Assume j<_k<=m. Corollary2.10 shows that if yk(x)=yk(y), then TJ(x) 
-- TJ(y)= Tk(x)-- Tk(y) and therefore 

(2.44) P([ TJ(x) - TJ(Y)[ > fi)<P(I Tk(x) - Tk(y)[ >6)+ P(Yk(x)~ = Y~(y)) 

<~)-I E(Tk(x)+ Tk(y))+4p "-k (by Lemma 2.12) 

< 6 - 1 5 - * + 4 p  m-k (by (2.37)). 

Choose j e N large enough so that 2 - j  < e/2. Then (2.43) implies that for m > k_> j, 
A e ~  and x, yeA such that x, yeB(O, M) 

(2.45)P(sup I X(x)( t ) -  X (y)(t)[> e) 
t < M  

< P (YJ(x) + YJ(y)) + P (I T ~(x) - T J(y) l > 6) 

+ P(sup{lX(z)(t' +u)-X(z)(t')[: O<t' < M, O<u<6, zeOAj(x)} >e/2) 

<4p, , , - J+  ~5-1 5-k+4pm-k 

+3 sup P(sup{lX(z)(t'+u)-X(z)(t')[: 
z ~ G j ,  [zl =< M + 1 

O<=t' <=M, O<u<6} >e/2). 

In the last line we have used Lemma 2.12 and (2.44). Choose 6=6(j, M, e)>0 
so that the last term is less than e/3 (note that the supremum is over a finite 
number of z's). Then choose k so that 6 -15-k<e /3 .  Finally we may choose 
m large enough (depending only on (e, M)) so that the right side of (2.45) is 
less than e. By considering adjacent triangles in ~ it follows that X( ' )  is uni- 
formly continuous on bounded sets in G~, as required. [] 

Theorem 2.14. I f  x, eG, and {x,} converges to xeG, then 

P 
Xn(X,)--~X(x) in C([0, oo), G), 

P 
where ~ denotes convergence in probability. 

Proof Let {x.} and x be as above and fix M e N .  
(i 5 -n) =X(xn)(Tin(x.)) and therefore 

(2.27) shows that X.(x,) 

s u p  I X .  ( x . )  (t) - X (x)  (t) l < m a x  I X  ( x . ) ( T i  n (Xn))  - -  X (Xn) (i 5 -- n) l -~ 2 -- n 
t < M  i<=SnM 

+ max IX(x,)(i5-")-X(x)(iS-")] 
i < 5riM 

+ sup [X(x)(u)-X(x)(v)[. 
u, vefO,M], [u--v  I <= 5 - n  

Proposition 2.13 and the continuity of X(x) show that the last two terms con- 
verge to zero in probability as n ~ oe. In view of the convergence in probability 
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of X(x, )  to X(x), the first term will converge to zero in probability, and hence 
the result will follow if 

P 
(2.46) max I Y~'(Xn)--i 5-"1--+0 

i < 5 n M  
as n--, oo. 

For n fixed, T~"-i5 -n is a martingale in i by Proposition 2.7. Doob's maximal 
inequality implies 

E( max T? (Xn)- i5-")2) < C l E ((T s"-M (x , ) -  M) 2) 
i < 5 ~ M  

<-_Cl 5"M S -  2"~( (W - 1) 2) 

(Proposition 2.7 (c)). 

This proves (2.46) and hence the theorem. [] 

We now use {X(x): x sG} to construct a Feller process on the canonical 
space of paths. 

f2= C([0, ~) ,  G), PX=law of X(x) on f2, 
~- is the Borel o--field on f2 augmented in the usual manner (Blumenthal 

and Getoor (1968, p. 27)), 
X(t,  co)=co(t) if coef2, 
{4 ,  t >  0} is the usual augmentation of {~7 ~ (X), t >  0}, 
{0~, t>0} are the canonical shift operators on f2. 

Recall that P, denotes the transition semigroup of X. 

Theorem 2.15. (f2, ~,, ~ t ,  Xt,  Or, px) is a Feller process, that is, it is a Hunt process 
such that P~: Cb(G) ~ Cb(G). 

Proof. Assume O<s<t ,  x,  sG, ,  {Xn} converges to xEG, and let s ,= [5"s ]5 - " ,  
t , =  [5"t] 5-". Let OsCb(G) and let ~ be a bounded continuous function on 
f2. Then 

(2.47) 

where 

E x(~(x(t)) r (X (s /, . ))) 

= lira E((~(X.(x.)(t.)) ~(X.(x.)(sv/~ -))) (by Theorem 2.14) 
t~ --+ oD 

= lim ~ qJ (X,(x , ) (s ,  A .)(co)) I,(co) dP(co). 
n ---~ ~ (20 

L(co) = S O ( x . ( x . ( x . ) ( s . ,  co))( t . -s . ,  co'))tiP(co') 
-Qo 

and we have used the Markov property of X,(x,).  Use Theorem 2.14 and pass 
to a subsequence, if necessary, so that we may fix co outside a P-null set so 
that 

lim X,  (x,)(s,, co) = X (x) (s, co). 
n ~ o o  
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Theorem 2.14 now shows that I ,  (co) converges to E x (~) (s, ~,) (0 (X (t - s))) as n --, oo. 
Use Theorem 2.14 once again to see that (2.47) equals 

E x(4((x(s/ , . ))  E"(s~(4)(X(t- s)))). 

Therefore X(t) is a Markov process with respect to {o~~ t>0}.  Proposition 
2.13 implies the weak continuity of {P~: xeG} and hence the Feller property. 
The rest of the theorem now follows from general Markov process theory (see 
Blumenthal and Getoor  (1968, p. 27 and Theorem 8.11 on p. 41)). []  

We want to show that Ti"(x)= T["(X(x)) so that we can carry over our  
estimates on T~m(x) to the space of paths, f2. To do this we require some contin- 
uity properties of the hitting times T(A, X) which we may write as T(A, co) 
on path space. Similarly Tim(co) and T"(co) are just Ti"(X(co)) and Tm(x(CO)), 
respectively. 

Lemma 2.16. Let A be an open subset of G such that 8A is finite subset of 
Goa. 

(a) lira T(A c, co')= T(A ~, co) for P~-a.a. coef2 and all xeG. 
6t) ' - ~  r 

(9" E ~  

(b) I f  A is also bounded, then 

lira E(IT(A~,X,(x))--T(AC, X(x))[)=O forall xeGo~. 

Proof (a) If xr then both sides are zero. Assume therefore that xecl(A) 
and let 8A = {aa, ..., ak} c Gin. Then 

(2.48) T(A c, co)= T(SA, oJ) = rain { T~,(co): i<k} px-a.s. 

An elementary topological argument (use the openness of A) shows that for 
any co~f2 

T(A c, co) < lira inf T(A ~, co'). 
got  --+ (D 

In view of (2.48) and the obvious inequality, 

lim sup T(A c, co') < lim sup T~i (co'), 
~ O ' ~ O  CO' --+ r 

the result would follow from 

(2.49) lira sup Tai(co') < Ta~(co) px a.a. co for each i<k. 
f g '  --+ r 

Fix i n k  and let A a and A2 denote the interiors of the two adjacent triangles 
in ~ which intersect at ai. A simple topological argument shows that (2.49) 
holds for each co ~ Q which satisfies 

(2.50) if T,,(co)< oe, then T(Aj, OTai(D)=O for j =  1, 2. 
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The strong Markov property and the zero-one law show that (2.50) would hold 
for P~-a.a. m if 

(2.51) P"'(T(Aj, oo)=O)>O j = l ,  2. 

For n > m, we have 

P(X(ai)(W~(ai))sA1) = P(X(n,  ai)(1)eA 0 = �89 (by (2.27)) 

E(W~(al)) = 5-" (Proposition 2.7 (c)). 

These imply 

P( X  (a~)(W;(ai))eAa for infinitely many n and lim W~(ai) = O) > �89 
n ~ o o  

This proves (2.51) and hence gives (a). 

(b) Assume A is bounded and x e A  c~ G~ Ofx~_A ~ the result is Irivial). Choose 
m so that x~G,~ and choose] such that Acint(Bd(0,  2J)). By (a) and Theorem 2.8 
we only need show {T(A ~, X,(x)): n > m} are uniformly integrable. Note that 

(2.52) T(A ~, X.(x)) <__ T(Int(Bd(0, 2J)) ~, X.(x)) <= T-J(X.(x))  + WI-J(X.(x)). 

(2.36) shows that {T-J(X,(x)):  n>m}  is U-bounded and the U-convergence 
in Proposition 2 7 (a) shows the same is true of { W(  j (X, (x)): n > m}. The required 
uniform integrability is now immediate from (2.52). [] 

Corollary 2.17. For each m e Z ,  i~7Z + and xeG,  

lim Tim(co')= Ti"(~) for W-a.a. co in f2. 
03 ,  ---~ r 

O ) ' E ~  

Proof. If i = 0  the result is immediate from Lemma 2.16(a) with A =Int(A,,(x))_ 
Assume the result for T~" and consider Ti'~ 1. If Ti~(o))= oe, then the results 
is clear because both sides are infinite for T~ 1 (e)). On {Tim(~o)< oe}, we have 

T,R a (co)= Ty (co)+ T(Int (Bd (co (T~m), 2-m)) c, OTT, CO ), 

and hence we must show 

(2.53) lira TtInt(Ba(ce'(T~"), 2 - ' ) )  ~, OfT, co' ) 

= T(Int(Ba(co (T,-"), 2-"~W, 0TpC0) 

The induction hypothesis implies 

for px-a.a, co in { Ti" < c~ }. 

lira OrT~o'=OrmcO for PX-a.a.m in {T~"<oe}, 
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and there is an e(co) such that 

co'(T/")=co(T/'~) for pa(co',co)<e(o9) and 

e(co)>0 for PX-a.a. co in {T/"<oo}. 

These results show (2.53) would follow from 

l i m  r(Int(Bd(co(r/"), 2-")y, co') 

= T(Int(Bd(co(T{"), 2-"),  2-m)) c, OTrco ) for PX-a.a. co in {T/"< oo}, 

which by the strong Markov property would in turn follow from 

(2.54) lim T(Int(Bd(co(Ty), 2-"))  c, co") 
o),, ~ (D, 

= T(Int(Bd(co(T/"), 2 - ' ) y ,  co') for PX(T?'~ co', 

for W-a.a. co in {T{"< oo}. 

For each fixed co such that T{"(co)<oo, (2.54) holds by Lemma 2.16(a) with 
A=Int(Bd(co(T{"), 2-"))  and X=XT?(CO). [] 

Lemma 2.18. (a) r " ( x ) =  rm(X(x))  for all m~7l, and xEGo~ a.s. 

(b) Ty(x)=  T{"(X(x)) for all m~TZ,, i ~ N  and xeG, ,  a.s. 

Proof. (a) Let xeGco and me2g. 

T" (x)=  lim rr"(X,(x)) a.s. 
n --4 oo 

= r ~ ( X ( x ) )  a.s., 

where in the last line we used Theorem 2.8 and Corollary 2.17, 

(b) is similar. []  

We now may carry over Propositions 2.7 and 2.9 over to the canonical 
space of paths and extend them to arbitrary starting points in G. 

Notation. For each m~Z, Y,,: Z + x ~2 ~ G~ is defined by 

, [X(T/'(co)) if T/m(co)<oo, 
Ym(i, co)=~ 0 if T/"(co)= oo. 

Theorem 2.19. For any x e G and m e 7 / w e  have the following under px: 

(a) Conditional on ~T,,, Y~(') is a simple random walk on G,~ starting at 
X(Tm). 

( b )  { w / m :  i~N} are i.i.d, and are jointly independent of ~T ,  V a(Ym). E(w/m) 
= 5 - "  and 5row~ m is equal in law to W, where (a(s)=E(e -~w) (Re(s)=>0) is the 
unique characteristic function satisfying (2.24). 
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(C) I f  x ~ G,,-- a"  _ t, then 

(2 .55)  E x ( Z "  - 1 ) ~  2 ( 5  - ' )  

(2.56) E ~ ( e x p ( _ 2 r "  - 1))= q~(25 - ' ) ( 2 - -  q~ (2 5-" ) )  -~ 

~[q~(;~5~-~), q~(;~5-~)], ;~>0. 

(d) 

(2.57) 

(2.58) 

569 

E x (T m) < 5 - " /2  

EX(exp( -2T ' ) )  > ~] ~b(,15 -i) 
i = m  

(2.59) P x ( r ' > t ) < 2 ~ e x p -  2 - 

(2.60) P~ (S" > t) < ca. 1 exp { - c2.2 5 mt}. 

Proof (a) If A is a Borel  subset of G ~, then 

P~( Y '~A  I ~rm)(Co) = eX(rm)(~ Y '~A ). 

(a) follows now by (2.27) and L e m m a  2.18. 

(b) Let  A be as above  and B 1 . . . . .  Bn be Borel  subsets of [0, oo). Then  

P~(Y'~A, Wi '~B i for i < m ] ~ w )  

=PX(rm)(Y'~A, Wim~Bi for i<=m) 
n 

= PX(rm)(Y" ~A) I]  PX(r~)(Wi'~Bi) 
i=1 

(Proposi t ion 2.7 (b), (2.27) and L e m m a  2.18) 

n 

=P(Y'~A]~rm)  I I  P(5- 'W~B~)  
i=1 

(Proposi t ion 2.7 (c) and L e m m a  2.18). 

(c) all but  the bounds  on ~b (2 5 - m) (2 -- ~b (2 5 -"))  - 1 are clear f rom Propos i t ion  
2.9 (b) and L e m m a  2.18. r (2 5- ' )=< 1 implies the upper  bound  in (2.56) and also 

(2 - ~b (2 5 - ' ) )  - 1 ~ (~ (,~ 5 - ") (4 -- 3 ~b (2 5 - ")) - i. 

Mult iply by ~(25  ") and use (2.24) to get the lower bound  in (2.56). 

(d) Let  {x,} be a sequence in Go converging to x e G  such that  lim X(x,)  
n~oo 

= X ( x )  P-a.s. By Corol lary  2117 we therefore have lira T'(X(x , ) )  
n~oo 

= T" (X (x)) P-a.s. Take  x = x ,  in (2.37) and (2.38), let n--> oo, and use L e m m a  2.18 
and the above  to derive (2.57) and (2.59), respectively. 
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I fxEG. and n>=m, then T"= ~ Ti - l oOT  ,. I f2>O,  then 
i = m + l  

->-- I~ ~(,~51-i) 
i = m + l  

(by (2.56) and the strong Markov property) 

> (I ~(,~5-~) 
i = m  

We may extend this inequality from x in Goo to all x in G as in the previous 
argument. 

For  (2.60) note that S,, < T~-  2 and therefore 

P~(Srn ~ t) ~ P~( T"-  2 >= t/2) + P~(W~- 2 >= t/2) 

<= p~(T ~- 2 >_= t/2) + PY(T m- 3 ~ t/2), 

where y e G,,_ 2 -  Gin-3- (2.60) is now immediate from (2.59). [] 

Remark2.20. If A is a bounded Borel subset of G and m e Z  satisfies 
AcBa(O, 2-m), then T(A c, X(x))<S,,(X(x)) for all xEG. (2.60) therefore shows 
that {T(A ~, X(x)): xeG} is uniformly integrable on (~20, o%, P). This observation 
will prove useful in Sect. 5. 

Theorem 2.21. X is #-symmetric, i.e., 

SPtf(x)g(x)d#(x)=Sf(x)Ptg(x)d#(x) for any fg~Cr(G).  

Proof Let f, g~Cr(G), and let qS,: G-*G, map x onto the southwest corner 
of A,(x). Theorem 2.14 shows that if t , =  [5"t] 5-", then 

Pt f (x) g(x)= lim E ( f  (X,((a,(x))(t,))) g(~b,(x)) 
n --+ cJo 

for x ~ G, and therefore 

Pt f (x) g (x) d # (x) = lira ~ E ( f  (X, (x) (t,))) g (x) 3-"  
n ~ ~ 1 7 6  xEG~ 

= lim ~ E(f(X(n,  x)([5"t]))) g(x) 3-"  
n -+oo  X E G n  

-- lira ~, f (x)  E(g (X(n,x)(E5"t])))3-". 
n ~ o o  x ~ G n  



Brownian Motion on the Sierpinski Gasket 571 

Here we have used the obvious symmetry of the G, random walk X(n, x) 
with respect to counting measure on G,. Retracing the above steps gives the 
result. [] 

Remark 2.22. It is easy to see from its construction as a limit of random walks 
that X satisfies the following scaling property. 

(2.61) Px(2X('/5)~A)=PZx(XeA) for all Borel subsets of C([0, oo), G), A, and 
x~G. 

3. Branching Processes and the Distribution of Hitting Times 

Let 

Z 2 

(3.1) f ( z ) - 4 _ 3 z  , zell2, 

and let Z o = 1, Z1, ... be a simple branching process whose offspring distribution 

has probability generating function f. Then f ( z ) =  ~ prz r, where po=pl =0, 
r = 0  

and p =�88 for r>2 .  As po=0, the probability of extinction for Z is zero. 
From (3.1) we have E(exp(2Z0)< ~ for 2 <log(4), and EZ~= 37< co. 

Standard results from branching process theory (Harris (i948)) show that 
there exists a random variable W, with W > 0  a.s., such that 5 - " Z , ~ W a . s .  
and in L 2 as n--* oo. Let 

O(z)=Ee -"w z6lE, Re(z) >0. 

Then there exists 3 > 0  such that q$(z) is analytic in D={z:  R e ( z ) > - 3 } ,  and 
4~ is the unique solution of the Poincar6 equation 

(3.2) r z)= f (cb(z))=4 0;);(z) z~l) 

4(0)=1,  ~'(0) = --1. 
Let 

G (x) = P (W__< x), 

be the distribution function of W, and let g = G' be the probability density func- 
tion of W. (This exists by Harris (1963, Theorem 1.8.3)). 

