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Summary. We show existence and uniqueness for the solution of a one- 
dimensional wave equation with non-linear random forcing. Then we give 
sufficient conditions for the solution at a given time and a given point, 
to have a density and for this density to be smooth. The proof uses the 
extension of the Malliavin calculus to the two parameters Wiener functionals. 

Introduction 

We consider the stochastic partial differential equation: 

82X (t, 82X 
x ) - ~ -  (t, x)= a(X (t, x)) ~(t, x) + b(X (t, x)) Ot 2 ux- 0.1) 

where the "t ime variable" t varies in [0, oo) and the "space variable" x varies 
in an interval I which could be bounded or semibounded or even be the whole 
real line. When I has a finite endpoint, we will impose a Dirichlet boundary 
condition for the solutions. This equation is a wave equation (because of its 
left hand side) with a nonlinear forcing term (because of its fight hand side). 
The functions a and b are assumed to be continuously differentiable on R with 
bounded derivatives. ~ is the source of the stochasticity. We will assume it 
is a white noise in time as well as in space. 

The problem of a vibrating string forced by a space-time white noise has 
been considered in the linear case of b ~ 0 and a = 1 by Cabana and Orsingher. 
See for example [3, 4, 16, and 17]. Even if complications due to damped vibra- 
tions or random initial conditions are introduced, the situation is relatively 
simple in the sense that one does not go out of the Gaussian (or conditionally 
Gaussian) case. Cabana introduced the "planar  Brownian mot ion"  in order 
to solve the equation of the vibrating string and he obtained some probabilistic 
bounds on the energy in [3]. He also solved some particular barrier problems 
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in [4]. Orsingher considered two different kinds of sources for the randomness 
in [16]. On one hand he considered a space-time white noise and on the other, 
a noise of the form ~(t, x)=z(t) w(x) where z(t) is a white noise in time and 
w(x) a stationary Gaussian process independent of z. He computed some upper 
bounds for the probability that the string exceeds some given level. He analyzed 
the damped case and the case of an initial white noise disturbance in [17]. 
The analysis of the Eq. (I.1) has been proposed in Walsh's lectures [21] on 
stochastic partial differential equations. 

Equation 0.l)  is obviously formal. We use ideas of [21] to rewrite it as 
an integral equation in order to give a rigorous meaning to the notion of solution. 
We prove existence and uniqueness in Sect. II below. The techniques involved 
are standard. See for example [21]. We also define line integrals in the same 
spirit as in [24] and we check a Markov property in the spirit of the work 
of Wong and Zakai in [23]. 

In the companion paper [6], we defined a singularity of a solution as an 
anomaly in the local modulus of continuity and we proved the existence of 
such singularities and their propagations along the characteristic curves. Also 
we showed how these singularities were reflected at the boundary of the interval 
I. 

The main part of the present paper is Sect. III. There, we investigate the 
following problem: given a time t > 0  and a position xeI ,  the displacement 
X(t, x) of the string is a random variable, and we would like to know if its 
distribution has a density and if such a density is smooth. Since this distribution 
is not the solution of an equation of a diffusion type, we cannot use Hormander's 
theory of hypoelliptic operators. We will use instead the calculus developed 
in [10] by Malliavin to show the existence and the regularity of the density 
for the distribution of the solution of a stochastic differential equation. Various 
approaches to the Malliavin calculus have been proposed in [1, 8, 18-20, 22] 
and applications to multiparameter stochastic differential equations have already 
been given by Nualart and Sanz in [13] and [14]. 

Typically, the Malliavin calculus gives sufficient conditions for the absolute 
continuity of the law of a functional of a Gaussian process and for the smooth- 
ness of the density. We will use it in the following form. Let W be an L2-Gaussian 
measure with orthogonal increments on the Borel subsets of our parameter 
space T=[0,  oe) x I  and let F be a functional of the form F 
=f(W(AO .. . .  , W(AN) ) where AI, ..., AN are Borel subsets of T and f a bounded 
smooth function with bounded derivatives on R N. Then we set: 

~ f  [DF](r)= ~ ~xj  (W(A1) . . . . .  W(AN) ) 1/j(r). 
j = l  

The derivative DF so defined can be regarded as a random variable taking 
values in the Hilbert space L2(T). More generally, the n-th derivative of F, 
say D"F, is the L z (T")-valued random variable defined by: 

N ~nf 
[D"FI(rl  . . . . .  r , )=  ~ dxi, Oxi, (W(AI) . . . . .  W(Aw)) lm,(r 0 ... lm (r,). 

i i  . . . . .  i n  = 1 " " " 
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We will use the notat ion D~F for [DF] (r) and, with this notation, D"F appears 
as the n-th iteration of the operator  D. Let 5O be the space of smooth functionals 
considered above and, for each integer n > 0  and for each real number p >  1, 
let @p,, be the completion of the space 5O with respect to the seminorm 

and let 

IJFllp,.= E {IFIP} I/P + ~ E { IIDkFIIf~2(Tk)} lip 
k = l  

n > 0  p >  1 

The operators D" extend naturally form 5 ~ to ~p,,. Moreover:  
a) The operator D can be interpreted as a directional derivative. Indeed, 

for each F~SO and heU(T)  the random variable (DF, h ) =  ~ DrF'h(r)dr coin- 

cides with the derivative at t--  0 of the function T 

t ~ F (W(A 1) + t (1A1, h) . . . .  , W(AN) + t (1AN , h)). 

b) If we use the notation ffa for the a-field generated by 
{W(B); B e ~  T, B c A } ,  then DrF=O almost surely for almost every r e x  the 
complementary set of A, whenever the functional F is in 92.1 and is 
~-A-measurable. 

c) The operator  D satisfies the chain rule in the sense that: 

Og (F1, ... Fm)DFj D g(F1 . . . .  , 

j = l  

whenever g is a continuously differentiable function with bounded derivatives 
and F1 . . . .  , F,, are in ~2, ,. 

We can now recall the two fundamental results of the Malliavin calculus 
which we will use. If F = (F1, . . . ,  Fro) is an m-dimensional random vector and 
if Q=[(DFi, D F j ) L 2 ( T ) ] i , j =  1 . . . . . .  denotes the so-called Malliavin matrix when 
the components F1, ..., Fm are in 92,1, then we have: 

(1) sufficient condition for the existence of a density for the law of F: 

(i) the components of F are in 92,1 
(ii) det Q 4:0 almost surely. 

(2) sufficient condition for the existence of an infinitely differentiable density: 

(i) the components of F are in ~ 
(ii) [det Q] -  1 has finite moments of all orders. 

The first result is proven in [18, 251, under the stronger hypothesis that the 
components of Q are in 92, ,  and the components of F in a somewhat smaller 
space and in [15] under assumptions which are weaker than those of [18] 
and [25] and stronger than (1) above. In its present form, it was proven in 
[2]. For  the second result, the basic references are [8, 10, 20 and 22]. 

Note that we will need only the one-dimensional version (i.e., m = 1) of these 
results, so that the matrix Q will actually be a nonnegative real random variable 
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and det Q = Q. We will prove that the solution of our nonlinear wave equation 
at a point (t, x) is in Np,1 when the coefficients are continuously differentiable 
with bounded derivatives, or in ~ when the coefficients are infinitely differenti- 
able with bounded derivatives, by using an approximation argument very much 
in the same spirit as in [8, 22, or 13]. Even though natural, our sufficient condi- 
tions are too technical to be reproduced in this introduction. 

Section IV is devoted to the investigation of the half line I = [0, co). The 
proofs that are similar to the case of the whole line are merely outlined and 
a counter example is given to illustrate the differences. 

The case of a bounded interval I is discussed in Sect. V. The problems created 
by the boundary conditions at the endpoints of I are of a technical nature 
and their solutions are not as illuminating as in the case of the propagation 
of singularities studied in [6]. 

II. Preliminaries, Existence and Uniqueness 

Let W =  {W(A); A ~ : ( R +  x R)} be a mean zero Gaussian process with covari- 
ance given by: 

E { W(A) W(B)} = [A c~ B I (II.1) 

where I'1 denotes the Lebesgue measure in R+ x R and N(R+ x R) its Borel 
a-field. (We use the notation NI(R+ x R) for the set of Borel subsets of R+ x R 
with finite Lebesgue measure). W is often called a random (Gaussian) measure 
with orthogonal increments. On the complete probability space, say (s ~ P), 
on which W is defined, we consider a right continuous nondecreasing family 
of sub-a-fields of ~,, say {o~ t ; t > 0}, which contain all the null sets of ~(according 
to the terminology in use this is a "filtration satisfying the usual conditions") 
such that: 

(i) for each t>0 ,  {W(A); A~[t ,  co) x R} is independent of ~,~. 
(II.2) 

(ii) W(A) is ~-measurable  whenever A c [0, t] x R. 

For  each z=( t ,  x )eR+ x R we denote by D(z) the triangle 

D(z) = {(s, y ) e ~ +  x R; O<s< t, x - ( t - s )<y<=x  + ( t -  s)}, 

and we write W(z) for W(D(z)). Note that one can choose a continuous version 
of the two-parameter stochastic process {W(z); z~R+ x R} such that W(0, x ) = 0  
for all xEN.  

Next we assume that a and b are real valued measurable functions on R 
and we consider the stochastic partial differential equation: 

~2X (t, 02X 
at 2 x)-~-x2 (t, x)=a(X(t, x)) IV(t, x)+b(X(t,  x)) (II.3) 

#X 0 with some initial conditions X(0, .) and a t -  ( ' ")" This equation is only formal 

and we try to give a meaning to a solution in the sense of distributions. Let 
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us consider a C~ f(t,  x) with compact support in [0, oe) x R, multiply 
both sides of (II.3) by f(t, x) and integrate over [0, T] x R where T is chosen 

so that f(T, x ) = ~ - t  (T, x ) = 0  for all xelR. Integrating by parts twice the left 

hand side one gets: 

82f 
(0, x) x(0, x) 

0 

-- ~f(0, x)~7-(0 ,  x) dx 
R 

I J  b 

T 

= ~ ~ [a(X(t, x)) IV(t, x)+b(X(t, x))]f(t, x) dtdx. (II.4) 
0 R 

At this point we remark that the left hand side makes sense if {X(0, x); x e l t }  
8X 

is a stochastic process with continuous sample paths and if ~-x (0, x) - which 

will not exist as a function of x - is interpreted as a random measure on R. 
Also, {W([0, t] x A); t>=0, A6N/(R)} is a martingale measure in the sense of 
Walsh (see Chap. II of [21]) and consequently, for each measurable process 
{Y(t, x); (t, x)~IR+ x R} such that Y(t, x) is ~-measurable  for each x~R and 

T 

~ E{IY(t, x)l 2} dx dt< + oe (II.5) 
0 R 

T 

for each T> 0, we can define the stochastic integral ~ ~ Y(t, x) d W(t, x). This 
0 R 

will be used to give a meaning to the right hand side of (II.4) provided one 
can check (II.5). We can now state the following: 

Definition II.1. Let {F(x); xelR} be an Zo-measurable stochastic process with 
continuous sample paths and let /~" ~z ( R ) ~  Lz(Q, ~ P )  be a o--finite random 
L2-measure with a continuous distribution function. Then a continuous process 
X =  {X(z); zeR+ x R} such that X(t, x) is ~-measurabte for all x e R  and each 
t > 0  is said to be a weak solution of (II.3) with initial condition (F, ~) if: 

[•2f. . c~2f. ] Of 
~ [~(t,x)--~x~x2(t,x ) jX ( t , x )dxd t+  ~ (O,x) F(x)dx-~f (O,x)#(dx)  

0 R G R 

T 

= ~ a(X(t ,x)) f ( t ,x)dW(t ,x)+~ ~b(X(t ,x)) f ( t ,x)dxdt  (II.6) 
[0, T] •  0 R 

P almost surely for each C ~ function f with compact support contained in 
[0, T) • R for some T>  0. 

The reader should be aware that the above definition may not make sense 
when the process Y(t, x)=a(X(t, x))f(t, x) does not satisfy the condition (II.5) 
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which guarantees the existence of the stochastic integral in the right hand side 
of (II.6) or when the function b(y) is not locally bounded. Nevertheless, in the 
applications to follow, the function a(y) and b(y) will be continuous so that 
the process Y(t, x) is continuous with compact support and the stochastic inte- 
gral can be defined via a standard localization argument. For example, one 
could use the fact that, for each integer N >  1, the process Y1BN with 

BN={(t ,x)~N. + x R ;  sup IY(s,y)I<N},  
( s , y ) ~ D ( t ,  x)  

satisfies (II.5). 

Proposition IL2. Let us assume that the coefficients a and b are locally Lipschitz, 
in the sense that for each C > 0 one can find a constant Kc > 0 such that: 

ta(x)--a(y)[ + Ib(x)-b(y)I  < Kc I x -  Yl (11.7) 

for all x and y in [ -  C, + C]. Then there exists at most one weak solution. 

Proof Let X, and X2 be two weak solutions. For each C~176 with compact 
support contained in (0, T) x R, say g, we set: 

T 

f ( t ,  x) = ~ 5 g(s, y) loc~m(t, x) dy ds. (II.8) 
0 11 

f so defined is Coo, has compact support contained in [0, T) x R and satisfies: 

, 0 2 f  
a2fst 2 (t, x ) - - ~ x  2 (t, x)=g( t ,  x). 

Consequently, using this function f in (II.6) with X1 and X 2 w e  obtain the 
relation 

T 

j ~ g(t, x) Y(t, x) dx  d t=  j j  [a(Xt(t,  x ) ) -a(X2( t ,  x))]f(t,  x) dW(t, x) 
0 R [0,T] • R 

T 

+ ~ ~ [b(X, (t, x ) ) -b(X2( t ,  x))]f(t,  x) dx dt (II.9) 
0 It 

for Y = X1 - X 2 .  For  each integer N the random set: 

Bu={(t  , x)EIR+ x R; sup ([Xl(S , y)[+lXz(s,  y)I)<N} 
( s , y ) e D ( t , x )  

is such that lm,(t, x) is ~t-measurable for all x ~ R  and each t__>0. We choose 
an approximate identity {j~; e > 0} in the plane. Y being continuous we have: 

T 

lira ~ ~ Y(s, y)jl/~(t--s, x - -y)  d y d s =  Y(t, x) 
~ OO 0 R 
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for each (t, x)e(0, oo)xR. Consequently, if r > 0 ,  C > 0  and (t, x)eD(T, C) are 
fixed, for each e > 0 we have: 

E{1B~,(t+e, x)[Y(t, x)[ 2} 

<liminfE{1B~(t+~,x) i~Y(s , y ) j l / . ( t - s , x -y )dyds  2} 

(by Fatou's lemma) 

<21iminfE{1., ,( t+~,x)[ ~ [a(Xl(s,y)) 
n ~ o o  [ O , T ] •  

- -a  (X2 (s, y))] f.  (s, y) d W(s, y)]2} 

+21iminfE{l~ , ( t+e ,  x) i ~ [b(Xl(s'y))-b(X2(s'y))]f"(s'y)dyds2} 

(by using (II.9) with g (.,.) = j  1/, (t - ' ,  x - ' ) )  

for n large enough and with f,  given now by the formula 

L(s ,  y) = 

< 

T 

~ jl/.(t--a, x-- ~) 1D(~,r y) da d~ 
0 R 

21iminfE{[ ~ [a(Xt(s,y)) 
n~c~  [ 0 , T ]  x R  

-a(Xz(s, y))] 1.~(s, y) f.(s, y) dW(s, y)[Z} 

+2 liminfE ~[b(Xt(s, y))-b(X2(s, y))] 1.~,(s, y)f.(s, y) dy ds 

(because of the local properties of the integrals) 
T 

<C(N, T, C)liminf S ~ E{1B~,(s, y)[Y(s, y)12}L(s, y)lZ dyds 
n ~  oo 0 R 

(because of the local Lipschitz assumption). 

(ii.lo) 

Note that lira f.(s, y) = lmt,x)(s, y) for any point (s, y) away from the boundary 
n ---~ co 

of D(t, x) which is of Lebesgue's measure zero. Moreover, [f.(s,y)[<=l and 
I Y(s, y)[ 2 1B~ (s, y)_< N for all integers n so that, by Lebesgue's dominated conver- 
gence theorem we have: 

T 

lim ~ ~ E{1B~(s, y) Y(s, y)2}f.(s, y)2 dyds 
n~oo 0 R 

= II E{l~,(s, y)]Y(s, yll 2} dyds. 
D (t, x) 
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Plugging this in (II.10) gives" 

and 

E { 1.N (t + ~, x) I r(t, x) l 2} __< c ( x ,  r, c)  II E { 1.N(s, y) I g(s, y) l 2} dy ds 
D(t,x) 

E{1R,c(t, x)IY(t, x)I2} <=C(N, T, C) ~ E{1B~c(s, y)IY(s, y)l 2} dyds  
D(t,x) 

by letting e\0 and using again Fatou's lemma. Using this estimate recursively 
gives E{1B~,(t, x)[Y(t, x)12}=0 and hence Y=0 almost surely on Bu, but since 
N was arbitrary this implies Y=0 a.s. [] 

Our existence results require the use of notions like martingale, weak mar- 
tingale and strong martingale with respect to a filtration obtained by a rotation 
of the natural filtration of R + x R. 

Let u=(2  -1/2, 2 -1/2) and v=(2 -1/2, -2-1/2).  If z=(t ,  x)s/R+ x R, we will 
call t and x its natural coordinates and if z = 2 u + / ~ v ,  we will call 2 and /~ 
its rotated coordinates. 

Now, for each z sR+  x R we define ~ as the a-field obtained by completing 
~ Ae~(N~+ xR), A~D(z)}  with the null sets of ~,  say ~,, and 
if z=(t ,  x )sR 2 is such that t < 0  we set f t ,= f ro .  The filtration {~-z; z~R2} so 
obtained satisfies the conditions (F1)-(F4) of Cairoli and Walsh (see [5]) if 
we use the rotated coordinates (2, #). 