From Theorem 2.19 one sees that 5-m Wis equal in law to Wy, the '"traversal 
t ime" of a triangle in ~m by X. In this section we use (3.2) to derive upper 
and lower bounds on G and g: these bounds provide the key to many properties 
of X. 

Given the substantial literature on branching processes it is perhaps surpris- 
ing that more is not known about the distribution of W. However, only a small 
proportion of the literature deals with the properties of the limiting distribution, 
and of the papers which do, many examine only the case Po + P t > 0. It is known 
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that  if Po+Pl = 0  then the limiting distribution has quite different behaviour 
at 0. For  references see Dubuc  (1971, 1982), Bingham (1987). 

We use z, w to denote elements of 1I;, and u, s, t to denote reals. Write 
(I2+ = {z~C:  Re(z) =>0}, and let 

g = { l < l z l < 5 } ~ ; + .  

F rom (3.2) we easily obtain (see also Asmussen and Hering (1981, p. 89)). 

(3.3) sup I q~(z)l < 1 
z ~K  

Clearly I~b(z)l _-< 1 for z ~ C + ,  and it is easily seen from (3.2) that  I q~(z)l >0 ,  zE~;+. 
Let 

(3.4) h(z)= - I zl-~ log I ~b(z)l z e C +  -{0} .  

Note  that  h > 0. Substi tuting in (3.2) we have 

(3.5) h(5 z)= h(z) + �89 lzl- '  log l 4 -  3 ~)(z) ] 

=h(z)+lzl -~ log 2 + �89 z I-~ log I 1 - 3 q~ (z) I. 

Proposition 3.1. (a) For each zel~+ - {0}  the limit 

k(z)= lim h(5nz) exists. 
n ---roo 

(b) There exist constants c3.1-c3.3 such that 

(3.6) e-C3.~l~l" <l~(z)l<c3.2e-C3.31~l', z~l12+. 

Proof. Since 0 < [ ~b (z) l < 1, 1 < 14 - 3 q5 (z)[ < 7, so that, by (3.5), 

(3.7) h (z) < h (5 z)_-< h (z) + �89 z I -~ log 7. 

Thus n ~ h(5"z) is increasing, h(5"z)__< h(z) + I zl- ~ log 7 for each n, and (a) follows. 
As h is cont inuous on K, suph(z)<c<oo, and thus sup h(z)<c+21og7 

z ~K  z~ff2+ 

= C3.1, say. This proves the left hand  side of (3.6). 
By (3.7) h(w)> inf h(z) for all w~{Izl__> 5} n C+, while inf h(z)> c3. 3 > 0 by 

z ~K  zEK (3.3) so 

(3.8) I~b(z)l<e -~3-31~1" for z e C + ,  Izl_-_l. 

Since Iq~(z)l<l for z~l12+ the right hand  side of (3.6) follows, with c3.2 
= exp(c3.3). []  

Remark. (3.6) is proved in Dubuc  (1971) in the case Im(z)=  0. 

It is immediate  from (3.6) that  

C3.1~k(Z)~C3. 3 for all z~l12+ - {0}. 
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Given this bound it is natural to ask whether k(z) is in fact constant, either 
on the real axis, or for all z e C +  - {0}. We now describe some computer calcula- 
tions, which prove that this is not the case. 

We now restrict to the real axis. From (3.2) and (3.5) we have 

(3.9) h(5s)=h(s)+�89 s > 0  

s~- lh(s )~l  as s~,0. 

Set O(y ) = log (4 -3e -Y) :  for 0 < y < l  we have 3y-6y2<tp(y)<3y. Thus, by 
(3.9), h (s) < 25- h (5 - I s), and hence, for any n > 1, h (s) < (5/2)" h (5 -" s). 

Let z > 0 :  for sufficiently large n we have, by (3.9), h (5-"s )<(1  +e)(5-"s)  t-~, 
and putting these two estimates together we obtain 

(3.10) h(s)<s 1-7 for s>0 .  

Similarly, h (s) > ~ h (5 - 1 s ) -  ~ s 7 h (5 - i s)Z By (3.10) therefore 

h(s) >= ~h(5 -1 s ) -  3(5- l s)Z-~, 

and so, for any n > 1, 

It follows that 

n - 1  
h(s)>(5)" h(5 "s)-  3 s 2-~ ~ 5 (~-2)~. 

r = l  

(3.11) h(s)>=sl-~'--3s 2-~, s > 0 .  

If So>0, s ,=5"So,  h(so)>Uo, and a sequence (Un, n~0) is defined by u,+l 
=u,+�89 ~ O(s~,u,) then, by (3.9), h(s,)>u, for all n. Similarly, if uo>h(so), then 
u,>h(s,) for all n. 

Combined with (3.10) and (3.11) this gives a method of computing bounds 
for h(s), for s>0 ,  to any desired degree of accuracy. One first chooses so (we 
took so~-10-13), and uses (3.10) and (3.11) to derive bounds on h(so). Iterating, 
one obtains upper and lower bounds on h(s,). For  large y, - e - Y < 0 ( y ) - l o g 4  
<0,  and it is easy to derive upper and lower bounds for k from those for 
h(5"s). 

Using a F O R T R A N  compiler with extended precision arithmetic, we calcu- 
lated k(r x 10-14) for r = 10, I 1 . . . . .  50 correct to 13 decimal places. In particular, 
we found 

k(12 x 10- t4)_~ 1.959108167 

k(27 x 10-14)_~ 1.959102196. 

Dubuc (1982) gives results which explain similar tiny oscillations found in 
the case Po+Pl >0.  
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Remark. Let ko= inf k(s), k~ = sup k(s). The calculations above prove that 
l_<s_<5 l_<s_<5 

ko < 1.959103 < 1.959108 <k~. 

However, we have no rigorous lower bound on ko, or upper bound on k~. 
It appears from the table of values of k ( rx  10 -~4) for 10_<r_<50 that k(s) is 
fairly smooth, and we suspect that 

1.959102 < ko, k~ < 1.959109 

But, without some theoretical bound on either the total oscillation of k (as 
in Dubuc (1982)), or on I k'l, these last bounds remain a guess. 

We now use (3.6) to obtain bounds on G and g. The asymptotics of G(x), 
as x$0,  are studied in Bingham (1987), where they are derived from (3.6) by 
a Tauberian theorem of exponential type for oscillating functions. 

Proposition 3.2 (Theorem 1, Bingham (1987)). There exist constants ca.4, c3.s such 
that 

7 Y 

(3.12) -- c3., < lim infx  1-'t log G(x)<= lim sup x 1- ' /G(x)< -- c3.5. 
x $ 0  x~O 

For  details of the constants see Bingham (1987)" if c3.1 and c3. 3 differ by ~, 
then c3.4 and ca.5 differ by O(e~). 

Corollary 3.3. 

(3.13) c3.6e_C3.,~,-~ <G(x)Nc3.Te_ c . . . .  1-, for 0=<x<oo.  

Proof This is immediate from (3.12). []  

More work is needed to bound g. While the Laplace transform of G was 
sufficient to determine G, we will now need to use the Fourier transform. 

Now write a s = c3. 3 . 

Lemma 3.4. G has a density g, and g is C ~~ For each k >O 

(3.14) [Ig ~k~ 11 ~ -<- c3.~ a-~k + 1J F ( ~ ) .  

Proof From (3.8) we have 

I q~ (it) [ <= c3.2 e-~'~', t e N .  

Hence tkl4)(it)t~L~(N, dt) for each k>O, and so g exists and is C ~~ By the 
Fourier inversion theorem 

0 

<=c ~ tke-("O'dt=c3.sa-(k+L~F 
D 

[ ]  
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Since W > 0  a.s., g ( x ) - 0  for x < 0 ,  and so g(k)(0)=0 for k > 0 .  Thus, writing 
b , ,=  Jig(") N o~, we have, integrating k times 

(3.15) [g(")(x)l<b,+kXk/k! for k=>0, n > 0 ,  x=>0. 

Theorem 3.5. For each n >O there exist c o n s t a n t s  c].9(n ) and c3.1o such that 

(3.16) [g(")(x)l<c3.9(n)exp(-c3.xox&-l), x>O. 

Proof Let n > 0  be fixed. It is enough to prove (3.16) for O<x<c(n), as adjusting 
the constant  c3.9(n), and using (3.14) will then give (3.16). 

Let k > 0 ,  and set r = ( k +  1)/7, s=n/> F r o m  (3.15) and (3.14) we have 

Ig(")(x)l<=c3.sa-S~x-X(x/a)r~r(r+s)/F(r7), x>=O. 

By Stirling's formula, as r ~ oe, 

F(r+s) F(r 7) \r ( Tr 'l~e-~(x-~)7-'~e-S(r+s)*(l +S) s] 

Since e - ~  ~)7-~<0.82< 1, it follows that, for r>ro(s), 

Thus 

r ( r  + s) < exp (r (1 - 7) log r). 
r ( r ~ )  = 

I g(") (x) [ < c (n) x - 1 exp (r (1 -- 7) log r -- r 7 log (a/x)). 

Set v(r)=rlogr-rlogb, where b=(a/x) ~/~ Then the min imum of v is at 
rx=be -x, and v ( r l ) = - b e  -t. Let x be fixed, and be small enough so that  r x 
> r0 (s). Setting r2 --- [ r l ] ,  and writing 6 = rx - r2 we have 

Iv(r2)-v(rl)[~o__<y__<~sup Iv'(q-Y)l~ l o g ( l - @ ) .  

So, provided x is sufficiently small, v(r2)< - b / 3 ,  and therefore 

[g(")(x)l<=c(n)x -x exp(-�89176176 for O<_x<_c(n). 

Absorb x -1 into the exponential  and note 7/(1- 7)= l/dw-1), to prove 
(3.16). []  

We now derive lower bounds  for g. Here we use directly the probabilistic 
content  of (3.2): 

N 

(3.17) W(r )} ~ W/, where Wt, ... are iid copies of W, 
i=1  

N is independent  of W, and P (N = r) = �88 (�88 2 for r > 2. 
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From (3.17) we obtain, writing g*(~) for the r-fold convolution of g with 
itself, 

(3.18) lg(u/5 ) = ~ �88 2 g*~r)(u), 
r = 2  

and 

(3.19) g(u/S) > g ,  g(u). 

Lemma 3.6. g(u)>Ofor all u>0 .  

Proof Suppose that g(Uo)= 0. Then, by (3.19) g*(r)(5 uo)= 0 for each r > 2. Now 

g*(') (5 Uo)= 5" .5 at, . . .dt,  g(5 Uo - tr) g( t~-  t~_ i)...g(tz - tl), 

and so, looking at the integral in a neighbourhood of t i= 5 uo(i-1)/r, 1 <i< r, 
and using the continuity of g, we have g(5uo/r)=O. Taking r = 1 0  or 2 and 
iterating it follows that g(5"2-"-mUo)=0 for each n, m > l .  Thus g - 0 ,  and 
as 5g = 1 this is a contradiction. []  

Theorem 3.7. For each N > 0 there exist constants ca.11 ( N ) ,  C3.12 such that 
1 

(3.20) g(x)>Ca.tl(N)exp(_c3.i2x d~-x), O<_x<_N. 

Proof As g is continuous, and strictly positive in (0, oo), it is bounded away 
from 0 in [6, N]  for each 6 > 0 :  thus, by adjusting the constants ca. i l(N ) it 
is enough to prove (3.20) for xe[0 ,  1]. 

Let ~(x)= inf g(y). The previous lemma shows ~(x)>0  if x > 0 .  (3.13) 
1 A X ~ y ~ I  

implies that G(u)> e-c , , -e  for all u e(0, 1] and some c 1 > 0, where fl = 7 ( 1 -  7)-1 
By enlarging c 1 we may also assume (use Lemma 3.6 again) 

(3.21) g(1)e -cl =<inf{g(v): i = v <  1}. 

If xe(0, ~), then (3.19) implies 

5x 

g(x)=> 5 g(Sx-v) g(v) dv 
0 

3x 

>= 5 g(5x--v)g(v)dv 
0 

_>_~(2 x) 6(3 ~), 

(3.22) g (x) > ~ (2 x) exp { - c l x -a}. 

(3.21) shows that (3.22) also holds for xe  [�89 1]. Therefore we have 

(3.23) f f (x)>g(2x)exp{--clx  -p} for all xe(0, 1]. 
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If xs(0, 1] choose ne2g+ such that 2"xE( 1, 1]. Iterate (3.23) to get 

{ n~l( } 
(x) _-> ~ (1) exp - ca 2 ~ x)- a r=0 

> ~(�89 exp { -  c 1 ( 1 - 2 - a ) -  1 x-a}, 

as required. [] 
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4. Sample Path Properties 

A proof of the following simple Tauberian theorem may be found in Fristedt- 
Pruitt (1971, Lemma 1). 

Lemma 4.1. I f  Y is a non-negative random variable and ~ (2)= E(e-  ~r) then 

(~(2) -  e-  xt)(1 - e -Z t )  - ~ <__ P ( Y  <= t) 

for all 2, t > O. [] 

Using this and the estimates on q5 from the previous section, we can easily 
convert the estimates on the Laplace transform of the break-out times into 
estimates on their distribution functions. Recall the notation T"(co) from Sect. 2 
(preceding Lemma 2.16). 

Lemma 4.2. There are constants c4. ~ and c4.2 such that 

(4.1) PX(Tm<=t)>=c4.1 exp{-c4.2(t5m) -~/(~-1)} 

for all t>0 ,  x~G, and m~2~. 

Proof If t>0 ,  x s G  and me7Z are fixed, then (2.58) and (3.6) imply 

(4.2) E x (e- ~ rm) __> exp { - c3.12' 21 - m}. 

The desired estimate is now a consequence of Lemma4.1 with 2 
=(C3.1 t -1 22-n)1/1-~. [] 

Theorem 4.3. There are constants c4.3, c4.4, c4.5 and c4.6 such that 

(4.3) c4.5 exp {-c4.6(6 t-~)l/1-~} < P~ l X t -  Xo[ > 6) 

< P~(sup [Xs -Xo  I > 6) < c4.3 exp(-c4 .r  1/1-~} 
s<=t 

for all x~G and t, 6~(0, c~). 

Proof Let x e G  and t, fie(0, c~). Choose n~2g such that 2 -"+~ _<6<2 -"+2 

P~(sup IXs-- Xo l> 6) N PX(T~Nt) S~t 
<px(w5-.<t) 

< %3 exp { -  %4(6 t -  ~)1/1- ~}, 
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by (3.13) and the choice of n. 
For  the lower bound choose n zig such that 2 - " - 2 <  (~ ~ 2-"-1.  

W(IXt- -XoI>6)  

>E~(I(T~<t, IX(T~)--xI>2-")P x(rT)(~) sup [X~--XoI<5)) 
s __< t - T7 (~o) 

> E x (1 (T" <= t/2) px(r,) (W? <= t/2, ] X (W?) - x I >= 2 -")) 

x (1--c4.3 exp{--c4.4(bt-v) 1/1-~}) (by the above). 

Choose K large enough so that the last factor exceeds �89 if b t -  v >= K. The indepen- 
dence of W~ and X(W~) (Theorem 2.19(b)) shows that if 6t-v>_>_K, the above 
expression is bounded below by 

4-1 px( T,  <= t/2) P( W 5-" < t/2) 

> 4-1 c4.1 exp { - c4.2 (t 5"/2)- ~/v- 1} c3.6 exp { - c3. 4 (t 5"/2)- v/(v- 1)}, 

by (3.13) and (4.1). The required estimate now follows for 6 t - s >  K by the choice 
of n, and hence for 6 t -~ < K as well by simply adjusting Ca.5. [] 

As an immediate corollary we obtain the sub-diffusive behaviour of X, men- 
tioned in the Introduction. 

Corollary 4.4. There are constants {c4.7 (P), c4.8 (P)" P > 0} such that 

c4.7(p)tP~Ex([xt--Xo[P)~c4.8(p)t p~, foralI t ,p>O and x6G. [] 

The scaling properties of X suggest that it has positive and finite dw-variation 
(recall dw =7-1  = log  5/log 2). We first prove this for d~-variation interpreted in 
the Lebesgue sense. 

Notation. N, (t) = max {i6Z + : Ti" =< t} (max 0 = 0). 

Theorem 4.5. 5-"N,(t) converges uniformly in t~[0, T] to t as n~oo  W-a.s., for 
all T > 0  and x~G. 

Proof By conditioning on ~r -  and using (2.57) to see that T",~0 a.s., we need 
only consider W where x~G,o for some n 0. Fix t, e>0.  If n_->no, then 

/ [ 5~ ( t  + e)] \ / [ 5 ' ~ ( t -  e)] + 1 \ 

P~(15-"N.(t)--t]>e)<=e~( 2 Wi"<t)+px(  ~, Wi">t ) 
\ i = 1  / ' ,  i = 1  

\ i = 1  

x / [ 5 " ( t  - ~)1 

=< (e - 5 - ' ) -  2 5" (t + e) 5 - 2. Var (W) 

+ ( e -  5- ' ) -2(5"t  + 1) 5-2" Var(W). 
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The Borel-Cantelli lemma shows lira 5-"N,( t )=  t P~-a.s. A standard argument 
n ---~ oo 

using the monotonicity of N,(') shows the convergence is uniform on compacts 
a . s .  [ ]  

Remark 4.6. 1. Theorem 4.6 states that 

I(T/"__< t)I X (T~")-- X(T?_ 0 L ~- - ,  t 
i = I  

uniformly on compacts as n --, oo PX-a.s. 

Thus in describing the dw-variation of X we have followed Chacon et al. (1981) 
and partitioned space rather than time. 

If t~ = i 5 -", then w.p. 1 for any t > 0 

[t5 n] 

(4.4) c4.9t ~ lim inf ~ ]X(t~)--X(t~_~)[ d'~ 

[t 5 n] 

_-< lim sup ~ [X(tT)-X(t~_l)la~<c4.1o t. 
n ~ a ~  i=1  

To prove this, first use standard martingale arguments to show that, if 

then 

J 
M,( j )=  ~, IX(t?)-X(t~_l)la~-EX(~7-')(lX(5-")-X(O)la% 

/>1  

sup [M, ( j ) [~0  a.s. a n d i n  L 2 forany t>0 .  
j_<[5nt] 

(4.4) therefore follows from Corollary 4.4 with p = dw. We conjecture that (4.4) 
may be strengthened to 

[5'~] 

(4.5) lim ~ [X(t~)-X(t~_x)law--t 
n ~ m  i =  1 

for all t > 0 PX-a.s. 

for all x~G. 

2. It follows immediately from (4.4) that X has infinite quadratic variation 
and is therefore not a semimartingale. 

Notation. 0o(t) = t~(log log 1/01 -~, t~(0, e-  t) 

~//1 (t)  = tZ(1og  l / t )  1 - ~ ,  t e ( 0 ,  1). 

We close this section by showing that ~o and ~1 give the local and global 
moduli of continuity for X, respectively. 
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Theorem 4,7, There are c o n s t a n t s  {C4.11(X): X~ G} such that for all x e G, 

(4.6) lira sup [X t -Xo[  Oo(t) -1 = c4.t 1 (x) P~-a.s., 
t.C0 

where e~.6 ~ < c4.zl (x) < c[.-,, 1. 

Proof  The usual Borel-Cantelli argument shows that (4.3) implies the lira sup 
in (4.6) is bounded above by c~.-41. In view of the Blumenthal zero-one law, 
it suffices to show that for each xeG,  

( 4 . 7 )  l imsuplX,--Xol tPo(t ) - l>d4_61 PX-a,s. 
t$o 

Let 0e(0, 1), c = c(O) = G.61 (1 - 0) ~, and 

A.  = {IX (O")-- X (O "+ 1)1 _>_ ct~(O"))e~o.. 

The Markov property and (4.3) imply 

PX(A.l ~o.+ l) > c4.5(n log O-1)- l. 

The obvious conditioning argument now shows PX(A, i.o,)= 1 and hence, for 
px-a,a, cn 

lim sup [ X(0") -  X(0) [ 0o (0")-1 
n ~ 3  

>lira sup {IX(O")-X(O "+ 1)1 0o(0")- t 
n ~ o o  

- IX(0  "+ 1)-x(0)!  r (0")- ~} 

>= c (0) - c?ff410L 

by the above and the upper bound result. Let 0~0 to get (4.7). [] 

The local spatial homogeneity of X and G shows that c4 x a(') is constant 
on each G. and hence on G~o. We conjecture that it is in fact constant on 
G. 

Lhvy's proof of the exact modulus of continuity of Brownian motion (see, 
for example It6 and McKean (1965, p. 36)) may be used together with (4.3) 
to show that ~1 gives the global modulus of continuity for X. More precisely 
Corollary 1.7 holds with c 1.12 = Cz~-61 and c 1.13 = C~-d- 1" 

5. Green's Functions and Resolvent Densities 

In this section we write T~"= T~" (X) for the stopping times introduced in Sect. 1 
where X o = x e G ~ .  For each n, (X(Ti"))~~ is a simple random walk on G (n). 
Let 

x ~ " ) ( t )  (") " = x ~  = X(TE~.~).  
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By Theorem 2.8, X ( " ) ~ X  uniformly on compact subsets of [0, ~).  For x~G,  
we define the (normalized) occupation times for X (") by 

(5.1) K~(x) =(3)3" i l~x~(x~")) ds 
o 

Let A satisfy 

(5.2) A c G ,  A is open in G, A is connected and bounded, and (~AcG,,  for 
some m. 

For A satisfying (5.2) let 

R" (A) = T(A c, X (")) = inf{t => 0: X~ ") ~AC}, 

R(A) = T(A c, X). 
Now let 

g~4(x, y) = EXK"R.r for x, y~G,: 

g~ is the (normalized) Green's function for X (") in the region A. Let 6(x, y) 
-- l~xl(y )- 

Lemma 5.1. Let re<n, x~G,,,  and suppose that A satisfies (5.2). Then, if y~G,, 

( 5 . 3 )  g"a(x,y)<(3)(3)~6(x,y)+ ~', �88 
zeNm(x) 

with equality if int(Bn(x, 2 - ' ) ) c  A. 

Proof Let UI=T~"(X(")), and U2=inf{t_>U1 : X~")eAr}. Then R"(A)<= U2, with 
equality if int (Bd(x, 2-")) c A. Thus 

g.~ (x, y) = E ~ K"R.(A)(y) < E ~ K ~  (y) 

E . . . .  K" = Kv~(y)+E (Kv:(y)--  v,(Y)). 

If y + x  the first term is zero, while if y = x  it equals (3)(3),. by Lemma 2.2(b). 
X ~") satisfies the strong Markov property at the time U~, and thus the second 
term is ~x , ,  ~v(,) �9 -, satiny,, Y). Since m y ( , ) = z ) = l f o r  each zeN~(x), this proves (5.3). [] ~ x x  U1 

Proposition 5.2. Let A satisfy (5.2), with ~A ~ G,.. Let n > m. 

(a) (i) g"A (X, y) = g"a (Y, X) for all x, y in G, 

(ii) g~(x, y )=0  i f y e X ~ G , ,  xEG..  
(iii) g] (x, y) = (3)(3), 6 (x, y) + ~, �88 g~ (u, y), x, y e G, c~ A. 

ueN.(x) 

(b) Let m < r <_ n. Then, for all x, y E G~, g".4 (x, y) = g"a (x, y). 
(c) g,~(x, y)=P~(T(y ,  X("))<R"(A))g](y,  y), x, yeG, .  

Proof (a) (i) follows from the #.-symmetry of X ("). Let hk(X, y) be the number 
of paths in G(")~A of length k from x to y. Then hk(X, y)=hk(y, x), and so 

W (X (") (k 5 -") = y, R" (A) > k 5-") = 4-  k hk (X, y) 
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is symmetric in x and y. As 

g~(x, y )=  ~ P~(Xt")(k5 -") =y, R'(A)> k5-")(~-)(~-)", 
k=0 

g~ (x, y) is also symmetric in x and y. (ii) is evident, while (iii) comes from Lem- 
ma 5.1. 

For  (b) note that, by (a), both g~(x, y) and g~(x, y) are zero unless x, yEGrc~A. 
Let yEGrc~A be fixed, and set V(x)=g"A(X, y)--g~(x, y). By (a) v(x) is harmonic 
on GrnA for the random walk X(T[), i=0,  1 . . . .  , and v(x)=0 if x~G~c~A ~. 
Since A is bounded, v (x ) -  0. 

(c) is immediate from the strong Markov property of X(T"). [] 

Let A satisfy (5.2). By Proposition 5.2, we can define, for x, yeG~o, 

(5.4) gA (x, y) = lim g~)(x, y), 
t l  --+ ct)  

where the limit in (5.4)is constant for all n>no =min{r :  OA u {x, y} c G,}. It 
is clear that gA inherits the properties of the g).  

Now write 

pA(x, y) = PX(Ty < R(A)), 

qA(x, y)= 1 --pA(x, y). 

Note that PA and qA are not symmetric in x and y and that pA(X, X)= 1A(X ) 
by the definition of T x. By the construction of X ("), if x, y~G,., ~?AcG,., then 
{ T(y, X ~")) < R" (A)} = { Ty < R (A)} for all n > m. Thus, from Proposition 5.2 (c) we 
deduce: 

Lemma 5.3. For all x, y~G~ 

(5.5) gA (X, y) = PA (X, y) ga (Y, Y). 

Lemma 5.4. Let x~G~,  and A satisfy (5.2). Then 

(5.6) gA(X, X) < (9)(3),.+1 + max gA(z, z). 
z~OA,,,(x) 

Proof The inequality is evident if x~G,,. So suppose that x~G,,  where n>m. 
Let Vk = max gA(Z, Z). If xeG, -1 ,  then ga(x, x)<v,_l  trivially. Otherwise let 

z~Oak(x) 

zl, z2, z3 denote the vertices of A,_l(x), and Yl, Y2 be the other two points 
in A,_ 1 (x) c~ G,. By (5.3) we have, since ga (zi, x) < gA (Zl, Zl) ~ On- 1, 

gA (x, x) __< 0 (~-)" + I- (2 V._l + g~ (y l, x) + g~ (y2, ~)) 

gA (Y x, X) < �88 (2 V._I + ga (Y2, X) + ga (X, X)), 
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with a similar inequality for Y2. Adding together the inequalities for gA(Yl, X) 
and gA (Y2, x), and substituting in the first inequality we deduce that 

< 9 (3~n gAx, x)=sw +v.-1. 

Now let x k be an element of aAk(X ) with gA(Xk, Xk)=l)k. Repeating the above 
calculation for Xk, we have 

Thus 
g~(x~, x~)__< (9)(~)~ + g~(x~_, ,  x~_,). 

g~(x, x) < ~ (9)(~)~ + Vm 
k = m + l  

=< (9)(~_)~ +1 + vm, 

as required. [] 

Lemma 5.5. Let x~Goo, A=int(D~(x)), and let z i, 1_<i_<4 be the four points 
in A c~ G,,, labelled as in Fig. 3. Then 

(5.7) z z 3 3 ,, gA ( . ,  .) = (3)(7) 
i11 ! 7 3 

5 5 
3 7 
5 5 
1 1 
2 2 

Proof We have, from Proposition 5.2, 

gAzl ,  z0 = (~) (~)"~ + �88 z0 + gAza, z0), 

and 15 similar equations. Solving these (which is not hard, as there is a great 
deal of symmetry) we obtain (5.7). [] 

Corollary 5.6. Let A satisfy (5.2), and x e  G~ with int(Dm(x))c A. Then 

gAx, x)=>(})(})~. 

Proof Set B=int(Dm(x)): as gA>=gB it is sufficient to prove the result for gB. 
Let z~, 1 < i_< 4 be as in Lemma 5.5, and p~ = W(XTm = ZO for 1 < i --< 3. Then 

3 
gB(X, Zl)= ~ pig(zi, Zl)~ min gB(zi, Z l ) = ( 3 ) ( 3 )  m, 

i = 1  1-<i-<3 

by Lemma 5.5, and thus gB(x, x)>gB(x, zl)>(�88 m. []  

Now let x~Gm, for some mE7Z. By (5.3) we have 

F~ (gA(x, x ) -  gA (z, x)) =< 6 (~-)~. 
zeNMx) 
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As gA (X, X) -  gA (Z, X)~ 0, we deduce that 

(5.8) O<gA(x,x)--gA(z,x)<6(3) m forall xeGm, zeNm(x), 

and since gA (z, x )=  gA (x, z)< gA (z, z), we have 

(5.9) ga(X,X)<6(3)m+gA(Z,Z) forall  xeG,,,  zeNm(x). 

Lemma 5.7. Let A,,~J-,,, and A satisfy (5.2). 

(a) (i) gA(Y, Y)--ga( z, Z)<9(3)~f or all yearn, zec3A,,. 

(ii) gA(Y, z)--gA(Z, z)<=O for all yeA,., zeOA,,. 
(b) I f  int(A, .)cA then 

--6(~)m<gA(y,z)--ga(z,z)<_gA(y,y)--gA(Z,Z), for yeA~, zeOAm. 

Proof (a) (i) is immediate from Lemma 5.4 and (5.9), while (ii) is evident by 
(5.5). 

(b) Since gA(', z) is harmonic in Am, it attains its bounds on 3A". Thus 
gA(Y, Y)>gA(Y, z)> min gA(w, z)>gA(z, z)-6(~-) "~, by (5.8). [] 

w~OAm 

Lemma 5.8. Let A"eY~,  and A satisfy (5.2). Suppose there exists yeA,, c~ AC ~ Goo. 
Then 

(5.1o) gA(Z,Z)<15(3) m for zeOAm. 

Proof If yeGm, then (5.10) is immediate from (5.9). So suppose y(iGm, and 
let n>m be such that y e G , - G , _  1. Let B=Au(int (Am)-{y}) .  It is sufficient 
to prove (5.10) for gB" NOW define Zk, m--l<<-k<<-n as follows. Let z,=y.  For 
m < k < n - 1  let Zk be the unique point in OAk+I(y)~OAk(y ). Thus zmEc~Am, and 
for m +  l < k < n ,  Zk and Zk+l are vertices of Ak(y). (Note that it is possible to 
have Zk=Z k_ 1)" Let z,,_ l e0Am. By (5.9) we have 

gB(Zk_l,Zk_l)<=6(})k+gn(zk, zk) for m<_k<n. 

Summing over k, we deduce that 

gB(Z"-  I , Zm-1)~----- 15(3)m-]- gB(Y, fl)" 

As zm-1 is arbitrary, and gB(Y, y)=0,  this implies (5.10). []  

Proposition 5.9. Let A satisfy (5.2). Then 

(5.11) [gA(y,y)--ga(x,y)l<cs.11x--yl ew-de, forall x, yeGoo 

and 

(5.12) qA (x, y) < c5.11x-yl a~-af 

gA (Y, Y) 
forall yeAc~G~, xeGoo. 
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Proof Let x, yeGoo. Choose m so that  2 - m - 2 < = l x - y l ~ 2 - m - 1 .  Then 
y~int(O,,(x)), and so either Am(x)=Am(y), or Am(X) and Am(y) are adjacent. In 
either case let zEOA,,(x) c~ OAm(y). Then 

ga (Y, Y) X gA (X, y) 

= qa (X, y) gA (Y, Y) 

=< qA (x, z) gA (Y, Y) + qA (z, y) gA (Y, Y) 

= qa (X, Z) g~ (Z, Z) + qA (X~ Z)(ga (Y, Y)-- g~ (Z, Z)) + gA (Y, Y) -- ga (Z, y) 

= (qA (X, Z) + qA (Y, Z)) ga (Z, Z) + (1 + qA (X, Z))(gA (Y, Y) -- gA (Z, Z)). 

NOW qa(X, Z)gA(Z, z)=gA(Z , z)--gA(X, z). If int(Am(x))cA, this is bounded by 
6(-~) m, by Lemma 5.7(b). If int(A,,(x))r then gA(Z, Z)~ 15(3) m, by L e m m a  5.8. 

15 tav~ and the same bound  holds for Thus in either case qA(X, Z) gA(Z, Z)<_~ t51, 
qA(Y, Z) gA(Z, Z). Using L e m m a  5.7 (a)(i), we have 

(1 + qA (x, z))(gA (y, y ) - g ~  (z, z))__< 18 (~-)~. 

Putting these estimates together, we have 

gA (Y, Y) -- gA (X, y) < 48 (~_)m = 48 (2- m)d~ - aS. 

Since 2 - m < 4  [x--yl, (5.11) now follows. (5.12) is immediate  from (5.11). [] 

Remark. Taking x~OA, so that  gA(X, y)=0 ,  we see that  (5.11) implies that  
gA(Y, y ) ~ O  as y~c~A. 

Corollary 5.10. Let A satisfy (5.2). Then 

_d~[gA(X, y) ga(X',y)~ 
(a) ]gA(x,y)--ga(X',y)l<cs.l[x--x' l  ~ - - V  

~g~(x, x) gA(x', x')/ 
<c5.11x--x'[d~-d~,for all x, x', y in Goo. 

(b) IgA(x, N)--gA(X', y')[<Cs.I(Ix--x'Id'~-aS+IN--y'Id~-aO, for all x, x', y, y' 
in G~. 

Proof Let S=R(A--{x ' } ) .  Then 

gA (X, y) > E x gA (Xs, Y) >= PA (X, X') gA (X', y) = ga (x', y)-- qA (X, X') gA (X', y). 

Thus 
gA (X , y)-- gA (X, y) = qa (X, X ) gA (X', y) 

< C 5.1 I X -- X'I dw- ~f gA (X', Y)/gA (X', X'), 

by (5.12). Reversing the roles of x, x' we obtain (a). 

(b) is immediate  from (a). []  

The following result, on the r andom walks X (n, x) will be needed in Sect. 8. 
(Recall from Sect. 2 that  X(n,x) is simple r andom walk on G, starting at x). 
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Lemma 5.11. Let r <m<n,  x, yeGn, and d(x, y) < 2 - " .  Then 

(5.13) P(Sr(X (n, x)) < T(y, X (n, x))) < cs.2(3)m-L 

Proof Let A=int(Dr(x)). By the construction of X the left hand side of (5.13) 
equals P~(S,(X)< Ty(X))=qA(x, y). We have D~+I(y)cD~(x), and so, by Corol- 
lary 5.6, gA(Y, y)>�88 1. So, by (5.12) 

qa(X, y)<=(~) C51 Ix-- yl d--d'(~)-r-1 
- - m  d w - d  3 - r  3 m - r  ~C5.2(2 ) J'(g) --C5.2(~) �9 [] 

Corollary 5.10(b) shows that gA(',') is uniformly continuous on G~ x Goo. 

Definition. For A satisfying (5.2) let UA(X, y), (X, y)eG x G, be the unique continu- 
ous extension to G x G of ga (x, y). 

For A satisfying (5.2), and f ebN(G)  let 

R(A) 
UAf(X)=E x ~ f(Xs) ds. 

o 

(As A is bounded, EXR(A)<oo by Remark 2.20, and the expectation exists). 
Ua is the potential kernel for the process X killed on leaving the region A. 

The estimates given in Corollary 5.10 transfer immediately to UA, and in 
particular we have that u A is bounded and continuous on G x G. 

Theorem 5.12. Let A satisfy (5.2). u A is the density of UA, SO that, 

(5.14) U A f ( x )=  ~ UA(X, y) f(y) p(dy) for all xe  G, febN(G).  

Proof It is sufficient to prove the result for feCK(G). Let first xeG~,  so that, 
for some m > 0, x e G,,. From the definition of g we have, for n > m, 

R n ( A )  

(5.15) E x ~ f(X(~ ")) ds = ~gA(X, y) f(y) dpn(y). 
0 

Let n--.oo in (5.15). Since UA(X,')f(')SCK(G), the right hand side converges 
to the right hand side of (5.14) by Lemma 1.1(b). As x~n)-+Xta.s., and the 
convergence is uniform on compacts, and R"(A)--* R(A) a.s. and in L ~ (by Lem- 
ma 2.16), the left hand side of (5.15) converges to Ua f(x). 