Proposition I1.3. Let us assume that a and b are Lipschitz (in the sense that (II.7) 
holds with a constant K independent of C). Then, for each ~o-measurable continu- 
ous process {Xo(t, x); (t, x)~lR+ x R} satisfying: 

$5 E{IXo(s, y)]2} d s d y <  + oe (II.12) 
D(t,x) 

for every (t, x)~lR + x R, there exists a unique continuous solution, say {X(t, x); 
(t, x)61R+ x R}, of the following stochastic integral equation: 

X(t, x)=Xo(t, x)+ ~ [a(X(s, y)) dW(s, y)+b(X(s, y)) dsdy]. (II.13) 
O(t,x) 

Proof We use the Picard iterative scheme to construct a solution. For  each 
integer n > 1 we set: 

X,(t, x)=Xo(t, x)+ ~ a(X,_l(s, y)) dW(s, y)+b(X,_,(s, y)) dyds.  
D(t,x) 

Notice that, for each n > 1 the process {X.(z); z~R+ x R} is Yz-adapted. Besides, 
{~S a(X._~(s,y))dW(s,y);  zeR+ x R} is a two-parameter martingale with 

D(z) 
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respect to the rotated coordinates. We can use the two-parameter version of 
the maximal inequality and obtain: 

E{ sup I X n + l ( S ,  y ) _ _ X n ( S  ' y) 12} 
O<_s<~t 

x - - ( t - s )  <=y<=x +(t--s) 

< E {  sup I j',[ [a(X,(s', y'))-a(Xn_l(s', y'))] dW(s', y') 
(s,y)sD(t,x) D(s,y) 

+ j~ [b (X. (s', y ' ) ) -  b (X._I (s', y'))] d y' d st l 2 } 
O(s,y) 

<c(t, x)(E{I j j  [a(X,(s, y))-a(X,_l(s, y))] dW(s, y)l 2} 
D(t,x) 

+E{I jj  [b(X.(s,y))-b(X.-~(s,y))]dydsl2}) 
D(t,x) 

(for some constant c(t, x) > 0 depending only on the choice 

of (t, x) in R + • R) 

<=c(t,x) jj E{IXn(s , y ) - X . _ l ( s , y ) l  2}dyds  
l)(t,x) 

t 2n 
<c(t,x)~. ~ E{IXo(s,y)l 2}dyds. 

D(t,x) 

Consequently we have: 

~E{ sup IX.+l(s,y)--X.(s,y)12}<oo 
n = 0 (s,y)eD(t,x) 

for each (t, x)~R+ x R and this implies the local uniform convergence of 

Xo(t, x)+ ~ (x.+l(t, x)-X.(~, x)) 
n=0 

to a process X(t, x) which is continuous and satisfies (II.13). The proof of the 
uniqueness is standard and we omit it. []  

Remarks. 1. The maximal inequality implies that the above solution satisfies: 

E{ sup IX(s,y)[P}<+oo 
(s,y)eD(t,x) 

provided jj  IXo(s, y)lP dyds< +oo. 
D(t,x) 

2. In the particular case of: 

Xo (t, x)--  �89 (x + t) + F(x- t)] + ~ , ( [ x -  t, x + t]) 

with F and /~ as in Proposition II.4 below, the above uniqueness result is also 
a consequence of Proposition II.2 and the following result. 
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Proposition II.4. Let us assume that a and b are globally Lipschitz and that: 
(i) F={F(x);x~R} is a continuous ~o-measurable process for which 

E{IF(x)I 2} dx < + oo for each bounded interval I, 
I 

(ii) /z: ~r  ~-0, P) is an L2-measure with a continuous distribution 
function G satisfying S E {[ G (x)12} d x < + aD for each bounded interval I. 

i 

Then, the unique solution of the integral equation: 

X (t, x) = �89 IF (x + t) + F (x -- t)] + �89 p ([x -- t, x + t]) 

+�89 jj [a(X(s, y)) dW(s, y)+b(X(s, y)) dyds] (II.14) 
D(t ,  x )  

is a weak solution of (II.3) with initial condition (F, #) in the sense of Definition 
(u.2). 
Proof. Let us denote by X(t, x) the unique solution of (II.14) (recall Proposition 
(II.3) above). Notice that X(t, x) is ~,~t.x)-measurable, so ~t-measurable since 

~- w If f is any C~~ with compact support contained in [0, t) x R t, jc) ~ t �9 

we have: 

[ ~ V  r ezf  t 
; : L at=,, (, x)]( II 0 D ( t , x )  

[a(X(s, y)) dW(s, y)+b(X(s, y)) dy ds] dx dt 

�9 [a(X(s, y)) dW(s, y)+b(X(s, y))] dy ds 
T 

= 5 I f (  s, y)[a(X(s, y)) dW(s, y)+b(X(s, y)) dy ds] dy ds (II.15) 
0 II 

because of a standard version of Fubini's Theorem for stochastic integrals. More- 
over, 

[~-2 82f ] �89 o f ~ 82f (t, x ) - -aT( t ,  x) (F(x+t)+F(x--t)) dx at+ RI ~af (0, x) F(x) dx=O 

(II.16) 

by simple integration by parts�9 Finally we similarly have: 

r [02f  . . ~2f . ] 
�89 old [~i~ (t, x)--~jgx 2 (t, x) v([x--t, x + t ] )  dx d t - n  If(O' x) v(dx)=O (II.17) 

for each deterministic continuous a-finite measure v. Using (II.17) with v defined 
by v(A)=E{1B#(A)} for AeNz(R)  for each B s ~ -  we can put (II.17), (II.16) 
and (II.15) together with (II.14) to check (II.6). []  
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Remark. In the deterministic case the Cauchy data are the solution at time 
t=0 ,  say X(0,.) ,  and the partial derivative of the solution with respect to t 

0X 
at time t=0 ,  say -~- (0 , - ) .  Coming back to Definition II.1 one sees that F ( ' )  

0X 
has to be X(0, -) and that #( ' )  has to be J ~ -  (0, x) dx. The solution we obtained 

in Proposition II.4 above obviously satisfies F(x)= X (0, x) for all x e lR. Unfortu- 
nately, our solution is almost surely nondifferentiable and the interpretation 
of the second half of the initial condition as the primitive of the partial derivative 
with respect to t at t = 0  is less obvious. We will justify it by means of line 
integrals in the spirit of Wong and Zakai. See [24]. 

L i n e  I n t e g r a l s  a n d  t h e  M a r k o v  P r o p e r t y  

Let us assume for a while that X = {X(t, x); (t, x )eR+ x R} is any continuous 
stochastic process of order 2. For  each t > 0 and a < b in R we denote by L(t; a, b) 
the horizontal segment: 

L(t; a, b)={(s, y)elR+ x R ;  s=t ,  a< y<=b}. 

For  each subdivision ~ = {a = x o < x 1 < . . .  < x,  = b} of the interval [a, b] we set: 

z~ = (t, xi) i= O, 1 . . . . .  n 
and 

z;=( t - (x~+,-x~) /2 ,  (x~+x~+O/2) i=0 ,  1 . . . .  , n - 1 .  

t -  ( x i ~ x  i ) / 2  - -  - -  - -  

zo 

. . . .  V 
I 

-ff 
I 
I 
t 
I 
I 
I 

a x 1 

z i  zi+ 1 

I I 
I I 
J 1 
I I 
I I 
I I 

x i xi+ I 

Fig. 1 

Zn 

I 
I 
1 
I 
I 
I 

%1 

Consider the sums: 

n--1 

$1,,= ~ (X(zi)-X(z'O) and 
i = 0  

and define the line integrals 

a l X =  lira $1,, and 
L ( t ; a ,  b )  mesh(g) ~ 0 

n - 1  

s2.. = ~ (x(z,+ , ) -  X(z',)) 
i = 0  

8 2 X =  lira $2,. 
L (~;a, b) mesh(~) ~ 0 
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whenever the limits exist in probability. Recall that mesh(re)= max Ixt+~ 
i = 0  ..... n--1 

- -  xiJ. We also set: 

f 9 2 =  f ~ 1 X , - I  - f (~2 X 
L(t; a, b) L (t;a,b) L(t;a,b) 

whenever the two line integrals in the right hand side make sense. 

Examples. 1. If the sample paths of X are continuously differentiable functions 
of (t, x) one easily checks that: 

b 
f 01 x - ~ l  f y . [ 7 X ( t , x ) d x  

L(t;a,b) ~ a 

and consequently: 

f 
L(t;a,b) 

~ 2  b ~2 X =  Su. VX(t,x) dx 
a 

~OX 
c3X= ~ t  (t,x) dx 

L(t;a,b) a 

(recall the definitions of u and v given before Proposition II.3). 
2. If X is the continuous process given in Proposition II.4 by (II.14), then 

the line integrals exist and are given by: 

[. c~lX=�89189 b-t]) 
L(t;a,b) 

+�89 [.[. [a(X(s, y)) dW(s, y)+b(X(s, y)) dy ds] 
D'(t;a,b) 

and 
~2X=l[F(b+t)-F(a+t)]+�89 b+t ] )  

L(t;a,b) 

+1 Ea(X(s, y)) dW(s, y)+b(X(s, y)) dy ds] 
D" (t;a,b) 

where D'(t; a, b) and D"(t; a, b) are the parallelograms described in Fig. 2 below. 
t 

a-t b-t a 

~ D " ( h a ,  b) 

b a§ b§ 
Fig. 2 

~x 
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S 
L(t;a,b) 

Finally: 

0 X = �89 IF (b + t) - V (a + t ) -  F (b - t) + F ( a -  t)] 

+ �89  b+t])+#([a-t, b -  t])] 

+�89 ~ + ~ [a(X(s,y))dW(s,y)+b(X(s,y))dyds]. (II.lS) 
D'(t;a,b) D"(t;a,b) 

From now on the process X will be the one given in Proposition II.4. 