This proves (5.14) for xeG~.  However, the right hand side is evidently contin- 
uous on a function of x, while the left hand side is continuous by Proposi- 
tion 2.13, Lemma 2.16 and Remark 2.20. Thus (5.14) holds for all xeG. [] 

Proposition 5.13. (a) Let xeG, xn~Goo for n>= 1, and x, ~ x. Then 

p x  

Tx. ,0 as n~oo .  
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(b) Let A satisfy (5.2). Then 

(5.16) UA(X,y)=pA(x,y)uA(y,y) forall x, yEG. 

Proof. (The reason (5.16) is not evident is that we do not yet know that PA(',') 
is continuous). 

Let A satisfy (5.2), xeG, yeAc~G~, and let x,-~x,  with x, eGo~. By Lem- 
ma 2.16 and Proposition 2.13 we have pA(X,, y)---, pA(X, y) as n ~ o0. Thus, since 
UA is continuous, 

(5.17) UA(X,y)=pA(x,y)uA(y,y ) for xeG, yeG~o. 

Note that ifyEACc~ Goo both sides of (5.17) are zero. 

(a) Set Ar=int(D~(x)) for r >  1. By (5.17) and (5.12) 

q A~ (X, x.) <= C 5 . 1  I x -  x~ I a~- dy/gAr (Xn, Xn). 

x Thus by Corollary 5.6, P (Tx>R(Ar)) 0 as n--,oe for each r. By (2.60) R(Ar) 
p x  

--.0 a.s. as r ~ o e ,  and hence T~ ,0. 

(b) If y e a  c, (5.16) is evident, so let yeGc~A, and x:4:y. Let yneGo~, with 
y, ~ y. By the continuity of the paths of X we have Ty < lira inf Ty. On the 

p x  

other hand, by (a) we have lim P ( T y >  Ty+e)=0 for each e>0.  Thus Ty ---- .  Ty, 
n ~ o o  

and so PA (X, y , ) ~  PA (X, y) as n-* ~ .  This establishes (5.16) in the case x 4: y. 
If x = y cA then PA (Y, Y)= 1, and (5.16) is immediate. [] 

Corollary 5.14. (a) Let x e G, xn--. x, and B = { x~, n > 1}. Then P~( T ( B)= O)= 1. 

(b) P~(T~ + = 0 ) =  1 for all xEG, where T~ + = i n f { t > 0 :  Xt=x}.  

(c) The fine topology on G is the ordinary topology. 

Proof. (a) As TB = in f  Tx~, this is immediate from Proposition 5.13 (a). 
n 

(b) Let Ar=int(D~(x)), let x , ~ x ,  x ,+x ,  and let U, = in t  {t__> T~: X t = x  }. Then 

px (U. < R (Ar)) >= PAr (X, Xn) PA~ (Xn, X), 

and so, as Tx+<infUn, PX(T~+<R(Ar))=I 
n 

lary 5.6). Since lim R(Ar)=0, T~ + =0  PX-a.s. 
r ---~ oo 

(use Proposition 5.13 and Corol- 



588 M.T. Barlow and E.A. Perkins 

(c) Let A c G, and suppose A is not open. Then there exists xEA, and x,~A ~ 
with x,---rx. Let B = { x , , n > l } c A i  By (a), T(B)=OW-a.s., and this implies 
that A is not finely open. As open sets are finely open, the two topologies 
agree. [] 

Remark. Note that, by the above, T~ + = T~ W-a.s., for each yEG. 

For 2 > 0 let R~ be a negative exponential random variable with mean 2-  
which is independent of X. 

Lemma 5.15. Let A =int(O,(x)). Then 

(a) P~(R~> R(A))<c3.2 e-c3.3"w2-" 

(b) P~(Ra <=R(A))<=cs.325 ". 

Proof (a) Since R (A)> WI" (X), 

px (Ra >= R (A)) <= Px (Rz >= W~ (x)) < E ~ e- z w'l(x) 

= (o(2 5-.) < c32 e-C~.~ ~'2-", 

by Proposition 3.1. 

By (2.60) we have W (R (A) > t) < c2.1 e-c~t  5.. (b) 
So, 

T 
W (R (A) >= R2.) = j P~ (R (A) = t) 2 e -  x, d t 

o 

<c2.1 ~ 2e-~(x+c2 25") dt 
0 

5")-1<c5.325 -". [] = C2.1 2 ( 2 +  C2.2 = 

Let 2>0 ,  x~G, A=int(D,(x)), and febN(G),  with f__>0. Then 

(5.18) 
( R~, R(A) ) 

U~f(x)--UAf(x)=E x ~ f ( X ~ ) d s -  ~ f (Xs)ds 
0 0 

_-<E ~ I(R~>R(A)) ~ f(X~)d 
R (A) 

m x - E  (I(R~>R(A)) Uzf(XR(A))). 

Choosing A large enough so that W(R~>R(A))<= 1, we have from (5.18) that 
Ux f (x) __< UA f (x) + �89 sup Uz f (z). Hence 

z~G 

(5.19) sup U~f(x)<2 sup UAf(x)<2 sup UA(X, X) S fd#.  
x ~ G  x E G  x ~ G  G 

So, for each 2 > 0, x~G, the kernel Uz(- , x) is absolutely continuous with respect 
to # (the sup is bounded by c(n) by Lemmas 5.4 and 5.8). 
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By Theorem 2.16 X is #-symmetric, and thus U~ is p-symmetric. Applying 
Theorem VI.1.4 of Blumenthal-Getoor (1968) we deduce that there exist resol- 
vent densities u~ (x, y), 2 > 0, (x, y) ~ G x G satisfying 

(5.20a) U~f(x)=~uz(x,y)f(y)p(dy), Uaf(y)=~uz(x,y)f(x)#(dx ) 

for all x, yeG, f ebCC(G) 

(5.20b) ua is 2-excessive in each variable. 

The function u~. is unique. For, if u~ also satisfies (5.20), by (5.20a) u~(x, .) 
=u](x , . )  /l-a.e. for each x~G. As ux, u'~ are both 2-excessive (so that 
lira fl U~ + ~ u~.(x,.) = u~ (x,') pointwise) u~ = u~ everywhere. Thus u~ is symmetric 

f l - -*  oo 

in x, y: since u'~(x, y)=u~ (y, x) also satisfies (5.20). By Blumenthal and Getoor 
(1968, Theorem II.4.2) ua(x, .) and u~(-, y) are finely continuous, and so, by Cor- 
ollary 5.14, u~ is continuous in each variable. 

Thus u;~ satisfies in addition 

(5.20 c) ux(x, y)= uz(y, x) for all x, y e G x G. 

(5.20d) For each x, y the functions u~(x, "), u~.(', y) are continuous. 

Notation. For 2>0,  x, yeG let 

p~(x, y)= E~ e- XT,= p~(Ty <R;.), 

q~(x, y)= 1 -p~(x, y). 

Lemma 5.16. u~(x, y)=pz(x, y) uz(y, y) for all x, y6G. 

Proof. Let n > l ,  T,T(D,(y), X), and let f be an approximate identity to By, 
supported on D,(y). Then if xCD,(y), 

U~ f (x)= E x I(R~> r.) Uz f (XT. ), 
and so 

(5.21) ~Uz(X,z)f(z)~(dz)=EX(I(R~>T.)U~(XT.,z))f(z)#(dz). 

Since XT~SD,(y), which is finite, z-~ Ex(I(R~ > T,)U~.(XT,, Z)) is continuous. Thus, 
letting f ~  6y in (5.21), we deduce 

(5.22) u;. (x, y )=  E ~ I(R ~ > r,,)UZ (XT,,, Y)" 

NOW let n ~ o e :  since lira T~= Ty and u~(., y) is continuous, it follows that 
n 

u~(x, y)=p~(x, y) u~(y, y) for x#:y. I f x = y ,  the result is immediate. [] 

Proposition 5.17. There exist constants c5.4, %.5 such that 

(5.23) c5.4)c~a~-l<=u,~(x,x)<=c5.52 �89 forall x~G and 2>0.  
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Proof From (5.18) we have, if 2 > 0, x �9 G, A = int (D n (x)) and f � 9  b N (G), f > 0, 

uz (x, z) f (z) # (d z) <= ~ UA (X, z) f (z) # (d z) 

+ E x (I(R~ > R(A)) ~ U~ (X R(A), z) f (z) # (d z)). 

As in the previous lemma, we can let f--+ 6x to deduce 

ux(x, x) < uA(x, x) + Ex(I(R~ > R(A))u~(XR(A), X)). 

Since ux(z, x)<ux(x, x), by Lemma 5.16, we have 

u). (x, x) =< (1 - px (Ra > R (A))) - 1 UA (X, X). 

3 n  By Lemmas 5.4 and 5.8, UA(X,X)<Cl(~), and so, using Lemma 5.15(a) and 
choosing n to be the largest m such that c3.2 exp( -c3 .3  )J 2 - " ) <  �89 we obtain 
the right hand side of (5.23). 

Exchanging the roles of R (A) and Rx we have 

Ua f (x) < Uz f (x) + EX( ltR(A)>=R~) UA f (XR.)), 
and so 

u A (x, z) f (z) # (d z) = ~ uz (x, z) f (z) # (d z) 

+ Ex(I(R(A)>__ R~) ]" uA(X,~, z) f(z) #(dz)) 

< ~uz(x, z)f(z) #(dz) 

+ (sup ua(z, z)) W(R(A) >= Rz) ~fd#. 
z 

Letting f ~  6~, we deduce that 

UA (X, X)-- P~ (R (A) >= Rz) sup UA (Z, Z) =< UZ (X, X). 

By Corollary 5.6, ua(x, x)>= 3~3~, ~t~j, while sup ua(z, z)<_c(~)" by Lemmas 5.4 and 
z 

5.8. Thus, using Lemma 5.15 (b) to choose n so that P~(R(A)>= Rz) is sufficiently 
small, we obtain the left hand side of (5.23). []  

Remark. �89 = -0 .31739. . . ,  so that uz(x, x ) ~  oo as 2 ~ 0. 

Proposition 5.18. There exists a constant c5. 6 such that 

(5.24) qz(x,y)<=cs.6lx--yla~-a~21-~d~ for x ,y �9  2>0 .  

Proof Let n be such that 2-"-2_-<d(x, y ) < 2  -" -1 .  
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Let Um=inf{t>0:  Xt~D,,(x)C}. Then if ke2g, k<n 

qz(x, Y) = PX(Ty > Rz) 

=px(Tr>R~,R~<U.)+ ~ pX(Ty>R~,U,.<R~<U,.-I) 
m = k + l  

+ PX(Tr> Rz, Rz> Uk) 

~P~'(R~<U.)+PX(~>Uk)+ ~ nx(Tr>Ra, Um<Rz<U,.-O. 
m=k 

For the m-th term in the sum we have 

PX(Tr> R~, Um < Rz < U,._ 1)=<P~(R) < Urn-l, Ty> Urn, Rz > Urn) 

= E ~ l(ry> v,.,n~ > vm) pXv"(R z < Urn-1) 

<W(Ty>Um) sup PZ(Rz<U,._I). 
zeDm(x) 

Let z~D,,(x); then D,,_l(x)cD,,_z(z ). So, by Lemma 5.15, 
pz (R~ < U,,_ 1) < c5.3 25-  ("- 2). Also, by (5.12) 

PX(Ty > U,,)<c5.1 Ix--y[a~-ds(uom~)(y, y))-k 

As d(x, y)< 2 -~-1, D,,+1(y)~Dm(x ) and by Corollary 5.6 

W(Ty> Um)<cl Ix-yld~-~f(~-) ". 

Putting these estimates together we get 

q~(x,y)<cs.3)~5-"+Cl[X-yla'~-a~(~)k+ ~ c21x--yld~-a~(~)"25 -m 
r e = k + 1  

<c5.325 " + c ~ l x - y l  a'~ af(~)k+cz21x--yla~-a~3-k 

By the choice of n, 5-"<c3 ]x -y l  aw-a~ 3-", and so 

qz(x, y) < c4 ]x--y ]a=-as( 3-k)o + (5)k). 

If J~<5" choose k such that 5 k - 1 < 2 < 5  k to deduce (5.24). 
_ y  [a~-e~2a-�89 > c5 > 0, and so, choosing c5.6 appropriately we have (5.24). 

Corollary 5.19. (a) W(Ty < oo) = 1 for all x, y~ G. 
(b) {t: Xt = y} is P~-a.s. unbounded, for each x, y~ G. 

Proof This is essentially immediate from (5.24). [] 

Theorem 5.20. For all 2 > O, (x, y) in G x G 

(5.25) luz(x,y)-uz(x',y)l<Cs.TR1-~a'lx-x'la~-df(uz(x,y)vuz(x',y)) 

(5.26) [uz(x, y)-uz(x' ,  y')[ <cs.s [(x, y)-(x ' ,  y,)[a~-d~. 

591 

If 2>5"  then Ix 
[] 
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Proof Lemma 5.16 shows that ul(x, y)> pa(x, x') uz(x', y), and so 

u,~ (x', y) -- uz (x, y) < q)~ (x, x') u,~ (x', y). 

(5.25) now follows, on using (5.24). 
Since u,~(x, y) < uz(y, y) < c5.5 )o~as- 1 (by Proposition 5.17), we have from (5.25) 

that ]u,~(x, y ) -  u~(x', y)] < et ] x -  x' [d,~-d~. Using the symmetry of u~, (5.26) fol- 
lows. [] 

To estimate u~ (x, y) for I x - y [  large we use the following: 

Theorem 5.21. For all 2 > 0  and (x, y)~G • G, 

(a) %.9 exp{ - c5.10 2 ~ Ix -y ]}  <px(x, y)<C3.z exp{ -%.112r  [x-y]} .  
2as/z- 1 exp { -  2~lx-yl} (b) %.12 C5.10 

<__u~(x, y)N c5.13 2~s/2-1 exp { -  cs.lt )2 Ix -yl}. 

Proof. Clearly we may assume x4:y  (recall Proposition 5.17). Choose n e Z  so 
that 21-n<d(x,  y)=<22-n. Then y~D,(x)  c and so Tr>R(D,(x)). Then, by Lem- 
ma 5.15 

p.~(x, y)~c3, z exp{ -%.3  2 '2-"} ~c3. 2 exp{ - c5.11 ,)J I x -  yl}, 

proving the upper bound in (a). 
Let r e = n - 2  so that 2 -~-1  <d(x, y)__< 2-" .  Either A,,(x)=Am(y ) or they are 

neighbouring triangles in ~m. In either case let z~c3Am(x ) ~ c~Am(y). Note that 

p~(x, y) >= E~(e -~r~) E~(e - ~r,) 
and 

E=(e -zr , )  = uz(z, y) uz(y, y)- 1 (Lemma 5.16) 

> c1 uz(y, z) uz(z, z ) - i  (by (5.23)) 

= C 1 EY(e-)'T~). 

These results imply 

(5.27) p~ (x, y) > c i E~ (e- ~ r=) E y (e- ~ T~). 

Apply the strong Markov property at T"  to see that 

EX(e-,~T~)= EX(e- ZT~EX(T")(e-ZT~)) 

E X ( e  - ;~T') 4-1 E(e-  ~5 -~w) (Theorem 2.19 (b)) 

>=4-~exp{-c3 . t2~2~-m-c3 .x2~2-m } (by (3.6) and (4.2)) 

>c2 exp { - %  2 ~ Ix-y]} .  

The same estimate holds if on the left side we replace x with y. Substitute 
these estimates into (5.27) to derive the lower bound in (a). 

(b) is immediate from (a) Lemma 5.16, and Proposition 5.17. [] 

Remark. The proof of Theorem 1.9 is now complete, as it consists of (5.20a), 
(5.20c), Theorem 5.20 and Theorem 5.21. 
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The distributional estimates in Theorem 4.3 show that Pt is a strongly contin- 
uous semigroup on Co(G) (Co(G) is the Banach space of continuous functions 
vanishing at ~) .  Let d denote the infinitesimal generator of X, and let ~ ( ~ )  
be the domain of d .  While it appears difficult to obtain a convenient character- 
ization of N ( d )  (but see Sect. 9) our results on u~ do give the following 

Theorem 5.22. Every function in ~ ( d )  is Holder continuous of order d ~ - d : .  
More precisely, if f = Uzg for some g ~ Co (G), and 2 > O, then 

I f ( x ) - - f ( y ) [<2cs .7  2 -e~/2 Ilgll~ I x -y l  ~-~: forall  x, y~G. 

Proof. We have, using (5.25), 

I g~, g ( x ) -  gz g(y) l -- IS (u~(x, z ) -  ux (y, z)) g (z) kt (d z) l 

--< II g II ~ c 5 :  ;1 - ~d~ I x - y  I a~-a: S (u~(x, z) + u,~(y, z)) # (d z )  

< Ilgll ~ c5:Ix-ylaw-a:22 -a~/2. [] 

6. Local Time 

In this section we use the estimates on ux(x, y) to prove Theorem 1.11. For  
each x e G, PX (T~+ = 0) = 1 (Corollary 5.14), and y ~ pz(y, x) = E y e -  zrx is continu- 
ous. Thus, by Theorem 1 of Getoor  and Kesten (1972), there exists a jointly 
measurable version (co, t, x)--* L~(co) of the local time, which satisfies the density 
of occupation formula. Further, for each x, t ~ L~ is a.s. continuous. 

It remains to establish continuity in x. We begin with a version of Garsia's 
lemma for a fractal. 

Lemma 6.1. Let F be a closed subset of ]R d, and let # be a measure on F such 
that there exist constants c 1 (F), c2(F), d F so that if 
BF (x, r)= F c~ {y~]Rd: Ix--y] <r}, then 

(6.1) cl(F)rdF<#(BF(x,r))NcE(F)r dF forall  x~F,  r>0 .  

Let p be an increasing function on [0, or) with p(0)=0,  and ~: I R o N  + be 
a non-negative symmetric convex function, with lira 0 (u) = oo. Let H be a compact 

u ~ c~o 

set in F, and let f :  H ~ N~ be a measurable function. Suppose that 

F =  S t k ( l f ( x ) - f ( Y ) l ) # ( d x ) # ( d Y )  <~176  
~• p( lx -y l )  

Then there exists a constant cF (depending only on c I (F) and dv) such that 

Ix-yl CF F 
(6.2) [ f ( x ) - - f ( y ) l < 8  ~ t~-~(u~2~)p(du), 

0 

for # x # almost all x, y s H  x H. I f  f is continuous then (6.2) holds everywhere. 
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Proof This is very much the same as the standard proof for F =IR a given in 
Garsia (1970): we shall just highlight a few differences. Let (Q,)~= o be a sequence 
of spheres centred in F with Q, cQ,_I ,  p(d(Q,))=�89 where d(Q) is 
the diameter of Q. Set x,=d(Q,), and note that, by (6.1), I~(Q,)>=q(F)2-a~xa, ~. 
As in Garsia (1970), using the convexity of r we have, writing fQ, 
=#(Q,)-~ ~ fd#, 

Q. 

O(:Q. Qo 1]< 1 ; 
\ p(x._O ] - ~ ( Q . ) ~ ( Q . - 0  Q.• 

<__ r/;,(Q.) u(Q._ 1) 
~FCl(F)-z22dr'xn 2dr'. 

Thus, writing c(F)= Cl (F)  - 2  22dv, we have, as in Garsia (1970), 

• p [  f (x) - f (y)\ [- 

x n  

_ p(du). IfQ,-fQ, ,I <4  S r  cvF 
Xn+ l 

The remainder of the proof now proceeds as in Garsia (1970). Note that the 
upper bound in (6.1) allows the use of a Vitali covering lemma. [] 

Remark. (1) Some kind of uniform density condition, such as (6.1), seems to 
be necessary. 

log 3 
(2) I f F = G  then (6.1) holds with dF=df-log 2. 

Proof of Theorem 1.11. From Proposition 5.18 we have, for x, yeG 

1 -pz(x, y) p~(y, x)= 1 - (1  -qa(x, y))(1 -q~(y, x)) 

<= q).(x, y) + q~(y, x) 

=<2C5. 6 [x--yla'~-a:21-~a~. 

Thus, ifp(u)= sup (1--pl(x, Y)Pt(Y, x)) ~ we have, writing fl=�89 
x, yGG 

Ix -y l<u  

(6.3) p ( u )  N C 6 . 1  Ufl" 

We now proceed as in Getoor and Kesten (1972). The estimate in Blumenthal 
and Getoor (1968, V.3.8) states that, for each x, y, z in G, N>0 ,  8>0,  

(6.4) pz( sup IL~--L~] > 28)<2eN e -'~/p(Ix-rl). 
O<t<N 

x y . Let r189 Ixl). Let YN(x, y)= sup ILt--Lt[. integrating (6.4) we obtain 
O<_t<N 

(6.5) E~tp[ YN(x,y) ~<_2e N. 
\ 2 p ( I x - y l ) ] -  
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Let xo~G, n > l ,  and A = D _ , ( X o ) :  it is enough to prove the result in the 
region A. We have, for 0 < t < N 

(6.6) I 0 # ( d x ) # ( d y ) <  ~ ~p # ( d x ) # ( d y ) - F u ( A ) .  
a x a  p ( [ x - - y ] )  A x A  ) 

Applying (6.5) and Fubini we have, since #(A)=4(3"), 

(6.7) EFN(A ) <<_ 32 e N 9". 

Thus 

(6.8) P(I'N(A)> ~)<=C6.2eN+3",~ -1 )~>0, 

and in particular FN(A)< oe P~~ 
By Lemma 6.1, therefore, there 

# x #(A x A - J ) = 0  such that, 
exists a set J(t, co) c A x A  with 

Ix-y l  
x y (6.9) [Lt--/St[<16 ~ log(cvFN(A)u-2aOdp(u ) 

0 
for (x ,y )~J ,  O<_t<_N. 

Thus, for (x, y )eJ ,  by (6.3) 

(6.10) I L T - L { l < c 6 . 3 p x - y p P l o g F N ( A ) + c 6 . 4 r x - y p r  

Now let 
LT~=limsup#(D,,(x)) -1 ~ L{#(dy).  

rn--* ov D~(x )  

As in Getoor  and Kesten (1972) we have that L~ satisfies (6.10) for all x, y e A  
and O<-t<N,  that L x = L  x a.s. for each x~A ,  and that (x, t)-+L~ is continu- 
ous. [ ]  

Remarks. 1. Note that (6.10) and (6.8) give the inequalities 

(6.11 a) ]L~-L~[~c6.  5 I x - y [ ~ l o g ] x - y ]  -1 

whenever [X--N[<FN(A) -1, x , y ~ A ,  O<_t<N, 

(6.11 b) P~ (F u (A) > 2) < c6. 2 e N + 3, 2 - ~ (A = D , (Xo)). 

2. We do not expect the modulus of continuity given above to be the best 
possible. It is likely that the estimate (6.4) can be improved to give a Gaussian 
tail, as was done for L6vy processes in Barlow (1985). This would give a modulus 
of continuity of the form 

(6.12) lim sup 
5 5 0  O<_s<_t 

I x - y l < ~  

] L ~ -  LYs 1, _-< c6.6(sup L~) t, 
p ( l x - - y  ) z~G 

where p(u) = u ~(~ - ae)(log 1/u) ~. 
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In the next couple of results we use the local time to study the range of 
X. We now take E~, xeG, t>O to be the jointly continuous version of the 
local time obtained in Theorem 1.11 and we set 

Rt(X)={Xs, O<s<=t}. 

Lemma 6.2. {x:/21>0 } cRt(X),  a.s., for each t>0 .  

Proof. Fix t>0 .  By Getoor and Kesten (1972, Theorem 1) for each x and a.a.co, 
L ~. has support {s" X, = x}. Hence there exists a null set N such that on N c 

G~o ~ {x : /~>0}  ~ G~o ~ Rt(X). 

Now let coeN c, xeG with L:~(co)>0. Let x n ~ x  with xnsGoo. By Theorem 1.11 
L~n(co) > 0 for all large n, and so there exist tn = t,,(co)s [0, t] such that X,. (co)= xn. 
A compactness argument now shows that x~R,. [] 

Theorem 6.3. R~(X)=  G W-a.s. for all y~G. 

Proof. For each x~G~,  by Corollary 5.6, 

x x ~ 3  E Lso = ulnt(Do(~))(x, x) = ~. 

As L}o has a negative exponential distribution this implies that W(I2~so > 1)_>_ e -r 
Hence, using Theorem 2.19 and (6.11 b), if A = D_ l(X), we have 

P~(L~ > 1, Ft(A) N 2) >= W(L~so > 1, So <= t, F,(A) =< 2) 

>= e - ~ -  W(So > t)-- P~(F,(A) > 2) 

=>e ~--C2.1 e - C 2 2 t - - c 6 . 2 ~ - l e  3+t. 

First choose t and then 2 sufficiently large so that this final expression is 
greater than e-  2. By (6.11 a) there exists n_> 1 such that 

(6.12) W(L~> I, Lrt>O forall y~Dn(x))>e -2, forall x~Goo. 

So, by Lemma 6.2, 

P~(D~(x)cR,(X))>e-2>O for all xEG~o. 

Fix y e G. By Corollary 5.19 (b) {t: X t=  x} is unbounded W-a.s., and an elementa- 
ry argument using the strong Markov property shows that, for each xeGn, 
there exists U~ with U~ < oo W-a.s. such that D~(x) c Rv,(x ). Thus D,(x) c Ro~ (X) 
for each xeG, ,  PY-a.s., and as G =  ~ D,(x) the result is immediate. [] 

x~Gn 

7. Transition Densities 

The existence of a transition density for X (with respect to #) follows from 
the existence of the resolvent densities (Sect. 5) and a general result for symmetric 
Markov processes (see Fukushima (1980, p. 106)). We give a direct construction 
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that will enable us to derive several properties of the transition density. The 
key ingredients are the estimates on ua(x, y) and g, the Coo density of W, from 
Sect. 5 and 3, respectively. Note  that the Coo density of W~" is (Theorem 2.19 (b)) 

(7.1) g,(t) = 5" g(5" t). 

Notation. If A ~ ( G )  is non-empty and satisfies do(x ,A)=in f{[y-x[ :y~A}  
> 2  -"+1, then T~<T(A) (<oo  by Corollary 5.19(a)) and we may let Hx,A, . 
denote the law of the non-negative random variable T ( A ) - W ~  under W. If 
A is also finite and z~A, let H~,A,,(ds]z) denote the conditional law (under 
W) of T(A)--W~ given X(T(A))=z. If W ( X  (T(A)=z)=O, make an arbitrary 
choice for H~,A,,(ds[z) and similarly for the conditional law of T(A) given 
X(T(A))=z in Lemma 7.1 below. 

Lemma 7.1. Let A be a non-empty Borel subset of G, let xr and choose 
n~2g such that 2 -~ <do(x, A). 

(a) T(A) has a Coo density under px given by 

(7.2) gx,A(t) = ; go(t-s)Hx, A,o(ds ). 
0 

(b) I f  A is finite and z6A, then the C ~ conditional density of T(A) given 
X(T(A)) = z (under W) is 

(7.3) gx, A(t[z)= ~ gn(t-s) H~,A,,(dslz ). 
0 

More precisely if B c A  and Ce~([O,  ~)), then 

(7.4) ~, S gx,A(t[z)dt P~(X(T(A))=z)=P~(T(A)~C,X(T(A))6B) �9 
z ~ B  C 

Proof Apply the strong Markov property at T~" and Theorem 2.19(b) to see 
that W~" is independent of ~r,  v a(Xo OrO. Therefore WI" is independent of 

(T(A) -- W~, X (T(A))) = (T(A)o Or7 + r", X(T(A))o Or7 ). 

(7.2) is immediate. The smoothness of gx, A follows by differentiating inside the 
integral in (7.2), which is justified by (3.16). 

Assume now that A is also finite and z~A satisfies W(X(T(A))=z)>O. If 
C ~ ( [ 0 ,  ~)), then, using the above independence, we obtain 

W ( T(A) ~ C, X ( T(A)) = z) 
= P~(W~ + (T(A)-- WT)6 C [X(T(A)) = z) W(X(T(A)) = z) 

= ~ [g.( t-s)H~,A, .(ds[z)dtP~(X(T(A))=z) �9 
C 0 

This gives (7.3) and the smoothness of gx, A (" [Z) follows as for gx, A. [] 

If A = {y}, we write g~,y and Hx, y,, for gx, A and Hx,a,,, respectively. 
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Proposition 7.2. (a) There are constants {c7.1 (6): 6 > 0} and c7. a such that 

( 7 . 5 )  c 7 . 1 ( 6 ) [ x - y l - e w e x p { - c v . 2 ( l x - y l t - ~ ) l / ( t - ' ) }  <=gx,,(t), 

for  all (x, y) in G x G and t > 0 such that [ x - y [ t -  ~ > 6. 

(b) There are constants {c7.3(k): keZ+} and c7.4 such that 

~k 
(7.6) ~ g x ,  r(t) < c 7 . 3 ( k ) l x - - y l - a w ( k + l ) e x p { - - c 7 . 4 ( l x - - y l t - ' )  1/1-'} 

for  all (x, y) in G x G such that x ~: y and t > 0. 

Proo f  Let x, y be distinct elements of G and choose ne2g such that 21-"<1x 
- - y [ < 2  2-". 

(a) If 6 > 0 and t > 0 satisfies I x - y ] t - '  > 6, then (7.2) implies that 

g~,r(t)> inf g,(s)H~,y,,([O,t/2]) 
t /2Ns~t  

> 5" c 1 (6) exp { -- c3.12 (5" t /2)-  i/(d=- 1)} W (Ty < t/2) (Theorem 3.7) 

> c2(6) lx - -  y]-d~ exp { - - c3 ( I x - -  yl t- ' ) l /(1-~)} W ( T r <  t/2), 

by the choice of n. Therefore (7.5) will follow from the above if we show there 
are universal constants c4, c5 such that 

(7 .7 )  PX(Ty<t /Z )>c4exp{ - - c s ( [x - - y [ t -~ ) l / (~ -~ ) }  for all t>0 .  

Apply Lemma 4.1 and Theorem 5.21 (a) to see that for all 2>0 ,  

PX( Ty <= t/2) >= (cs.9 exp { --cs. l  o )J [ x - y [ } - e -  ~t/2)(1- e -  ~t/2) -1. 

If we set 2=c~( [x -y [ t -1 ) l / ( l -~ )  and ~ is taken large enough (depending only 
on (c5. 9, c5.~0)), then the above is bounded below by 

c4 exp { - c5 ([ x - y [ t  -')1/(1 -,)} 

providing t is small enough so that Ix-y[ t - v >  1. This gives (7.7) for t~<lx-y[, 
but it then follows trivially for larger t by simply adjusting c4. 

(b) Differentiate inside the integral in (7.2) to get 

= 

<_5,(k+l)c3.9(k)exp{_c3.1o(5,t)-l /(a,~ 1)) (Theorem (3.5)). 

The choice of n now gives (7.6). [] 

Lemma 7.3. For each m e n  

lira sup {[gx,/~,(r)(t)-g~,y(t)[: t>O, (x, y ) e G  x G, I x - y ]  > 2 ,,+2} =0. 
. ~ o o  
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Proof. Fix meN.  If n > m the above supremum equals 

sup ; gm(t- s)(H~,o.(y),~- H~,y,m)(ds) 
t>=O, l x - y l > 2 - m + 2  0 

< sup E~(lgm(t--(T(D.(y)) - W~))--g,.(t-- (Ty-- W~)) [) 
t>_O, I x - - y l >  2 m + 2  

< sup E ((25" Ilg'[I ~1T(D.(y))-  Tyl) A 5"11 g[I oo) (Theorem 3.5) 
I x - y l > 2 - m + 2  

__<c(m)sup sup EZ(TyA 1), 
yEG z e D n ( y )  

where in the last line we have used the strong Markov property at T(D.(y)). 
The last expression approaches zero as n ~ o o  by Proposition 5.18. []  

Notation. If {v,} and v are Radon measures on N([0, oo)), v , -~v  denotes vague 

convergence of the sequence {v,} to v. That is, v , ~ v  if and only if lim ~fdv .  
n --> oo 

= ~ fdv  for every continuous f with compact support in [0, oo). 
If qS: G x G ~  [0, oo) is a bounded measurable function and (y, z)~G x G, let 

q(q~, y, z) be the measure on N([0, oo)) defined by 

t 

t>0 .  

{qS.: heN}  will always denote a sequence of bounded measurable functions from 
G x G to [0, oo) such that for all y~G and h e N ,  

(7.8) sup (q~, (y,')) c D, (y) 

(7.9) ~ c~,(y, z) #(dz)= 1. 

Lemma 7.4. (a) I f  {y.} and {z.} are G-valued sequences which converge to y, 

then q(r  y.,  z . ) -~q(y)  as n ~ o o ,  where q(y) is the unique Radon measure on 

[0, oo) such that 
oo 

e - :.s q (y)(d s) = ua (y, y). 
o 

(b) I f  T > 0 ,  K1 is a relatively compact set in C([-0, oo), N0, whose elements 
are all supported on [0, T] and K2 is a compact subset of G, then 

lira sup {1S h (s) q (~b,, y, z)(d s) - S h (s) q (y)(d s)[: h 6 K1, y ~ K2, z ~ D, (y)} = 0. 
n ~ o o  
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(c) 
(7.10) c7.s t a -ds/a _< q (y)([0, t]) =< c7.6 t 1 -d~/a 

for all t > 0 and y in G. 

Proof. (a) 

e-  ~ q(cp,, y , ,  Zn)(ds)= ~ r  z) u~ (z,, z) #(d z). 
0 

The right side converges to ua(y, y) as n ~ o e  by (7.8), (7.9) and the continuity 
of ux (Theorem 5.20). This proves (a) (see e.g., Feller (1971, p. 433)). 

(b) If the limit in (b) is not zero, there are h, s K  1, y ,  s K 2 ,  z, sD, (y , )  and 
e > 0 such that 

(7.11) [~h , ( s )q(d~ , ,y , , z , ) (ds ) -~h , ( s )q(y , ) (ds )[>e  for all n sN .  

By passing to a subsequence we may assume that h , ~  h uniformly on [-0, T], 
sup(h)c[O, r] ,  and lim y , = y .  The continuity of ua( ' , ' )  and (a) implies q(y) 

n ---~ o9  

is vaguely continuous in y. This and the convergence obtained in (a) contradict 
(7.11) and complete the proof of (b). 

(c) This follows from Proposition 5.17 and some standard Tauberian theo- 
rems. The upper bound is elementary and the required lower bound follows 
by making some elementary changes in the derivation of (5.2) in De Haan and 
Stadtmuller (1985, p. 350). [] 

Definition. 
o~ 

(7.12) pt (x ,y )= ~ gx,r( t -s)q(y)(ds) , t>=O,(x ,y) in  G x G ,  x4=y. 
o 

We will eventually prove that p has a jointly continuous extension to 
{(t, x, y): t>0 ,  (x, y)sG x G} but for now the reader may find it convenient to 
set Pt (x, x) = O. 