Remarks. 1. In the limiting case t~.0 formula (II.18) gives 

8X =/~([-a, b]) (II.19) 
L(O;a,b) 

and this is the interpretation of # as the primitive of OX which we were looking 
0t 

for (recall the remark following Proposition II.4). 
2. When F happens to be the distribution function of an U-measure, for 

each fixed t >  0, the mapping [a, b] ~ y a X defines an U-measure having 
L(t;a,b) 

the same properties as #. 
3. When F and # are identically zero, y 0X defines a martingale measure 

in the sense of Walsh. See [21]. L(t;a,b) 

In trying to understand the real meaning of the Cauchy data (F,/~) we were 
motivated by a possible Markov property of our process. In the case of stochastic 
ordinary differential equations the strong uniqueness result obtained in the Lip- 
schitz case essentially guarantees the Markov property of the process. In the 
case of stochastic partial differential equation, a uniquenes result for each given 

Cauchy data X ( 0 , . ) , - ~ - ( , -  should also imply the Markov property for 

the process X(t,.), ~ (t,-); t > 0  once interpreted as a process taking values 

in an appropriate infinite dimensional space. This is the purpose of the present 
discussion. 

If to>0  is fixed one has, for each (t, x)~[to, oo)x R 

x (t, x)  = �89 [ x  (to,  x -  (t - to)) + x (to,  (t - to))]  
+�89 ~ a x  

L ( t o ;  x - -  ( t  - t o ) ,  x + ( t  - -  t o ) )  

+1 ~ [a(X(s, y)) dW(s, y)+b(X(s, y)) dy ds] 
D(t,x) ca[to, oa) x 11 

and this shows that the continuous process Xto={X(t, x); (t, x)~[t o, oo)xR} 
is the unique weak solution (in the sense of Definition II.1) of the equation 
(II.3) on [to, oo) x R with initial condition (Ft~ #to) given by: 

F'o(x) = X (to, x), 

/~t~ b])= ~ OX. 
L(to;a,b) 
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Consequently, the process {(X(t,.), ~ OX); t>O} is Markovian in the state 
L(t, .,.) 

space product  of the space of continuous functions on R and of additive continu- 
ous functions of the bounded intervals of IR. 
Consequently: 

S ~X=�89 b+(t- to)-X(t  o, a+(t-to)) 
L(t;a,b) 

- X ( t o ,  b -  ( t -  to) + X ( t o ,  a -  ( t -  to) ] 

+�89 a x +  S ax3 
L ( t o ; a  + ( t  - r o ) , b  + ( t -  to))  L ( t o ; a -  (t  - t o ) , b  - ( t - -  to))  

+�89 J'[ [a(X(s, y)) dW(s, y)+b(X(s, y)) dy ds]. 
D'(to,t;a,b) D"(to,t;a,b) 

D'( t~ 

J fl I[ 
I ar I 

a- ( t - t  o ) 

a,b) 

Ib  t 
I 

b- ( t - t  o) a§ o) b, ( t - t  o ) 

Fig. 3 

III. Smoothness of the Solutions 

This section is devoted to the investigation of the stochastic process X = {X(t, x); 
(t, x)~R+ x R} which solves the integral equation: 

X(t, x) = �89 [_f(x + t) + f ( x -  t)] + �89 [g(x + t) - g(x - t)] 

+ ~ Ea(X(s, y)) dW(s, y)+b(X(s, y)) dy ds] (Ill.l) 
D(t,x) 

where f and g are given deterministic continuous functions on R, the coefficients 
a and b are deterministic Cl-functions with bounded derivatives on R and W 
is a mean zero Gaussian measure with orthogonal increments on R+ x R and 
intensity the Lebesgue measure (recall (ILl)). According to Proposition II.4, X 
is the unique weak solution of the nonlinear wave equation (II.3) with determinis- 

b 

tic initial condition (F, #) with F=f and/~([a, b ] )=  ~ g(x) dx. 
a 

We look for conditions on the coefficients a and b and on the Cauchy 
data ( f  g) at t=O which will insure that for positive time t>O, the random 



R a n d o m  non- l inea r  wave  equa t ions  483 

variable X(t, x) has a density and then, we will try to see when this density 
is smooth. As explained in the introduction we will use the Malliavin calculus 
for which we recalled the basic notations in the introduction. 

Proposition III.1. For each (t, x)e(O, oo) x R, the random variable X (t, x) belongs 
to the space ~p,1 for all p>2 and the Malliavin derivative DrX(z ) is uniquely 
determined by: 

D r X (z)= a (X (r))+ SS [a' ( x  (z')) D r X (z') d W(z') 
[r, z] 

+ b'(X (z')) Dr(X(z')) dz'] 

whenever reD(z). 

(III.2) 

Proof By the interval [r, z] we mean the set {z'; r < z ' < z }  where the order 
is the usual component by component  order for the rotated coordinates. The 
idea of the proof is to rotate the coordinate axes and then to use the polygonal 
approximation method of Ikeda and Watanabe [8] (see also [-22]). More precise- 
ly, we fix a point (T, 0) in (0, oo)x R and for each integer n >  1 we consider 
the grid 5P, made out of the points of the form 

i T 2 - " u + j T 2 - " v ,  

where i and j  are integers such that i+j>O. Then, for each zeD(T, 0) we set 

and 
f,(z) = sup {z'eSe,; z '<z} 

g,(z) =inf{z'eSP,; z '>z} 

where the order is the usual component  by component order for the rotated 
coordinates. Next we define the process X,  = {X,(z); zeD(T, 0)} by 

X,(z)= �89 (x + t) +f (x  - t)] + 21- [g(x + t ) -  g ( x -  t)] 

+ SS [a(X,(f,(z'))) dW(z') + b(X,(f,(z'))) dz'] 
D(z) 

(III.3) 

where z=(t ,  x). By convention, we will set X , (z ' )=0  whenever z '=  (t', x') is such 
that t '<  0. Note  that, because of the definition of f , ,  (III.3) is more of a recursive 
definition than an integral equation. Then, for each p > 2 one can easily prove 
that: 

l imE{ sup IX(z)-X,(z)lP}=O. (III.4) 
n~oo zeD(T, 0) 

Actually, {X,(z); n >  1} is an approximating sequence for X(z) in the sense of 
the ~v,l-norm for all p>2 .  In fact, if f , ( z )=z ,  and if the notations z, G z  and 
z q)z, are defined by Fig. 4, 
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we can write: 

A, , , /  
l / xx\ 

~ ZnOZ 

Zn 

Fig. 4 

X.(z) =X.(z | z.) + X.(z. | z) -  X.(z.) 

+ a(X.(z.)) W((z., z]) + b (X.(z.)) I(z., z] [ 

and consequently, we have 

Dr Xo(z)-~ Dr X,,(z Q) z,,) + Dr X,,(z,, Q) z ) -  Dr X,,(Z.) 

+ a' (X. (z.)) D r X n (Zn) W((Zn, z] )  + a ( X  n (Zn)) l(  . . . .  ~(r) 

+ b'(X. (z,)) D r X n (Zn) [(Zn, Z] I" 

This shows that the process {Dr(X.(z')); r<z'} is the unique solution of 
the following stochastic integral equation: 

Dr X. (z') = a (X. (f. (r))) + ~ [a'(X. (f. (z'))) D. X. (f. (z')) d W(z') 
[gn(r)/x z, z] 

+ b'(X.(f.(z'))) D. X.(f.(z')) dz']. 

Notice that D r X n ( z ' )=  0 unless z '> r. Now, we fix r and we consider the continu- 
ous process {Dr(z); z>r} solution of the stochastic integral Eq. (III.2) (where 
we assume that {X(z); z=>r} is known). Using as before a technical 1emma on 
the convergence of polygonal approximations for stochastic differential equa- 
tions on the plane (see [13]), we obtain: 

lim sup E{ sup ]DrX(Z)--DrX,,(z)IP}:O (III.5) 
n~oo reD(T,O) r<z<(T,0) 

for all p>2. Putting together (III.4) and (III.5) we obtain X(z)~ ~ @,1- [] 
p_>-2 

Let us assume that re[O, ~ )  x R is fixed and (assuming again that the process 
{X(z); ze[O, ~ ) x R }  is known)let  Y={Y(z, r); z>r} be the unique solution 
of the following linear stochastic integral equation: 

Y(z, r)--1 + ~ [a'(X(z')) Y(z', r)dW(z')+ b'(X(z')) Y(z', r)dz']. (III.6) 
[r, z] 
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One easily checks that for each T>  0 there exists a constant CT > 0 such that: 

E {I Y(z, r ) -  Y(z', r')I p} < CT(I r --r' I '/2 + ] z- -z '  I p/2) 

for z, z', r and r' in D(T, 0). Using Kolmogorov's criterion and varying T > 0  
one concludes that Y possesses a continuous version. In what follows, we will 
always use this continuous version. 