Proposition 7.5. (a) pt(x, y) is a transition density for X with respect to #. 
(b) pt(x, y) is jointly continuous on {(t, x, y): t >O, (x, y ) s G  x G, x 4= y} 
(c) For each (x, y ) s G  x G with x4= y, pt(x, y) is C ~ in t and there are constants 

{c7.7(k): ks;g+} and {cv.8(6, k): 6>0 ,  ks;g+} such that for all ks;g+,  

o~ p,(x, y) (7.13) < c7. 7 (k) [ x -  y]-d~k + 1)t 1 -~/2 
t d ~  

�9 exp { - r x - - y ] t - ' )  1/tl -~)} 

for all t > 0 and x 4 = y in G, 

~2 Pt (x, y) (7.14) < C7.s (6, k) t -  a~/2 - k exp { -- c7.4(1 x -- y ] t -  ~) 1/~1 - ~)}, 

for all (t, x, y) s (0, oo) • G x G such that ] x - y ] t -  ~ > 6. 
(d) There are c o n s t a n t s  {c7.9(6): 6 >0} such that 

(7.15) pt(x, y)>c7.9(6) t -d~/2 exp{ - 2  c7.2 (Ix - y ]  t-~) 1/~1 -~}  

for all ( t, x, y)s(O, co) • G • G such that ] x - y ]  t -~>  6. 
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Proof If mEN, T > 0 ,  {~b,} satisfy (7.8) and (7.9), and K is a compact subset 
of G we claim that 

(7.16) lim sup {I E~(c~.(Y, Xt)) -pt(x, Y) I: 
n ~ o o  

xeG, yeK, I x - y [ > 2  -"+2, te l0 ,  T]} =0.  

If n>m, yeK, xeG and I x - y [ > 2  -"+2,  then do(x,D,(y))>2 -n+l and 
~b,(y, X t ) > 0  implies T(QD~(y))<t (P~-a.s.) by (7.8). Apply the strong Markov 
property at T(OD,(y)) and Lemma 7.1 (b) with A = 8D,(y) to see that 

EX(4~(y, XO) = Y' e~(1 (T(aDn(y))(c0) < t, X(T(3D~(y)))(o~) = z) 
z ~ OD. (y) 

x E'(c~.(y, X ( t -  T(aDn(y))(o)))) 

= ~ P~(X(T(~D~(y)))=z) 
zsOD~(y) 

x ig~,oo.(,)(slz)E=((~.(y,X(t-s)))ds (by (7.4)) 
0 

oo 

= ~ P~(X(T(~D.(y)))=z) f g~,oo.(,)(t-slz)q((o.,y,z)(ds). 
z e 6D~ (y) 0 

Let 

Kx = {g~, 8On(y)( t ; - "  ]Z)[ te  [-0, T],(x, y)eG x G, Ix -y]  > 2  -"+2, n> m, zec3D,,(y)} 
= c(( [o,  oo), G). 

Note that (7.3) holds with A =  c3bn(y ) and m in place of n (because do(x, 3D~(y)) 
> 2 . " +  ~). This, together with the smoothness of g" and the Arzela-Ascoli theo- 
rem, show K 1 is a relatively compact subset of C([0, oe), G). Therefore 

sup {I E~(q~.(y, Xt))--pt(x, y) l:xeaoo, yeg ,  I x - y l  > 2  -"+2, te l0,  Z]} 

__< sup{ P (X ( v.(y)))= z) 

x(~g~,oo.(y)(t--slz)(q(d?,,Y,z)-q(Y))(as)) 

+ ~ q(y)(ds) : f (gx, 8o,(y)(t--s)-g~,y(t-s)) 
0 

xeG, yeK, Ix--Yl >2  -"+2, te  [-0, T]}  

<sup{l l h(s)(q(O,, y, z)-q(y))(ds)l: heK1, yeK, zeD,(y)} 

+ (sup q (y)([0, r ] ) )  sup {Igx, 0o~ - gx,,  (t) l: 
y E K  

x, yeG, ] x -  y 1> 2 . "+2  , t>=0}. 
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The first term converges to zero as n ~ o o  by Lemma 7.4(b) and the second 
also approaches zero as n ~ o e  by Lemma 7.3 and (7.10). This establishes (7.16). 

To prove (b), let ~ (z) = (1 - [ z  [) v 0 and consider 

dp,(y,z)=~(2"[ y -  z[)(~ ~p(2"[y- z'[) #(dz')) - ~. 

(7.8) and (7.9) are obvious. It is also easy to see that 4), is bounded and continuous 
on G xG.  Let us recall the processes {Xt(x): xeG}  constructed in Proposi- 
tion 2.13. That result and dominated convergence show that 

(t, x, y) --* E~ (q~, (y, Xt)) = E(q~,(y, Xt(x)) ) 

is continuous on [0, oe] x G • G. The uniform convergence in (7.16) implies the 
joint continuity of pdx, y) on [0, oe) • {(x, y)eG • G: x # y } .  

To prove (a), consider ~b,(y, z)= 1 (zeA,(y))3". Again (7.8) and (7.9) are obvi- 
ous. (7.16) implies that for any meN,  

pt(x, y)= lira P~(Xt~A,(y)) #(A,(y))- 
n --+ cro 

uniformly in {(t, x, y): t e [0, T], x e G, y e K, [ x - y [ > 2-  " + 2}. 

(a) will now follow easily providing we show W ( X t = x ) = O  for all t>0 ,  
x~ G. If W ( X ,  = x)>0, the simple Markov property (at some s < t) and the fact 
that the W(Xt_~e' )  is absolutely continuous with respect to # except perhaps 
for an atom at y shows that W(X~=x)>O for all s<t.  This contradicts the 
existence of a resolvent density with respect to # (Theorem 1.9). 

(c) (7.6) allows us to differentiate inside the integral in (7.12) k times and 
hence prove the smoothness of pt(x, y) in t and obtain (for x4=y, t>0 ,  and 
k~Z  +) 

co  

< c7.3 (k) [x_y]-a~k+ 1)exp {_  c7.4([ x _y[  t-y)l/(a- ~)} c7.6 t 1 -as/z 

(by (7.6) and (7.10)). 

This gives (7.13), and (7.14) follows trivially. 

(d) (7.12), (7.10) and (7.5) show that if b > 0  and I x - y [  t-7>=b, then 

pt(x,y)>= inf g~,y(s) q(y)([O, t/2]) 
t / 2  <_s<_t 

> CT.1(6) [x-- y[-a~exp{--cv.2 2~/(1-~)([x-- ylt-~)l/~J-~)} cv.5(t/2) 1-ad2 

> c l (6) t-a,/2 (l x -  y l t-r)-aw exp { cT.2(2- 2r/(1-~))(l x -  y l t-~)a/1-~} ) 

• exp{-2Cy.2(Lx-y l  t -D 1Ix -~} 

>c7.9(6) t -a ' /Zexp{-2Cv.z( lx-  ylt-7)l/~l-'e)}. [] 
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Al though  (7.13) gives a poo r  estimates for I x - y l t  ~ small, it will be helpful 
in control l ing pt(x, y) and its derivatives in t near  the diagonal.  In order  to 
extend (7.14) and (7.15) to  all (t, x, y) we in t roduce a class of  s topping times 
at which (7.14) and (7.15) are valid. 

Notation. If 6, t > O  and yeG, let 

V(t, 3, y )= in f{ s  > 0: IX~-y[  >_- 6 ( t -  s)~} e [0, t] 

u(t, 3, y )=( t -  v( t ,  3, y))t -~ el0, 13. 

L e m m a  7.6. There are constants c7.1o and c7.11 such that /f  be(0,  cv.lo), then 
k (5) = (log 1/6)/log 2 -  c7.11 > 0 and 

(7.17) px(u(t ,  8, y) <= u) < 5 - ~  u k(o) for all u in [0, 1], t > 0 and (x, y) in G x G. 

I f  Be(0, c7.1o ) and k(b)>a>O, then 

(7.18) Ex(U(t, 3, y)-") <= 6 - d'~ (a (k (8) - a ) - I  + 1) 

for all t > 0 and (x, y) in G x G. 

Proof Fix 5, t > 0  and x, y in G, and write U and V f o r  U(t, 8, y) and V(t, 8, y), 
respectively. If V > (1 - 5 - (r- ~)) t (r e N), then 

(7.19) n x ( v > ( 1 -  5-r) t[~(l_5_(r_,))t)<____n x((1 5-(~ '))t)([X(s)__y[<6(5-(r-1)t)~ 

for all s < 4 ( 5 - r t ) )  

< sup Pz([X(s ) -  z I< 25(5- (~-  1)t)v 
z eG  

for all s < 4 ( 5 - r t ) ) ,  

where in the last line we have used our  assumpt ion  on V. Choose  n, e N  such 
that  

(7.20) 2 -"~- ~ <26(5-(~-~)t)~=46 2-~t~=<2 -"~. 

(7.19) is bounded  by 

sup PZ(T;'~-I > 4(5-*t)) 
z e G  

< 4 -  t t -  t Y(5-"~+ ~/2 + 5- '~+ 1) (Theorem 2.19 and Markov ' s  inequality) 

< c 1 6 e~, 

where c 1 = 15(8 dw- 1) and we have used (7.20). These bounds  on the condi t ional  
probabili t ies lead easily to 

W ( V  > (1 --5-r)t)~(Cl 8d') r, r e~+,  

or equivalently,  

n x ( u  < 5 -~) G(c~ 8'~) ~. 
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If ue(0, 1], choose re;g+ such that 5 -~-1 < u < 5  -r. If 6 < c l  ~, we have 

p x ( u  < u) < (cl 6 a'~)- i ukO) < 6 a~ ukO), 
where 

k(6) = (log c~- 1/log 5) + (log 6-1/log 2) > 0. 

This gives (7.17) and (7.18) follows easily. [] 

Lemma 7.7. There is a C7.12 and constants {c7.13(6]): 6>0} such that if 6e(O, cv.t2 ] 
then k(6)>dJ2 and for all t > 0  and (x, y) in G x G, 

(7.21 ) lim px (Xt e A, (y)) 3" = E x (p~_ v (t. 6, y) (X (V (t, 6, y)), y)) 
n - * c o  

~C7.13(6) t -a~/2. 

Proof. Choose cv.12 small enough so that eT.lz<cv.~o and k(cv.12)>d~/2. Let 
6, t, x, y be as above and write U and V for U(t, 6, y) and V(t, ~, y), respectively. 
The strong Markov property at V(< t a.s.) shows that 

(7.22) P~(X~eA,(y))3"=E~( ~ pt_v(X(V),z)p(dz))3" 
A.(y) 

=E~(I(U<t-~(2~-"6-~)a~)  ~ P,-v(X(V),z)#(dz))  3" 
zJ,~(y) 

+E~(l(U>=t-l(21-"6-1)  a'~) ~ Pt_v(X(V),z)#(dz))3". 
An (Y) 

Use (7.17) to bound the first term by 

5 - dw t - k(J) 6] - dwk (J) 2d~k(,~) 2n  ((log 3/log 2) - dwk(6)) 

which approaches zero as n ~ oo because k(6]) > d J2. If U > t 1 (21 -,6]- 1)d~ then 
2-"<(6]/2)(t--Vy and hence for each zeA,(y), 

IX(V) -z l  > I X ( V ) - y l - 2 - " > O / 2 ) ( t -  Vy. 

Therefore (7.14), with k=0 ,  shows that on {U>t-l(21-"6]- l )d~},  

(7.23) ~ p~_ v(X(V),  z) #(dz) 3" < cv.s (6]/2, O)( t-  V) a~/2 
A~(y) 

= c 7. s (6]/2, O) U-  d,/2 t -  ds/2. 

This upper bound is P~-integrable by the choice of 6] and (7.18). Hence we 
may use dominated convergence in (7.22) to conclude that 

(7.24) lim P~(Xt~A,(y)) 3"= E~( lim l (U > t -1(21-"  6]- l) a~) 

x ~ Pt_v(X(V),z)p(dz)3") 
,~,~(y) 

= E~(P,_ ~(x(v), y)), 
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where in the last we have used X ( V ) + y  a.s., and the continuity of p,( ' , ' )  away 
from the diagonal (Proposition 7.5 (b)). Use (7.23) to bound (7.24) by 

c?. 8 (6/2, 0) Ex(U-  d,/2) t -  ds/2. 

The upper bound in (7.21) now follows from (7.18) and the choice of 6. [] 

It follows from (7.21) and the continuity of pt(x,') away from x that for 
a fixed 6 satisfying the hypotheses of the above result, 

(7.25) pt(x,y)<c?.~(6)t -a'/z forall t>0 ,  x#:y. 

Fix s > 0 and consider the Chapman-KoImogorev equations for e > s. For each 
x~G, 

(7.26) pt(x,y)=~ps(X,z)pt_~(z,y)l~(dz ) for /~-a.a.y. 

We claim that the right side is a jointly continuous extension of the left side 
to { ( t , x , y ) : t > s , ( x , y ) e G x G } .  If t , ~ t > s  (t,>s), x , ~ x ,  y , ~ y  (x , , y ,  in G), 
then 

lim ps(x,,z)pt_~(z,y,)=ps(x,z)p~_~(z,y) for all z(~{x,y}, 
n ---~ o o  

and 
ps(x , , z )p , : s (z ,y , )<=qp, (x , , z  ) for all n 

by (7.25). Note that {ps(x,,, "), nelN} is a uniformly integrable family with respect 
to g because they converge/~-a.s, to p~(x, ") and all of these functions integrate 
to one. Dominated convergence therefore allows us to take the limit in n inside 
the integral on the right side of (7.26) and hence prove the claim. Now let 
s J.0 to see that there is a jointly continuous extension of pt(x, y) to {(t, x, y): t 
>0,  (x, y)eG x G} which we also denote by pc(x, y). It is clear from (7.21) that 

(7.27) Pc (x, y) = E x (Pc- (v(t, ~,y)(X V (t, 6, y)) < c7.13 (6) t -  d~/2 

for all t>0 ,  (x, y) in G x G and 6 in (0, c7.12). 

Theorem 7.8. X has a transition density, pt(x, y), with respect to 1~ such that 

(a) pt(x, y) is jointly continuous on {(t, x, y): t>0 ,  (x, y) in G x G}, 

(b) pt(x, Y)=Pt(Y, x) for all t>0 ,  (x, y) in G x G, 
(c) pt(x, y)=pt/s(x/2, y/2)/3 for all t>0 ,  (x, y) in G x G, 
(d) (1.4) holds. 

Proof (a) was proved in the above discussion. (b) is obvious from the symmetry 
of the semigroup (Theorem 2.21) and (a). (c) is clear from the scaling property 
of X, (2.61). 

The upper bound in (1.4) is immediate from the upper bound in (7.27) and 
(7.14) (with k=0). For the lower bound choose 6 in (0, c?.12). If I x - y l t - ~ < 6  
then 

IX (V(r, 6, y ) ) -  y l ( t -  V(t, 6, y))-~' = 6, 
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and so (7.27) and (7.15) imply 

pt(x, y) > c7.9 ((5) exp { - 2 c7. 2 (51/(1 - ~)) EX((t_ V(t, (5, y))-a~/2) 

> cl ((5) t-d'/2. 

This and (7.15) give the lower bound in (1.4). [] 

Dan Stroock has shown us a quite general technique that allows one to 
directly convert the upper bound on ILu~(',')[l| obtained in Proposition 5.17, 
into the upper bound on ]IP,(',')]I ~ obtained in (7.25). Let N(., ')  be the Dirichlet 
form associated with a symmetric Markov process which has a resolvent density 
ux ( ' , ' )  satisfying 11 u z(',')lloo < c 12~/2 - 1. An elementary argument then established 
the following generalized Nash inequality: 

LIr162162 foral l  r in Co(G ). 

Theorem (2.1) of Carlen, Kusuoka and Stroock (1987) shows that this implies 
l ip, ( ' ,  911 co _-< c3 t -v/2. 

This proof  gives the upper bound (7.25) without the moving boundary argu- 
ments that led to (7.27). We kave kept our derivation of (7.27) because in addition 
to the lower bound on p~(x, y), it will also give us information about  the deriva- 
tives of p,(x, y), and because it is more in the spirit of the highly probabilistic 
"bare-hands"  approach of the rest of the paper. 

The next result extends the smoothness in t ofpt(x,  y) and the earlier estimates 
on pl k) (x, y )= Ok/O t k (p,(x, y)) to the diagonal x = y. 

Theorem 7.9. For every ke2g + " 

(a) plk)(x, y) exists and is jointly continuous in (t, x, y) in (0, oe) x G x G. 

(b) 

(7.28) lim sup {I (P~ n (x, y) - pl k) (x, y)) h-1 _ p}k + 1)(X, Y) I: X, y ~ G, e < t < e-1 } 
h--,0 

= 0  

for  every e > O. 
(c) There is a c7.14(k ) such that 

(7.29) Ip~k)(x,y)l<Cv.14(k)t-k-d'/2exp(--CT.4([x--ylt-~) 1/1-~} 

for all t > O, (x, y) in G x G. 

Proof. If t > u > 0, (x, y) s G x G, k ~ Z + and (5 e (0, c7.12] satisfies k (6) > k + 1, then 

(7.30) E~(IP}~v(~,o,r)(S(V(u, (5, Y)), Y)I) 

<c7.7(k) t l -a ' /2Ex(IX(V(u,  6, y))--yl-d=(k+l) ) (by (7.13)) 

<=C7.7(k) O-aw(k+ 1) t l  -ds/2u-(k+ 1) Ex(U (u ' (5, y)-(k+ D) 

= <el (k ,  (5)tl-d'/2U (k+l) 

where in the last we have used (7.18) and the fact that k(6)> k + 1. 
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We now induct on ke;g+ to prove (a), (b) and 

(7.31) (k) __ x (k) p, (x, y) - E (p~_ v (,, ~, y)(X (V (u, 3, y)), y)) for all t > u > 0, (x, y) in 
G x G and 6 in (0, cv.12] such that k ( a )>k+2 .  

If t > u  are fixed then the Chapman-Kolmogorov equations show s 
pt-s(X~, y) is an ~s-martingale (with respect to px) for s in [0, t] and is uni- 

formly bounded on [0, u] by Theorem 7.8 (d). (7.31) is therefore valid for k = 0  
for any 3 > 0  by the optional stopping theorem. (a) has already been proved 
for k = 0 in Theorem 7.8 (a). 

Assume (a) and (7.31) hold for k and consider k +  1. Choose 6 in (0, c7.12 ] 
such that k(3) > k + 3, let t > u > 0 and fix (x, y) in G x G. If I hl < 1/x ( t -  u), then 

](p~h(X,y)__plk)(x,y))h-1 x (k+l) - E (p,_ v (.. ~.,)(x ( v  (u, 6, y)), y)) [ 

.< EX(j (k) &+h-v(,,,~,~)(x(v(u, 3, y)), y) 
(k) 

-Pt_v(. ,o,y)(X(V(u,  a, y)), y))h-  1 
(k + 1) -p,-vtu,~,y)(X (V(u, (~, y)), y)]) (induction hypothesis) 

<hEX(sup{]p~k+ 2)(X (V(u, 6, y)), y)]" 

s between t -  V(u, 6, y) and t + h -  V(u, 6, y)}) 

<hc7.7(k) ( t+[h]) l -as /2E~([X(V(u ,&y))_y  ] d=(k + 3)) (by (7.13)) 

<_hcT.v(k)(t+ 1) 1 -ddZ(~-d'~'(k+3)u-(k+3)Ex(U(u, 6, y ) - ( k +  3)) 

< h q  (6, k)(t + 1) 1-e~/2u-(k+3), 

the last by (7.18). This shows that 

(7.32) l im(p~h(X,y)--p~k)(x,y))h -1 ~ (k+~) = E (p,_v(u,~,,)(x(v(u, a, y)), y)) 
h~O 

and the convergence is uniform on {(t, x, y): te [-u + e, u + e- 1], 
(x, y) in G x G} for any e > 0. 

(7.31) follows for k +  1 in place of k. The uniform convergence in (7.32) and 
assumed continuity of p~k)(x, y) show that p~k+l)(x, y) is continuous on (0, oo) 
x G x G (let e, uS0). To complete the induction it remains only to prove (b) 

for k. This, however, is immediate from (7.32) since e and u may be taken 
arbitrarily small. 

To prove (c), let uTt  in (7.30) and use (7.31) to see that 

]p~k) (X, Y) I < C 1 (k, 6) t -  k- ds/2 

for all t>0 ,  (x, y) in G x G, be(0, c7.12] and k (b )>k+2 .  This, together with 
(7.14), implies (7.29). [] 

Consider now the regularity properties of Pt(' , ')  in the spatial variables. 
We will see in Sect. 9 (Corollary 9.3) that they do not have a C 1 extension 
to a neighbourhood of G. On the other hand they are regular in the sense 
of being in the domain of arbitrarily many iterations of d .  
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Inductively define 
d (0  = ~r o d (  t- ~) 

o n  

~(d (o )  = { f e D ( d ( , -  1)): sr 1 ) f e~  (d)}. 

Theorem 7.10. (a) For all t>0 ,  y e G  and k, leag +, x-+p~k)(x, y) belongs to ~(A (~ 
and 

d(t) (p~k)(., y))(X) = p~k + t)(X, y). 

(b) ]p~k)(x,y)--p~k)(X',y')l<CT.15(k)t-l-kl(x-x',y--y')law-as for all t>0 ,  
(x, y )eG x G, k e Z + .  

Proof  (a) Fix t>0 ,  y e G  and k e Z + .  Theorem 7.9 shows that p}k)(., y)eCo(G ) 
and (7.29) allows one to differentiate inside the integral in the Chapman-Kolmo- 
gorov equations to obtain 

p}k) (x ,y )=~ps(x , z )p~(z ,y )#(dz ) ,  0 < s < t .  

This implies that if h > 0, then s --* p~h-~(X~, y) is a P~-martingale for se [0, t + h). 
Therefore, if h > 0, then 

E~(p}k)(Xh, y)--plk)(x, y))h- 1 = (p}~h(X, y)_p~k)(x ' y))h- ~ 

By (7.28) the latter expression converges to p~k+ 1)(X ' y) uniformly in (x, y)~ G x G. 
(a) follows for l=  1 and in general by a trivial induction on I. 

(b) If 2 > 0 then the above shows that 

p}k)(x, y) = U~ hk,t,r,z(x), 
where 

hk,t,r,z (x ) = 2 p}k)(x, y ) _  p~k + 1)(X ' y). 

(7.29) implies 

II hk,,,~,~ II co ~ ~c7.14 (k) t-k-ds/2 + C7 14(k + 1) t - k  - a - a,/2. 

Theorem 5.22 therefore gives us 

HP}k)( x, Y)--Plk)(x ', Y)I < 2  c5.v 2 -a'/2 (RcT.14(k)t -k-a'/2 

+ c7.14(k + l)t  -k-l-as/2) ix_x, law-ds. 

Take 2 = t-1 and use the symmetry of pl k)(x, y) to complete the proof. [] 

Remark. Theorems 7.8, 7.9 and 7.10 together imply Theorem 1.5. 

Add 0 to G as the point at m,  and if A=int(Ba(z ,  r)) for z e G  and r>0 ,  
consider the killed process 

xA( t )={X(ot  ) if t < R ( A )  
if t>=R(A). 
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It is clear that X A has a transition density with respect to #, pA(x, y), such 
that 

(7.33) pA(x, y)< p,(x, y). 

Using the strong Markov property at R(A) (as in Fabes-Stroock (1986)) one 
may take 

(7.34) pt a (x, y) = Pt (x, y) -- E:' (1 (R (A) < t) Pt- R(A)(X (R (A)), y)). 

It is not hard to use Proposition 2.13, Lemma 7.16, Lemma 7.1(a) and Theo- 
rem 7.8 to prove the continuity in (t, x, y) of the right side of (7.34), first on 
(0, oo)x Bd(z, 6r)xBe(z,  fir) for 0 < 3 < 1  and hence on all of(0, oo) x A x A. The 
argument in Fabes-Stroock (1986, Lemma (5.1)) and (1.4) may be used to prove 
the lower bound in 

Theorem 7.11. Let A = Bd(z, r) where zeG, r > 0 .  

(a) (7.34) defines a transition density for X A which is jointly continuous on 
(0, oo) x A x A. 

(b) For any 6e(0, 1) there are constants cv.16(~), c7.17(6) (independent of A) 
such that 

(7.35) p~(x,y)>-->_cT.16(6)t-as/2exp{--cT.lv(6)(ly--xlt-~/d~) dw/(a'~-~)} 

for re(O, r ew) and x, yeB(z,  6r). 

8. Uniqueness of the Brownian Motion 

Among continuous, Rd-valued strong Markov processes, Brownian motion is 
uniquely determined (up to a trivial rescaling of time of the form t--+ c t) by 
the properties of rotation and translation invariance. To state a corresponding 
theorem for X~ we introduce a group of local symmetries on G. 

Definition. Let A 1 and A 2 denote two adjacent triangles in ~ which intersect 
at x~G. .  FI(AluA2)  denotes the group of symmetries of A l u A  2 which fix 
x and are generated by the two mappings 

rc o = reflection of A 1 u A 2 in the perpendicular bisector of the common base 
o f  A 1 and A 2 

~1 =reflection of A~ in the perpendicular bisector of A 1 through x, and the 
identity on A2. 

Consider the following hypotheses on G-valued processes. 

(H0 (O,~,~t ,  Yt, 01, P~) is a G-valued diffusion defined on the canonical space 
of continuous paths, i.e., a normal, continuous strong Markov process with 
state space G (in the sense of Blumenthal and Getoor  (1968, p. 20, 30, 37)). 
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(H2) For any n~2~ and any pair of adjacent triangles in W,, A 1 and Az, which 
intersect at x ~ G,, we have 

Px(~(Y(. A T~(Y)))eA)=Px(Y(. A T?(Y))EA) 

for all A ~ ( C ( [ 0 ,  ~) ,  G)) and all neFI(Aa wA2). 

(Ha) If A1, Az, n and x are as in (Hz) and T : A l w A z ~ T ( A O u T ( A 2 )  is 
the composition of a translation and a rotation of _+2n/3 or 0 which maps 
A ~ u A 2 onto another pair of adjacent triangles in J , ,  then 

(8.1) Px(T(Y(. /x  T(~(A1 u A2), Y)))~A)=P~'(~)(Y( �9 /x T(O(T(A 1 k3 A2)), Y))~A) 
for all A e ~ ( C ( [ 0 ,  m), G)). 

It Y is a simple random walk on G,, for re>n, then (H2) and (H3) are 
obvious (A is now a Borel subject of G z§ by the corresponding invariance 
of Gin. The construction of X as a limit of these random walks shows that 
(H1) , (H2) and (H3) hold if (Y, P~) is replaced by (X, W). Clearly these hypotheses 
are also satisfied by the diffusion X (c t) for any c e [0, oo). 

Theorem 8.1. (~2, ~,  ~'&t, Y,, Or, px) satisfies (H1), (H2) and (H3) if and only if there 
is a c~[0, oo) such that for every xeG, P~ is the W-law of X(c').  

Proof By the above remarks it suffices to prove the sufficiency of (H1)-(H3). 
Assume throughout the rest of this section that (f2, ~ ,  ~ , ,  Y,, 0~, P~) satisfies 
(H0-(H3). We require some preliminary lemmas. 

In the next lemma, a geometric random variable with mean Go is understood 
to be identically + co. 

Lemma 8.2. Let x E G, and work with respect to P~. 
(a) {W~"(Y): i~N} are i.i.d. [0, ~]-valued random variables, whose common 

law does not depend on x. 
(b) I f  

p(n)=min{i: W~"(Y) = Go}, 
and 

(Y)) ifif O<=i<p(n)i>=p(n), 
then conditional on {Win(Y): ieN},  Y(n) is a simple random walk on Gn starting 
at x and killed at p(n). Therefore (unconditionally) Y(n) is a simple random walk 
on G,, killed at an independent geometric time with mean P~ oo)-1. 

Proof Let M e N ,  {A,: 1 _< i_< M} c~([O, 'co))  and {xi: 0_< i<  M} c G, satisfy Xo 
= x  and xieNn(xi_l). If .... , 

B~={Y(n)(i)=xi, W~(Y)eA~}, 
then 

px B =~x 1 0 Bi px~ ~(Y(n)(1)=XM, W~(Y)eAM)) 
i \ \ i = 1  ! 

(strong Markov property) 

= p x  B 4 - t P  . . . .  (W~(Y)eAM)" 
i 
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In the last line we have used the symmetry given by (H2). Moreover (H3) shows 
that P . . . .  (W~(Y)~ AM) is independent of XM-1. By induction we get 

fix Bi = 4 - M  1~ f i~  �9 
i i = 1  

The results follow easily. [] 

Lemma 8.3. I f  n, A1, A2 and T are as in (H3) and y~(A1uA2)c~G~, then (8.1) 
holds if x is replaced by y. 

Proof Let y E (A 1 w A 2) c~ Gn, where n' >_ n. We may assume PY (WE (Y) < oo) > 0 
for large enough m because otherwise the result holds trivially (both processes 
in question will be constant by (H3)). Choose m == n' such that PY (WE (Y)< oo)> 0. 
If Y(m)(') is defined as in Lemma 8.2 and xaA1 c~A2, then Lemma 8.2 implies 
that 

PX(Ty(r(m))<= T(8(A1 t-) A2), Y(m)), Ty(Y(m)) < oe)>0, 

and therefore (use (8.1) as well), 

(8.2) 0 <PX(Ty(Y)__< T(c~(A 1 uA2) , Y), Ty(Y) < ~ )  

= P~'(X)(T,v(y)(Y) < T((~(T(A1 w A2)), Y), T~,(y)(Y) < ~).  

If A6~(C( [0 ,  ~) ,  G)), then (8.1) shows that 

Pxw(y((Ty + .) A T(O(A1 ~ A 2))))6A [ Ty(Y) _-< T(0(A 1 w A 2), Y), Ty(Y) < ~ )  

= W(x)(Y((T~,(~)+')/, T(~(~(A 1 w A2))))eA [ 

T~(y)(Y) < T(O(T(A 1 w A2) ) Y), T~(,)(Y) < ~) ,  

and hence 

PY(T(Y(. /x  T(0(A 1 u A 2))))~A)= P~(Y)(Y("/x T(~?(T(A 1 w A2))))6A ) 

by (8.2) and the strong Markov property. []  

Recall the notation S,, (x) introduced at the beginning of Sect. 2. 

Lemma 8.4. I f  

(8.3) sup PX(Sm(Y)> m)= 1 
x ~ G  

then 

(8.4) Px(Y(t)=x for all t = 0 ) =  1 

Proof We claim that it suffices to show 

(8.5) P~ oe)>e  for all m e n  

for all meN,  

for all x ~ G. 

and some e>0.  
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Assume (8.5) and let xeG. Then 

pX(sup I Y(t)--x[ > ( m +  1 )2 - ' )  
t 

<-_EX(I(T'(Y)< oe)Pr(rm)(Wi'(Y)< oe for all i<m)) 

=< ( 1  - e)" (by Lemma 8.2 and (8.5)). 

The Borel-Cantelli lemma implies (8.4) and the claim is proved. 
Assume (8.3). If e" $ 0, there are {x'} in G such that 

(8.6) Px" (S" (Y) > m) > 1 - e ' .  

Choose y'E8A2m(Xm) such that D'(y')=Dm(x').  If n>2m and PY=(Sm(Y)< oo) 
>0,  Lemma8.2 shows that under pyre and conditional on {S ' (Y)<oo},  i 
--* Y(Tz"/x S ' )  is a simple random walk on G, starting at y" and stopped when 
it hits 8D'(y,,). Let z, eSA,(x'). We may apply Lemma 5.11 to the above random 
walk to see that for n > 2 m, 

P,m(T~(Y) <= S'(Y) IS~(Y) < oo) __> (1 - c5.2 (~) ' ) .  

Continuity of Y(-) shows that 

PYm(T~,,(Y) < lim inf T~,(Y)<=S'(Y)IS,,(Y)< 00)=>(1 -cs.2(3) ') ,  
n ~ c o  

and therefore 

PY"(S'(Y)>m)> EY'~(I(T~(Y)<S,,(Y))P~m(S'(Y)>m)) 

>__ ( 1  - c ~ . ~  ( } ) m ) ( 1  - -  ~' ) .  

(The same inequality is trivial if fiY~(S'(Y)< oo)=0). Hence by redefining {e'} 
and replacing Xm with Ym we may assume without loss of generality that 

Use the strong Markov property at T ' (Y)  to see that (8.6) implies either 

(i) P~(T(8D,,(xm), Y) > m/2) > }  for some z'e8Am(xm) and arbitrarily large m 
or (ii) fi~m(Tm(y) > m/2) >~- for arbitrarily large m. 

Assume (i) holds and consider an rn for which the inequality in (i) holds. 
Choose y" ~ 8D,n(X') such that [ y ' - z , .  [= 2 - "  (z" as in (i)). Then 

} > f i~  (T (8 Dm (x'), Y) < m/2) 

> pz~ (W~"(Y) < m/2, Y(W~) = y') 

= (�88 pz~ (W~,, (Y) < m/2) (Lemma 8.2). 

Therefore for arbitrarily large m, one has 

P~ (Lemma 8.2 (a)) 
>1 .  
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The monotonici ty of {W~} now proves (8.5), completing the argument in this 
case. 

Assume (ii) and consider an m for which the inequality in (ii) holds. Lem- 
ma 8.3 allows us to translate and rotate and therefore assume without loss 
of generality that d(0, xm) < 2-  m (recall x, ,e Goo). I f j  < m-- 1, then 

po (W/> m/2) > po (T~ < W/) P:'~(T" > m/2) 

> Po (T~,. < Sj +1)/9 (by (ii)) 

(1 -- C 5.2 (53-) m - j -  1)/9. 

In the last line we have again used Lemmas 5.11 and 8.2 as before. Now let 
m --+ oo through an appropriate subsequence to derive/~o (W/=  oo)> ~ and hence 
obtain (8.5) and complete the proof. []  

Lemma g.5. I f  

P~(~t__>0, ~>0  such that Y(s)= Y(O VsE[t, t+e))>O for some x in G, then 
P~(Y~= YoVt~0)= I for alI x in G. 

Proof A standard argument, using only (H1), shows that the hypothesis implies 
the set of traps, 

S={xeG:  P~(Y~=x for all t > 0 ) = l } ,  

is non-empty. Lemma 8.4 now implies S = G, as required. []  

We are now ready to return to the 

Proof of Theorem &l. We may assume, without loss of generality, that for every 
xeG, P~(Y~=t= Yo for some t > 0 ) > 0  because if this fails for some x, Lemma 8.4 
proves the theorem with c = 0. 

The above assumption and Lemma 8.4 shows there is an nl e N  such that 

sup PY(T~(Y)> nl)=Po < 1. 
yeG 

Use the Markov property at nl to conclude that 

sup PY(T~ "~ (Y)> 2 nl) < p2. 
yEG 

Proceeding inductively we see that for some universal constants 0, T > 0, 

(8.7) PY(TZ'(Y)>t)<e -~ for t > T  andal !  yeG. 

Fix xeG, o where no>n t and work with respect to P~. If n>no, then T~(Y) 
< Go PX-a.s. and therefore Y(n)(i)= Y(Ti"(Y)) is a random walk on G, by Lem- 
ma 8.2. Define 

�9 . ( t )  = rE~. ,1(Y).  

(8.8) Y,(t) = Y(z,(t))= Y(n)([5" t]). 
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The collection of random walks {Y(n): n>no} satisfies the nesting property 
(2.12). Theorem 2.8 (with { Y(n):n > no} in place of {X(n, x):n ~N}) shows that 

lim Y,=X in C([0, oe), G) PX-a.s., 
n ---r o:~ 

where Px(X6. )=  px(.) on ~(C([0,  oe), G)). Lemma 2.5 (b) and Remark 2.6 show 
that 

N, = W? ~ (Y(no + n)) 

is a supercritical branching process starting at 1 (when n = 0) and with offspring 
distribution equal to the law of N (see Lemma 2.2). The definition of N, gives 

N n  

(8.9) WI"~ ~ W?+n~ n~N. 
i = 1  

The summands in (8.9) are i.i.d, and are independent of Nn by Lemma 8.2. Let 
pn=/~(WI"(Y)) and o',2 = Var(W~(Y)) (independent of x). By (8.7) we may take 
expected values in (8.9) to get 

(8.10) #n +,o = 5 -" #no 

and therefore 

(8.11) ~ x  __  - n  E (~.+.o(0)-U"+"ot]5 ~.o. 