In particular, one can easily check that the process {a(X(r))Y(z, r); z>r}  
satisfies 

a(X(r)) + ~ [a'(X(z')) a(X(r)) Y(z', r) d W(z') 
[r, z] 

+ b(S(z')) a(X(r)) Y(z', r) dz'3 --- a(X(r)) Y(z, r) 

and because of the uniqueness of the solution of Eq. (1II.2) we can conclude 
that: 

Dr X(z)= a(X(r)) Y(z, r). (1II.7) 

This equation will play a crucial role in the sequel. We are now ready to state 
and prove our first important result on smoothness of X. 

Theorem III.2. Let us assume that t > 0  and x ~ R  are fixed and that one of the 
following two conditions holds: 

(i) a(y)4~O for some y in the closed interval with end points f ( x - t )  and 
f ( x  + t) 

(ii) a (y)=0 for all y in this interval and letting J be the maximal closed 
interval containing f ( x - t )  and f (x + t) on which a vanishes one of the 
following condition holds 

(iih J = {Yo} and a(f(~o) ) 4:0 for some ~o~(X-  t, x + t) 

(ii)2 J={Yo}, a ( f (~) )=0  for all ~ [ x - t ,  x + t ]  and either g'+(x-t)4=O, 
or g" (x + t) 4 = O, or g'; ( x -  t) 4: - b (Yo), or g" (x + t) 4: - b (Yo), or one 
of these derivatives does not exist 

(ii)3 J does not reduce to a singleton, a ( f  (~o) ) 4:0 for some 4o ~ ( x -  t, x + t) 
and b'>= 0 on J. 

Then the distribution of X (t, x) is absolutely continuous. 

Proof. X(z) with z=(t ,  x) is in ~2,1 because of Proposition IlI.1. Also, because 
Dr X (z) is continuous in r, we need only to show that 

S~ (Dr X(z)) 2 dr > 0 (III.S) 
D(z) 

almost surely (recall the introduction). Let us call G the subset of f2 where 
the left hand side of (III.8) vanishes and let us assume IP(G)>0 and let us 
try to contradict our assumptions. Using the continuity in r we can conclude 
that 

a (X (r)) Y(z, r) = D r X (z) = 0 (III.9) 
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for all r < z almost surely in G. Let us consider the line segments: 

Lo={Zo+2U ;0<2__<~}  and Ll={z l+2v;0__<2<~f2 t}  (III.10) 

where z o =(0, x - t )  and z I =(0, x+t). 
z 

zo ~o zl 
Fig. 5 

We know that Y(z, r) = 1 for r~L  o w L1, so that, there exists an open neighbor- 
hood of Lo wL1, say U, such that Y(z, r )+0  for all reU.  Consequently, (III.9) 
implies that a(X(r))=0 for all r in U. In particular a(X(r))=0 for all reLowL,  
and the function a must vanish on the closed interval with end points f ( x - t )  
and f ( x  + t). This contradicts assumption i). 

Let us now assume that J={Yo}. If a(f(~o))4=0 for some ~o~(X-t, x+t), 
then Zz=Zo+2-~/2(~o--(x-t))v is on Lo and by the above argument, this 
implies that 

I I  ( D r X ( Z 2 ) )  2 d r + 0  
D(z2) 

almost surely and, as a consequence the random variable X(z2) has a density. 
On the other hand {X(z2)=yo} = G  because J--{Yo} and this implies P{X(z2) 
= Yo} > 0 which is impossible. Consequently we contradicted ii)~. 

Now, for each 2 > 0  we set z0(2)=Zo+2U and zo(2, 2')=(0, x- t+] / /22)+2 'v  
for 0 < 2' < 2. (See Fig. 5). 

p = inf {2 > 0; a (X (z o (2, 2'))) 4 = 0 for some 2' e [0, 2] } 

is a stopping time for the filtration {M0,a; 2>0} where 

~ o , x  = r { W(B);  B ~ D (z o (2))} v ~ (III. 11) 

As we already noticed, {p > 0} ~ G, so that P {p > 0} > 0 and P {p > 0} = 1 by 
the zero-one law. Finally, a(X(zo(2, 2')))=0 for all 2 < p  and 2'El0, 2]. Note 
that J={Yo} and the continuity of the solution imply that X(zo(2, 2'))=yo for 
2 < p and 2' e [0, 2]. Consequently: 

0 = �89 [g(x - t + ~f22) -  g(x - t)] + 122 b(yo) 

" "X t" for 2<p .  This implies that g+(x--t)  and g+t -- ) exist, g+ (x - - t )=0  and g'+(x 
O t - - t ) = - b ( y o ) .  Similarly, one shows that ~,_(x+t) and g"(x+t) exist and that 
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g'_(x+ t) and g'2(x+ t)+ b(yo) are equal to zero, which contradicts our assump- 
tion (ii)2. 

Finally we assume that J does not reduce to a single point, that b' > 0  on 
J and that a(f(~o))+ 0 for some ~o e ( x - t ,  x + t). Consider the random time: 

z=sup{t '=>0; a(X(t', ~))~:0 for some ~ e [ x - ( t - t ' ) ,  x+( t - t ' ) ] } .  

Note that G ~  {z<t} so that P { 0 < z < t }  >0. Let us also consider on G the 
random points Zo = (z, x -  (t-'c)) and 51 = (~, x + ( t -  z)) and the random triangle 
A determined by the three points z, ~o, and 51. A is non degenerated and 
a(X(r)) = a'(X(r))= 0 for all reA because X(r )eJ  if teA. We claim that 

1A(r) ~'j" a'(X(z')) Y(z', r) dW(z')=O 
[ r ,z]  

on G for all r. Indeed, since this stochastic integral is almost surely continuous 
in r, it is enough to consider r's with rational coordinates. For such r's, we 
approximate the stochastic integral by an L2-convergent sequence of "Riemann 
sums" S,. Then: 

L 2 
laS ,  ' l a  ~ a'(X(z'))Y(z' ,r)dW(z')  

[r, zl 

as n ~ o e  as claimed. Consequently, equation (III.6) defining Y gives: 

Y(z, r )= 1 + f~ b'(X(z')) Y(z'r) dz'. 
[ r ,z]  

This implies that Y(z , r )> l  for all r~A on G and by continuity, Y(z, r )>0  
for r~A ~ for some zs(0, "c) where A ~ is the triangle determined by z, ( z -z ,  x - ( t  
- z - z ) )  and (z -z ,  x + ( t - z + z ) ) .  This implies that a(X(r))=0 for tEA ~ (recall 
that we are on G) which is in contradiction with the definition of r. [] 

Next we tackle the problem of the smoothness of the density whose existence 
we just established. We will need some additional regularity properties on the 
coefficients of our wave equation. We will assume that: 

a and b are C~176 with bounded derivatives of all orders larger than or 
equal to one 

and 

f and g are locally Holder continuous of order ~ for some c~ > O. 

We first prove 

Proposition IlI.3. For each fixed t > 0  and x~N,  the random variable X(t, x) 
belongs to the space ~oo. 

Proof It suffices to check that the sequence {X,(z); n > l }  defined by (III.3) 
in the proof of Proposition III.1 with z =  (t, x) converges to X(t, x) in the topolo- 
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gy of ~ .  But first, we need to compute the successive derivatives of X,(z'). 
A simple induction argument gives: 

N 

Dr1 ... Dr~ v X n(z) : 2 Dr ,  " -  Dr  j - ,  Dry+,  "" Or~ Xn(f , (r j ))  
j=l  

-k I I  [Dr, ... Dr~ a(X,(fn(z')) ) dW(z') 
[gn(r, v ... v rlv) A z,z] 

+ Drl ... Dr~ b(X,(f,(z'))) dz']. (III.12) 

Using the chain rule for the Malliavin derivatives we obtain 

Dr, . . .  Dr  N a(X,(z')) = ~  a(~)(X,(z')) D~a,)X~(z') ... Dr(l.,) Xn(z' ) 
and 

Dr, ... Dr1 v b(Xn(z'))=~ b~*)(X~(z')) Dr(i,)Xn(Z') ... Dr( l ,  A X n ( z '  ) 

where the sums are over all the partitions {I~ . . . . .  I~} of {1 . . . . .  N} and where, 
for each subset I ={ j~< . . .< j k }  of {1 . . . .  ,N} we used the notation D,tr) 
=Dr ... Drj; We now consider, for r~, ..., r N fixed in D(T, 0), the processes 
{Dr, ... DrN X(z); zeD(T, 0), z_->rl v ... V rN} defined inductively by the integral 
equations: 

N 

D r , . . .  DrN X ( z ) =  2 Dr1 " "  Dr~-, Dr j§ . . .  D r ~  X ( r j )  
j = l  

+ D., ... a(X(z'))  dW(z') 
[(r, v . . .  vrN) Az,z] 

+Dr, ... Dry, b(X(z')) dz' (111.13) 

where, as above: 

Dr, ... DrN a(X(z'))= ~ a~)(X(z')) D r ( / ,  ) X ( z ' )  . . .  Dr(L, ) X ( z ' )  

and 
D,~ ... DrN b (X (z')) = ~, b ~*) (X (z')) Dr(h) X (z') ... Dra~) X (z'). 

Up to a rotation by zc/4 of the coordinate axes, equation (III.12) is a particular 
case of the type of equations discussed in Lemma 3.1 of [13]. So it has a unique 
continuous solution. Moreover, we claim that: 

lim sup E{ sup [Dr, ... Dr~ X(z) -Dr ,  ... Dr~ X(z)[ p} = 0  
n~oo r, ..... r2veD(T, 0) zeD(T,0) 

z _->rl v .-, v rN 

for all p > 2. This can be shown by induction on N. Indeed, we already proved 
the result for N = I  in Proposition III.1. If we assume that it is true up to 
N - l ,  we observe that Dr, ... DrN a(X(z)) is equal to a'(X(z))DrN(X(z)) plus 
a sum of higher order derivatives of a, i.e., a(~)(X(z)) with v > 2  times products 
of quantities of the form Dra)X(z) with 41:(I)=N-1. Then, the convergence 
in (III.14) follows from the induction hypothesis and Lemma 3.2 of [13] applied 
to 2=( r  1 . . . .  , rN)eD(T, 0) N, r (2)=r  1 ... rN, Y(z, 2)=Dr1 ... Dr~ X(z) and V(% 2) 



Random non-linear wave equations 489 

being the (2N--1)-dimensional process whose components are X(z) and the 
D~(I) X(z) with I{1, ..., N}, 0 <  4e( I )<N (the processes e(2), ~,(2) and V,(z, 2) 
also appearing in this lemma are defined in an obvious way). [] 

Theorem III.4. Let us assume that t > 0  and x e R  are f ixed and that one of the 
following two conditions holds: 

(i) a(y) 4= 0 for some y in the closed interval with endpoints f ( x -  t) and f (x + t) 

(ii) f ( x -  t) = f ( x  + t) = Yo, a (Yo) = O, a (") (Yo) 4 = 0 for some n >->_ 1 and either 

ii) i a(f(~o))4=0 for some ~oe(X- t ,  x + t )  and the Holder exponent is equal 
to 1 or 

ii)2 a ( f (~ ) )=0  for all ~ e [ x - t ,  x + t ]  and either g is C 2 and g'(x-t)4=O or 
g ' (x+  t)4=0, or g is C a g ' ( x - t ) + b ( y o )  or g"(x +t)+b(yo)4=O. 

Then X (t, x) possesses an infinitely differentiable density. 

Proof. We prove that, for each p __> 2 there exists eo (P) > 0 such that 

e { IS (Dr X(z)) 2 dr__< e} _< e" (II1.15) 
D(z) 

for all e < eo (p). This implies that, for each p > 2 

E{I ~ (D, X(z)) 2 drl-P} < + oo 
D(z) 

which, together with Proposition III.3 gives the desired result according to the 
Malliavin calculus as recalled in the introduction. As before, we use the notation 
z = (t, x). The proof of (III.15) is rather long, so we divide it in several steps. 

1. Let us assume that a(f(x-t))4=O, let 0 < e < l  and let A~(z) be the strip 
of width e * contained in D(z) and limited by the line L o defined in (III.10) 
and the line segment: 

{Zo +(0, IA + 2u; o g 2_< 

(See Fig. 6) where o is chosen so that [1 +(1 i 2~)1-1 < o <  1. We have: 

P{ II (DrX(z)) 2 drGe}__<P{ Yl (DrX(zl) 2 dr~e}  
D(z) AS(z) 

--<P ~ j" a(X(zo(2))) 2 d 2 < 4 ~  1-* 

( V~t } 
+ P  ~ ~ a(X(zo(2))) 2 d 2 > 4 s  S~ (O~ X(z)) 2 d r < e  

e~ D(z) 

=i)+ii) .  
Now: 

i i )<P{  ~y a(X(ro)) 2 d r > 4 e ,  ~ (D~ X(z)) 2 d r<e}  
A6(z) A~(z) 

(III.16) 
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where we use the nota t ion  r o for the or thogonal  projection of r onto  L o. 

< P {  ~ [D~X(z)-a(X(ro))] 2 d r > e }  
A~(z) 

----e-qlE{I I~ [D*X(z)-a(X(ro))]2drl q} 
AS(z) 

for any real number  q __> 1, 

< e- q/a (]/~ t)q sup E {1 a(X(r)) Y(z, r ) -  a(X(ro))12q}. 
teAS(z) 

Fur thermore:  

R. Carmona and D. Nualar t  

l a(X(r)) Y(z0 r) - a (X (ro)) I 

~ [ a(X(r))l I Y(z, r) - I I + I a (X( r ) ) -  a(X(ro)) I 

--< I a(X(r))l I Y(z, r) - 11 + cst IX ( r ) -  x (ro) l �9 

Using the local Holder  cont inui ty  of f and g one can show that :  

E {I S( r )  - X(ro)12a} _-< cst(z) [r - ro I q" 2,~ =< c s t(z) d q(1 "2~) 

In much  the same way one shows that :  

E {I a(X(r))I =q I Y(z, r ) -  1 [zq} __< c s t(z) s Ca 
and this gives 

(ii) __< c s t(z) e qt~(1 +(1 ^ 2~))- a] (111.17) 

To estimate the first term we define" 

S = ~ t/x inf{2 > 0; l a (X (z 0 ()o)))- a (X (Zo)) I > c/2} 

where c=la(f(x-t))l=l=O. S is a stopping time with respect to the filtration 

{~o,z; O < 2 < ] / ~ t }  defined in (III.11). I f 2 < S  we have: 

I a ( x  (Zo (,t))) L _-> I a ( x  (Zo))l - I a ( s  (Zo (,~))) - a ( x  (Zo))l >_- c/2 

so, if S>e p with fl<min(a, 1 -a )  we have: 

V~ s c 2 

S a(X(zo(~))): d~_> ~ a(X(zo(~))) 2 d ~ > ~  ( ~ ' - e ' )  

and consequently:  

{S>aP} c~{ V~ra(X(zo(2)))2d2<=4el-"}=O 
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for e small enough, and in such a case: 

(i) -<_ P {S -< e ~} 

< P {  sup [a(X(zo(2)))-a(X(zo))l>c/2} 
O_<)~_<e/~ 

< (2/c) q E { sup [ a (X (Zo (Z))) - a (X (Zo)) [q} 
O_<;~_<e# 

< c s t e 2qe(* ~' 2=) (III.18) 

(III.16), (III.17) and (III.18) give (III.15). The proof of (III.15) in the case a(f(x 
+ t))~= 0 is similar and we omit it. 

2. We now assume that a(f(x-t))=a(f(x+t))=O but a(y)=#0 for some y 
in the closed interval with endpoints f (x-t)  and f(x+t). We used the same 
notations as before for zo, Zl, zo(2) and we add z , (2 )=z  I +2v .  Moreover:  

So = ~f2 t A inf {2 > 0; [a (X (Zo ()o)))I > [ a(y)l/2} 
and 

To = ]f2 t A inf {2 > So; l a (X (Zo (2)))- a (X (Zo (So))) I > l a (y)L/4} 

are stopping times for the filtration {~o,z; 2>0}  defined in (III.11) while $1 
and T1 defined by replacing Zo(2) by z1(2) are stopping times for the filtration 
{~ 1, a; 2 > 0} obtained by replacing z o (2) by z 1 (2) in (III. 11). 

The notation A~(z) still have the same meaning as before and we introduce 
the strip A](z) of width ~ in the triangle D(z-dv) limited by the line L 1 
and the segment 

/Jl ={(0, x +  t - ~ e ~ ) + 2 v ;  0 <)~<~/2 t - 2 d }  

(see Fig. 6 below). 
z 

L O ~  LI 

P 

Zo ~7 
F i g .  6 

With these notations we have: 

P{ ~ (DrX(z))2 dr<=e} <-P{ ~ (D,X(z))2 dr<=~} 
D (z) A~)(z) u A'~ (z) 

< P {  ~ (D,X(z))2dr<=e;O<=So<To<V2t} 
Ag(z) 

+ P {  ~I (DrX(Z)) 2 dr~g;O<=St <Tl <~ 2t} 
Ag(z) 

= i) + ii), 
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because our assumption implies that t-/= {0 < So < To < ~ t} w {0 < $1 < T1 

<V2t} .  Now:  

( i )<P  ~ a(X(zo(2)))2dZ<4e 1-~,O<So<To< 
g~ 

{? ) + P  a(X(zo(2))) 2 d2>4et-~, If (DrX(z)) z dr<e 
e Ag(z) 

= i i i )  + iv) .  

iv) can be controlled in the same way as in part 1 of the proof. Moreover 
we notice that l a(X(zo (2)))1 is bounded below by la(y)I/4 in the interval (So, To) 
and consequently 

a(X(zo(2))) 2 dZ_-<4e 1-~, 0 < S o <  To < V 2 t ,  T o - S o > e "  = r  
2/3 

if fl < rain (~, 1 -  a) and e is small enough. In this case we have: 

iii)<P{O<So<To<~/2t, To--So__<e "} 

< P {  sup la(X(zo(2)))-a(X(zo(So)))[>la(y)l/4} 
So<A-<So+e~ 

<(4/la(y)l)~E{ sup la(X(zo(A)))-a(X(zo(So)))l o} 
So<A<So+e#  

N C S t ( Z )  e 2 " q ( t  A 2~t) 

Since the quantity ii) can be controlled similarly (essentially by replacing all 
the subscripts 0's by l's) we obtain (III.15) again. 