(8.7) shows that o-, 2 < m for n > nl,  and (8.9) and the above independence proper- 
ties show that 

/~(W,o(y)2)= ~ p:,(N=j)(ja2+,o-.2 2 ">/~ 'N."  2 ~,az ~-J [~ln+no)= ( n) O'n+no = D  n+no" 
j = l  

Therefore 
a,+,o 2 _ _</~x(Wl, O (y)2) 5 - .  ' 

and (8.11) now shows 

(8.12) EX(z,+,o(K)e)<-_K5"~176176 forall  K e N .  

We claim that 

,0 as n ~ o e  forall K e N .  (8.13) max Wi'+'~ 
i _--< 5 nO + nK 
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If  e, M > 0, then 

P~( m a x  W/"+"~ 
i< 5no+nK 

<P~(T~,+~%K(Y)>M)+PX(inf sup I Y ( u ) -  Y(t) l<2-("+"~ 
t<M uE[t,t+e] 

The  last t e rm approaches  zero as n ~ oo by  L e m m a  8.5 and  our  earlier a s sump-  
tion. The  first t e rm is b o u n d e d  by  M -~ 5"~ by (8.11) and  hence can be 
m a d e  arbi t rar i ly  small, un i formly  in n, by  taking M large. This  proves  (8.13). 

F o r  n ~ N  and ~, t>O,  we have  

(8.14) ~, +,o (t) - / ~  (~, + ,o (t)) 
[sn+not] 

= F, ( w ? + " o ( r ) -  w?+"o(r)  A ~) 
i - - 1  

[5n+not] 

+ Y, w~"+"o(Y)^~-E~(wV"o(r ) / ,~)  
i = 1  

[ 5n + not] 

- F, ~ ( w ~ " + " o ( Y ) -  w ? + " o ( r )  A ~). 
i = 1  

(8.13) implies the first t e rm converges  to zero in p robabi l i ty  as n ~ o o ,  and  
(8.12) shows tha t  the first t e rm is L 2 b o u n d  in n. Therefore  by d o m i n a t e d  conver-  
gence, the last t e rm also approaches  zero as n ~ oo. The  square  of  the LZ-norm 
of the second te rm is b o u n d e d  by 

5"+"~176176 (by (8.10)) 

0 as e ~ 0 uni formly  in n. 

It  therefore  follows f rom (8.14) and  (8.11) tha t  

ibx  

~,(t) ~5"~ as n ~ o o ,  f o r a l l  t > 0 .  

Let  n ~ oo in (8.8) to get 

(8.15) X ( t ) =  Y(c-lt) for all t=>0 PX-a.s. 

The choice of  c is independent  of  x~G,o for each n o and  hence canno t  depend  
on no (because G,o c G,o + 1)- Therefore  (8.15) is valid for all x e  Goo. 

N o w  consider  xeG-Goo and choose  a sequence {x,} in Go  which converges  
to x. I f  0 < e < t and  fE Cb (G), then 

(8.16) EX(f(Y(t))) = lira /~x(1 (T"(Y(o)) < e) Er(r~)(~)(f(Y(t- Tn(Y(co))))) 
. --+ co 

+/~x(1 (T"(Y) >= e) f (Y(t))). 
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Lemma 8.5 and our initial assumption imply 

(8.17) lim T"(Y)=0 pX-a.s., 
n --+ oo 

and therefore the last term in (8.16) approaches zero as n ~ o o .  The first term 
on the right side of (8.16) equals 

lim P~(1 (T"(Y(co)) < e)Er(T")(~ T"(Y(co))))))), 
n ~ o o  

by the above. Proposition 2.13 shows EX(f(X(ct))) is jointly continuous in (t, x) 
and hence (8.17) shows that the above limit, and therefore EX(f(Y(t))), equals 
E~(f(X(ct))). [] 

9. Some Remarks on the Infinitesimal Generator 

We showed in Sect. 5 (Theorem 5.22) that every function in @(d)  is HSlder 
continuous of index dw-df=0.736966 . . . .  Our conjecture is that no non-con- 
stant function in N(sr is H61der continuous of index d ~ - d s + e  for any e>0. 
Although this suggests that functions in ~ (d )  are fairly rough, they must also, 
in a certain sense, be exceptionally smooth. Iffe~(suQ, then f(Xt) is a semimar- 
tingale by Dynkin's formula. Therefore f maps a path of positive d,~-variation 
(d, > 2) (Theorem 4.5, Remark 4.6) into a path of finite quadratic variation. We 
therefore expect ] f (y ) - f (z ) [  < ] y -  z [~w/z (d~/2 = 1.160964...) for "most points 
(y, z) sufficiently close in G". This argument and conclusion are made precise 
in 

Theorem 9.1. Let f e ~ (x/) and for R > O, let 

BR= {zeG : [z[=<R}. 

There is a constant c(f, R) such that for any e>0  and N e N ,  

(9 .1)  #X#({(Y'z)eBRXBR:[Y--Z]<=2-N'[f(Y)--f(z)I>=[Y--Z[(aw/2)-~} 
p • #({(y, z)~BR x BR: [y--zl < 2-u)) 

<c(f ,  R)2 -2"N . 

In particular, this ratio approaches zero as N ~ oo. 

Proof Let f ~  @(d)  and R > 0. By Dynkin's formula, 

f (X,) = M r +  i A f  (Xs) ds, 
0 
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where M y is a martingale which is evidently uniformly bounded on compact 
time intervals. If t~ = i 5 -", then 

2(5n) L 1 

(f(X(t~))--f(X(t~_l))) 2 ~ [ f ( X ) , f ( X ) ] 2 - [ f ( X ) , f ( X ) ]  , as n ~ o o  
i = 5 n + l  

(see Meyer (1976, p. 355)). Here and throughout the proof, the underlying mea- 
sure is po. Let I,  = { ieN:  5" < i < 2(5")} and 

A . =  {(y, z)eG x G: 2 -"-1  < ly-zl <2-"}. 

Choose c l ( f )  such that for all h e N ,  

cl ( f )  > E ~ ( ~ ( f  (X (tT)) - - f  (X (t 7_ 1))) 2 ) 
iEln 

= 2 ~ I Ptr_, (0, y) Ps--(Y, z)(f(z)--f(y))2 d#(z) d#(y) 
i~In G G 

> ~ ~ p,? , ( O , y ) ( ~ l ( l y - z l < 2 - " ,  I f ( y ) - f ( z ) l > l y - z l  (uw/2)-~) 
BR iEln 

x Cl.2 3"e -c1'' Iz--yldw-2~d#(z)) d#(y) (by (1.4)) 

>c2(R) 5 5 5" l ( I f ( y ) - f ( z ) l  > l y - z ]  (aw/2)-~, (y, z )~A,)5-n2 2 e n  

BR G 

x 3" d#(z) d#(y) (by (1.4) again). 

Rearrange the above inequality to get 

S S l((y, z)eA, ,  [f(y)--f(z)] > ]y - z ]  a'~/2-~) d#(z) d#(y) 
BR O 

< c , ( f )  c2(R)-12-2~"3 -". 

An elementary calculation shows that 

#x#(A.~(BRXBR))>=c3(R)3-"  for all heN.  

Combine the last two inequalities and sum over n___ N (N~N) to conclude that 

~ 1 ( l y - z l  < 2  -N, I f ( y ) - f ( z ) [  > l y - z l  (aw/2)-~) d#(z) d#(y) 
BR G 

< c I ( f )  c 2 (R)-I  c 3 (R)-I  ~ 2 - 2 ~,# x # (A, n (B R x BR)) 
n = N  

<~ Cl (f)  c2(R )-  1 C3 ( R ) -  1 2-2~N# x #({(y, z)eBR X BR: ]y--z[ <= 2-N}). [] 

Non-constant infinitely differentiable functions are much too rough to satisfy 
(9.1). 
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Corollary 9.2. I f  U is an open set which intersects G and f ~ ( d )  has a C 1 
extension to U, then f must be constant on U c~ G. In particular, the only functions 
in ~ ( d )  which have a C 1 extension to a neighbourhood of G are the constant 
functions. 

Proof Assume U and f are as above and let f also denote the C a extension 
to U. Assume f is not constant on U c~ G. Then Vf(xo)#O for some Xo~ U c~ G,o 
and some no~N (use the fact that f must be non-constant on some graph 
G("~ The mean value theorem shows there are 6, ~ > 0 such that if y, z cB (Xo, 6), 

y + z  and ( z - y )  Vf(xo) > 2 _ ~  then I f ( z ) - f ( y ) l > q ] z - y  ]. Thisimplies 
I z - y l  I Vf(xo)[ - 

(9.2) # x # ((y, z)~B(xo,  6)2: I z -  yl <2 -s ,  [ f  ( z ) -  f (y)l >~1 I z -  y[} 

> # •  (y'z)eB(x~ '[Iz-yl(Z-Y) IVf(xo)[Vf(x~ >2_~} 

>c 1 3 -u, 

where c1>0 does not depend on N. Choose R such that B ( x o , 6 ) c B  R (B R 
as in Theorem 9.1). Note that 

( 9 . 3 )  # x # { ( y , z ) e B ~ : l y - - z l < 2 - N } < c 2  3 .N for all g e N .  

(9.2) and (9.3) together contradict Theorem 9.1 with 8>0  chosen so that (dw/2) 
- e > l .  [] 

An immediate consequence of the above and Theorem 7.10 is 

Corollary 9.3. For every t > 0  and y~G, x-~  pt(x, y) does not have a C x extension 
to a neighbourhood of G. [] 

Functions in N ( d )  appear to have Cantor-like properties reminiscent of 
functions in the domain of a one-dimensional diffusion with a singular increasing 
scale function. Unlike the latter setting, however, an explicit construction of 
a function in ~(s~) appears to be difficult. It is interesting to ponder the behav- 
iour of Pt( ' , ' )  (the one class of functions we have found in N(d) )  in light of 
the above results. 

10. Concluding Remarks 

Density of States 

Let zeG,  r>0 ,  D--int(Bd(x , r)) and d D be the infintesimal generator of X D 
(the process X killed on hitting 8D). Let 0 > - 2 o > - 2 1 >  ... denote the eigen- 
values of d D and {~} the complete orthonormal system (in L2(D, #)) of corre- 
sponding eigenfunctions. There is considerable interest in the physics literature 
in the asymptotic frequency ("density of states") of {2,}. Theorem 7.11 and 
(7.33) show that Pt D, the semigroup of X D at time t, is a Hilbert-Schmidt integral 
operator on L 2 (D, #) with a continuous, symmetric kernel p~ (-,-) and eigenvalues 
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{e-~"~: n E7Z+ }. Therefore Mercer's theorem (see Riesz-Nagy (1952, p. 242)) shows 
that 

(10.1) 

where 

~ p~(x,x) d#(x)= ~ e-X"t= ; e-StQ(ds), 
D n = 0  0 

Q (B) = card {2,: 2, s B}. 

By (7.33), (1.4) and (7.35), the left side of (10.1) is bounded between q ( O ) t  as/2 
and c2(D) t -dJ2 as t~0.  A Tauberian theorem (see DeHaan  and Stadtmfiller 
(1985, Theorem 1)) shows that 

Cao.l(D)xd~/Z<=Q([O,x])=card{2,: L <=x} <=Clo.z(D)x d~/2, x>=2 o, 

which agrees with the results in the physics literature. 

d-Dimensional Gaskets 

There is an obvious d-dimensional analogue of the 2-dimensional gasket. Let 
0=Xo, xl . . . . .  x d be points in R d  with [xi--xj]=6ij,  let Go={X o . . . . .  xd}, and 
let G (~ be the graph with vertices Go, and edges connecting xi and xj for i# j .  
Thus G (~ is a d-dimensional tetrahedron, and has d +  1 vertices, and �89 1) 
edges. Now let x~j be the midpoint of the line joining x~ to xj, write x~=xi ,  
let Gl={Xij ,  O<i, j < d + l } ,  and let G ~ be the graph with vertices G~, and 
edges between xij and Xik, Xjz, O<-_k, l<<_d, k~ j ,  l# i .  G (1) consists of d + l  d- 
dimensional tetrahedrons, with each pair sharing exactly one vertex. 

Repeating this procedure, one obtains G2, G3, ..., and setting G '=  c l(w G,) 
gives a bounded set in Nfl with dimension d r = l o g ( d +  1)/log2. As before, we 
can now build outwards to form an unbounded set G, with the same kind 
of local scale, rotation and translation self-similarity as in the 2-dimensional 
gasket. 

When we wish to emphasize the dependency on the dimension d, we will 
refer to G(d), dy(d), etc. 

Lemma 10.1. Let Y be a simple symmetric random walk on G (~), starting at Xo 
let 

N = m i n { r > 0 :  Y,~ {xl 1 . . . . .  Xda}}; 

H =  ~ l(yr=xo), f (u)=EX~ N, h(u)=EX~ H. 
O~r<_N 

Then 
U 2 

(a) f ( u ) -  

(b) 

2 d - 3 ( d -  1) u + ( d -  2)u 2 

(d+l)u 
h(u)= 

( d + 3 - 2 u )  

d + 3  
E N = d + 3 ,  E H -  

d + l "  
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Proof Se t  fij(u)=EX'Ju N. Note that each vertex of G (a) has 2d neighbours, and 
that, by symmetry, we need to consider only 4 kinds of point: Xo o, Xoi, 1 < i <  d, 
xu, 1 < i~=j<d, and xu, 1 <<_ i< d. We have, conditioning on I(1, and using the 
symmetry, 

foo(U)=Ufox (U), 

fo,  (u) = ~dd (foo (u) + A  ~ (u) + ( d -  1)fo~ (u) + ( d -  1)A 2 (U)), 

f l  2 (U) = 2 ~  (2fll  (U) q- 2fol (U) + 2 (d-- 2)f 12 (u)), 

A 1 (u) = 1. 

Solving these equations, one obtains (a) for foo=f .  The expression for h 
is obtained in the same way, and by evaluating f'(1), h'(1) one proves (b). [] 

Note that N -  1 is only geometric in the case d = 2. 
We now set d,~ = dw (d) = log (d + 3)/log 2, ds = ds (d) = 2 log (d + 1)/log (d + 3). 
The proofs and results of the paper extend without any difficulty to the 

higher dimensional gaskets, with, of course, appropriate changes of constants. 
In particular, the Brownian motion on G(d) a set with dimension log(d + 1)/log 2, 
has a continuous local time. This emphasizes that it is the spectral dimension, 
ds, rather than the fractal dimension d I, which governs the behaviour of the 
Brownian motion on G. 

Remark. If d = 1, the construction of the d-dimensional gasket just gives us IR, 
and the Brownian motion on G(1) is just ordinary Brownian motion, run at 
the usual speed. We have d i (1 )= l ,  dw(1)=2, d~(1)=l, and Theorems 1.5 and 
1.9 become (weak) restatements of well known facts. 

u 2 

We have f ( u ) =  2_u2 ,  and in this case the functional equation (3.2) has 

the explicit solution 

q5 (u) = (cosh (2 u) § - I. 

Thus the hitting time of the set {1, - 1 }  by a 1-dimensional Brownian motion 
is the limiting distribution of a supercritical branching process. 

We conclude the paper with a list of problems. 

The Distribution of W 

Although the analysis in Sect. 3 leads to a fairly detailed account of the behaviour 
of g(x) and G(x), a number of problems remain. 

Problem 10.2. Obtain other bounds on the oscillation of the function k(z), defined 
in Sect. 3. 



Brownian Motion on the Sierpinski Gasket 621 

This has been done by Dubuc (1982) for branching processes with P0 + Pl > 0. 
While Ic3.5-c3.41 is small if Ica.3-c3.al is small, our methods do not give 

good values for the constants c3.10, c3.12. 

Problem 10.3. Obtain good estimates for c3.1o, c3.a2. 

We do not know anything about  the sign of g'(x): 

Problem 10.4. (i) Is g(x) monotone  in a neighbourhood of 07 

(ii) Is g(x) unimodal? 

Oscillation in pt(x, x) 

From Theorem 1.5 we have 

cl.2<tes/Zpt(x,x)<cl.4, for all xeG, t>O. 

Problem 10.5. Does the limit 

(10.2) lim t ds/2 pt(x, x) 
tJ.o 

exist? 

We suspect not: the tiny oscillations in ~b(u) are likely to lead to similar 
small oscillations in pt(x, x). However, the methods of this paper are too crude 
to give us any information on this. 

It is natural to approach pt(x, x) via ua(x, x), and indeed standard Tauberian 
arguments show that (10.2) exists if and only if the limit 

(10.3) lim 21 -~a~ uz(x, x) 
),--*Go 

exists. 

Dimension of the Filtration of X 

Let ~ be the usual augmentation of the filtration a(Xs, s<t). Since X is a 
continuous strong Feller process, by Meyer's theorem every o~ martingale is 
continuous. 

Problem 10.6. What is the dimension of (@-), in the sense of Davis and Varaiya 
(1974)? 

At present no effective technique exists for beginning to answer this problem. 
We are inclined to guess that the answer is 2 (and d for the d-dimensional 
case). 
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Fourier Analysis on G 

I t  seems  poss ib l e  t h a t  t he r e  are,  on  G, n a t u r a l  a n a l o g u e s  o f  the  sin a n d  cos  

f u n c t i o n s  o n  P,., t h a t  w o u l d  e n a b l e  o n e  to  exp res s  the  a c t i o n  of  the  g e n e r a t o r  

in t e r m s  of  a p p r o p r i a t e  mul t ip l i e r s .  

T h i s  seems  to  be  the  o n l y  h o p e  o f  b e i n g  ab le  to  do  effect ive c o m p u t a t i o n s  

w i t h  d a n d  N ( d ) .  
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