For  the proof  of (ii), namely for the steps 3. and 4. below, one can take 
0-~  2. 

3. We now assume that yo=f(x-t)=f(x-t) ,  a(yo)=0 and let n > l  the 
smallest integer such that a(")(yo)~ O. In this case, we can find C > 0 and 5 > 0 
such that la(y)l>C ]y -yo l "  for [y-yor<5. 

We also assume that a(f(~o))4=0 for some ~oe(X-t, x+t) and we let z3 
be the orthogonal projection of (0, ~0) on the line L~ and we let B ~ be the 
strip of width e 2/a contained in the triangle D(z3) and limited by the lines L1 
and/~1. 

z ; ( t , x ;  

z 3 
B e 

i ,  

x-t  ~0 x+t 
Fig. 7 
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Then: 
P{ ~ (D~ X(z)) 2 dr__<e} N p { ~  (D~ X(z)) 2 d r ~ e )  

D ( z )  B ~ 

<=P{~)ia(X(zl(2)))2d2<=4el/3} 

+P{)ia(X(zt(,~)))2d2>4el/3,,,(DrX(z))2dr<e}=i)+ii) 
e B e 

where 2o ~ [0, [ /2 t] is such that z3 = zl (20). ii) can be controlled as before. 
We define the Nl.~-stopping times: 

$1 =inf{2 > 0; [X(z 1(2))- Yo I > e'/2} 
and 

$2 =inf{2 > $1 ; I X(Zl (2 ) ) -X(z l  (S0) I> e'/4}. 

Let f l>0  and 7 > 0  be such that 2 7 < f i <  2 and f l+2nT<�89  If e > 0  is small 
enough, 2 < $2 implies I X (za (2)) - Yo I < 6 so that 

la(X (Zl (2)))[ >= C IX (zx (;O)- Yol"> C 2 -  2" e "' 

if 2 > S~. Consequently: 

"~0 82 

a(X(zl(2)))2 d2>= ~ a(X(zl(2)))2 d2>=cste 2"~+~ 
g 2/3 e 2/3 V S l  

if $ 2 -  $1 > e ~, $2 < 20 and e is small enough. Therefore, 

4 } a(X(Zl(J~))) 2 d2<4e ~/3, $2<2o A{S2-S, > e  ~} =~b 
k ~ 2 / 3  

and hence 

} i )<P{S2>2o}  + P  ~ a(X(Zl(J~))) 2 d2<4e 1/3, $2 <2o 
k e 2 / 3  

_-<P(S2_->2o}+P{S2-SI<e ~, $2<2o}. 

The second term of the above expression can be bounded as follows 

P{S 2 --S 1 =_8 p, S 2 <20} 

< P {  sup IX(Zl(2))-X(Zl(Sl))l>~'/4} 
SI <=2<SI+eB 

< 4 q e - O ' E {  sup [X(zl(2))--X(z,(sl)) q} 
sl < ,~ <=sl +e$ 

~ c s t  ~, - q T + q f l / 2 ,  

(III.19) 
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which gives the desired estimate. 
The functions a and f are continuous, so a(f(~))+O for any ~ in some 

interval 1'r ~1], ~o<r <x+t .  Let z4 be the orthogonal projection of (0, ~l) 
on the line L~, and set z4=zl(21) for some 2~ e(0, 2o). 

In order to estimate the first term of (III.19) we write 

)-o 

P{$2__>2o) __<P { ~  IX(zl (2))-X(Zl  (2i))12 d2<4(2o--21)  e2Y}. 

Consider the process defined by 

Y (2) = X (z a (4)) - X (z i (4 i)) 

= l { f ( ~  + 4 ] / 2 ) - f ( ~ 0  + g ( ~ l ) -  g(~l + 2 ~ ) }  

+ I [a(X(z')) d W(z')+ b(X(z')) az'], 
D ( z l  (4)) -- D ( z l  ( h i ) )  

for 21 < 2 < 4 0 .  
Y(2) is a continuous semimartingale with respect to the filtration { ~ , z ;  

21 < 2 < 2o}. Its quadratic variation is given by: 

( Y ) ( 2 ) =  S a(X(z')) 2 dz'. 
D ( z i ( 2 ) )  - D ( z l ( 2 1 ) )  

Fix e > 0 and define the Ml,z-stopping time 

T - i n f { 2 > 2 1 :  sup IX(z')l>e}. 
z ' e D ( z l  (2)) -- D ( z l  (3.1)) 

We have 
P { T < 2 o } < P {  sup IX(z')[>e} 

z ' e D ( z l ( 2 o ) )  - D ( z l ( 2 1 ) )  

< e - q E {  sup IX(z')l}<_cst ~q. 
z ' e D ( z l  (20))  - O ( z  I (21))  

Consequently it suffices to estimate the following probability 

fi ~ / P ] Y()~)I 2 d2=<4(2o-21) e 2~, T > 2  o 

< P IY(2)lZd2<4(2o-20e2L (Y>(2o A T ) > d  

+ P { ( Y )  (20) < ~'}. (III.20) 

Assume that 2 q < 7  and ~<�88 Then the first summand of (III.20) can 
be bounded using a slight modification of Lemma 4.2 of 1-13] (this lemma is 
actually a version of Theorem 8.26 of Stroock 1,20] for continuous semimar- 
tingales). In fact, let M be a bound for both the derivative of the bounded 
variation part of Y(2) and the square root of derivative of the quadratic variation 
(Y)(2),  on the interval 1,21, 2o A T]. The definition of T and the Lipschitz 
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hypothesis on f and g imply that M is less or equal than a multiple of e-~. 
Consequently we can apply Lemma 4.2 of [13] with a constant M depending 
on e and obtain the desired estimate for the first term of (III.20). 

The second term of (III.20) can be estimated by the arguments used in step 1 
because a(f(r for any ~e [r 41]. This gives the desired estimate. 

4. We assume that yo=f (x - t )= f (x+t ) ,  a(yo)=0, and a(")(yo)4=O as before. 

P{ ~ (DrX(Z)) 2 dr<e} 
D(z) 

G e  ~ (D, X(z)) 2 dr<e,  ~ a(X(zo(2))) 2 d a > 4 e  1/3 
r A g ( z )  ~z/3 

+ P ~  ~ a(X(zo(2))) e d a > 4 d / 3 ~  + P  I a(X(zo(2))) zda>8el/3 
v 0 - I  0 

= i) + ii) + iii). 

The quantity (i) is estimated in the same way as in part 1 of the proof while 
ii) is controlled by Chebichev's inequality. Now: 

s = v 2 t A i n f { 2 > O ;  sup [X(zo(2, 2'))-yol>a} 
o < a , < a  

is an -~o, a-stopping time and 

S 

iii) <= P f !  a(X (zo (2)))2 d )~ <= 8 et/3 } 

< P  a(X(zo(2) ) )  2 da<8e 1/3, S>e ~ + P { S < e  y} (III.21) 

for some number ? > 0 to be chosen later. The second term is easily estimated: 

P{S<e~}<P{ sup IX(zo(La))-yol~} 
0 < 2 ~ < ~  
0 < , V < a  

_-<6-qE{ sup [X(zo(2, 2'))-Yolq}<=cste rq/2. 
0 < 2<e'e 
o < a ' < . ~  

The first term in (III.21) is bounded from above by: 

} P ~ ]X(zo(2))--yol2"da~8C-2e 1/3, S>e ~ 
~ . 0  

(because I X(zo (2))- Yo[ < 6) 

<P{i lX(zo(2)) -yoIada<c'e~,S>e'}  
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provided we set c '=  23/"C-2/. (]//~ t)l-1/n and I/= 1/(3 n). 

{i <-_P IX(zo(/1))-yol2 d/1~c' ~ ", 

g (x- t+]/2/1)+ 2 5 b(X(zo(2, 2'))) d2' d 2 > e  e, S > e '  
0 0 

(ni.22) 

Our assumptions imply that f ( ~ ) =  Y0 for all ~ in I x - t ,  x + t] and consequently 
that: 

X (Zo (/1)) = Yo + �89 Eg (x - t + ~ / 1 ) -  g (x - t)] 

= 5I [a(X(z'))dW(z')+b(X(z'))dz']. 
D(zo(2)) 

The first term in (III.22) can be estimated using Lemma 4.1 of [11] provided 
1 

t />8fl  which is true if f i > 0  is chosen small enough. In fact, 1 ~  ) g'(x- t+V/22)  
g -  

). 

+ ~ b(X(z0(/1 ,/1'))) d2' is a semimartingale in / l  satisfying the desired properties. 
o 

We use here our assumption g eC z but note that g' with bounded variation 
is in fact all we need. The second term in (III.22) is always bounded above 
by: 

,v 1 , * ]2 

A 

but if c " > 0  is chosen so that Ig'(x-t+l/2/1)l>[/2c" for all /leE0, e~], then 
if g > 0 is small enough and if fl > y, the first probability is zero and we estimate 
the second one as usual. 

The proof for the case g'(x + t) q= 0 is similar. 
Finally we assume that g is three times continuously differentiable or at 

least that g" exists and is of bounded variation, that g ' ( x - t ) = 0  and that g"(x 
-t)+b(yo)+O. In order to conclude, we need only to control the second term 
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in (III.22) since the other terms can be estimated in the same way. Using the 
expression: 

X(zo(;O- ~ v) = yo + 1 [g(~_ t + l / 2 t ) - g ( ~ -  t + 1 ~ ) ]  
+ fl [a(X(z')dW(z')+b(X(z'))dz'] 

D(zo(,l) - uv) 

and applying Ito's formula one obtains: 

2 

1 g'(x--t+r I b(X(zo(2)-1Jv))dP 
r o 

ss 
0 D(zo()0- #v) 

�9 a (x (Zo (,v + u ) -  (u' + ~) v)) d W(Z, u')] d 

)~ ( 2 - / 1 ) . '  

+o ~ ol o Ib'(x(z~ 

�9 b(X(zo(2'+#)-(/~'+#)v)) d/f d2') d#+2b(yo) 

+ ~ g " ( x -  t +1/22') d2 '+ b'(X(zo(# + 2) -~v) )  
0 0 

�9 g'(x--t+]/22') d2' d# 
),(2L-# 3.' 

§189 ~ ~b"(X(zo(2'+#)-#v))a(X(zo(2'+#) 
0 0 0 

--(#' +#)v)) 2 d/s d2') d#. 

Consequently, the second term in (III.22) is bounded above by the sum of: 

0 

<=~' ! o~ b'(X(zo(2)-#v)) b(X(zo(2)-(#+#')v)) d/~' d# 

3. ~ - #  

+�89 ~ ~ b"(X(zo(2)-#v)) a(X(zo(2)-(#+#')v)) 2 d#'d/~ 
0 0 

1 
+ ~ ! b' (X (z o (2) - # v)) g' (x - t + [/~ (2 - /0)  d # + b (Yo) 

+g"(x--t+]~2)]d)t>e~,S>e '} 
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which can be bounded from above by using Lemma 4.1 of [11] provided fl > 8 ~, 
and 

P ! b ' (X(zo(2)-#v))  b (Z(zo(2 ) - (#+# ' )v ) )  d#' d# 

A ,~-/z 

+�89 1 f b"(X(zo(2)-#v))  a(X(zo(2)-(#+#')v)) z d#' d# 
0 0 

2 

1 oj. b,(X(zo(2)_#v) ) g'(x-t+l/2(Z-#)) d#+b(yo) 

which can be controlled using the same technique as before, as long as 7 < c~ 
and b (Yo) + g" ( x -  t) :t= 0. [] 

IV. The Case of the Half Line 

Throughout this section, W -  {W(A); A s N  s (R+ x R+)} is a mean zero Gaussian 
process with covariance E{W(A)W(B)} =IA r iB I, on a complete probability 
space (#, .~, P). For each z=(t ,  x )eR  + x R+ we set 

E(z)={(s, y)ER+ x R + ;  O<s<t, Ix-(t-s)l<=y<_<_x+(t-s)}. (IV.l) 

Notice that E(z)=D(z) when x>t.  In the case x<t,  E(z) is the shaded region 
in the Fig. 8 below: 

t 

B(z)-z____ 

For x < t we also set: 

z=(t,x) 

Fig. 8 

c(t, x)= {(s, y)~N+ xR+; s+y<=t-x} 

and B(t, x)=  C(t, x ) u  E(t, x). Proposition II.3 has the following analogue in the 
present situation: 
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Proposition IV.1. Let us assume that a and b are Lipschitz functions on R and 
that Xo={Xo(t ,  x); (t, x)~lR+ x R+} is a continuous process independent of W 
satisfying 

t x 

S E{IXo(s, y)l 2} dy ds< + co 
0 0 

for all (t, x) in R+ x R+. Then, there exists a unique continuous solution, say 
X =  {X (t, x); (t, x )eR+ x R+}, of the following stochastic integral equation: 

X(t, x)=Xo(t, x)+ ~ [a(X(s, y)) dW(s, y)+b(X(s, y)) ds dy]. (IV.2) 
E(t,x) 

Proof We define inductively the sequence {X,; n>0} of processes by: 

X,(t, x)=Xo(t , x)+ ~ [a(X,_,(s, y)) dW(s, y)+b(X,_l(S , y)) ds dy3. 
E(t,x) 

For any fixed triangle T= {(t, x)~IR+ x R +; x + t < K} we have: 

E{ sup IX,+,(t, x ) - X , ( t ,  x)l 2} 
(t,x)e T 

< 2 E {  sup I ~ [a(X,(s, y))-a(X,_1(s, y))] dW(s, y)12} 
( t ,x)eT E(t,x) 

+ 2 E {  sup I ~S [b(X,(s, y))-b(X,_,(s ,  y))] ds dy[2}. 
( t ,x)~T E(t,x) 

If x > t, the stochastic integral is a two-parameter martingale with respect to 
the rotated coordinates. If x < t, this stochastic integral is written as the stochastic 
integral over B(t, x) which is a two-parameter martingale for the rotated coordi- 
nates, minus the stochastic integral over C(t, x) which is a martingale with 
respect to the parameter y + s. In any case one can apply maximal martingale 
inequalities and obtain: 

Therefore, 

~cst S~ E{IX,(t,  x)--X,_ ~(t, x)J 2} dt dx 
T 

K 2n 

<=cst-~. S~E{IXo(t, x)l z} dt dx. 
T 

E{ sup IX.+l(t, x)-X.(t, x)[2} < +oo 
n>O ( t , x )eT  

which implies the uniform convergence of the series 

Xo(t, x)+ ~ [x.+l(t, x)-X.(t, x)] 
n > 0  

over T. As usual, one shows that the resulting process is the unique continuous 
solution of (IV.2). []  
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As in the case of the whole real line (recall Proposition II.4), the solution 
process constructed above can be shown to be a weak solution of the nonlinear 
random wave Eq. (II.3) on the interval I = [0, oo). In fact, if: 

(i) F = { F ( x ) ;  x > 0 }  is a continuous stochastic process satisfying F ( 0 ) = 0  
x 

and S E{F(Y) 2} dy< + oo for all x > 0 ,  and 
0 

(ii) #: NI(R + ) ~  L 2 (s Y,P) is an L Z-measure with a continuous distribution 
x 

function G satisfying S E {G(y) 2} dy < + oo for all x > 0 which are both indepen- 
0 

dent of W, then, the unique solution of 

X(t, x)=Xo(t, x)+�89 ~ [a(X(s, y)) dW(s, y)+b(X(s, y)) ds dy] 
E(t,x) 

with 

, <__ _ _ _ __ _ _ [ � 8 9  i f x > t  (IV.3) 
Xo(t, 

x ) = ( � 8 9  x + t ] )  if x < t  

is a weak solution of the random wave equation (II.3) with initial condition 
(F, #) in the sense that: equation (II.6) with R+ instead of R is satisfied for 
all C OO function f :  R+ x R+ ~ R with compact support in [0, oo)x (0, oo). 

The proof  is identical to the one of the case of the whole real line and 
we omit it. 

As before, we address the problem of the absolute continuity of the solution 
at a fixed time t > 0 and location x e(0, oo), and of the smoothness of the possible 
density. 

We will first assume that 

the functions a and b are C a with bounded derivatives 
and that 

, <___ _ __ __ _ _ _  _ _ _ _ [ � 8 9 1 8 9  if t<_<_x (IV.4) 
Xo(t, 

x ) = ( � 8 9 1 8 9  if t > x  

where f and g are continuous functions on I = [0, oo) such that f (O) = O. 
Notice that: 

x(t, 0)=Xo(t, O)=Ot=>O 
and that 

X(0, x)=X0(0,  x)=f(x)x>O. 

We fix z = (t, x) with t > 0 and x > 0. As in the case of the whole real line, 
the random variable X(z) belongs to ~p,~ for all p > 2  and the Malliavin deriva- 
tive Dr X(z) satisfies: 

D, X(z )=  a(X(r)) lz(~)(r) 

q- Iff [a'(X(z')) D r X(z') dW(z') + bt(X(z')) D r X(z') dz"l. (IV.5) 
E ( z )  

The following remarks are in order: 
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a) When t < x, E(z)= D (z) and the Malliavin derivative Dr X (z) has the same 
properties as in the case of the whole real line. 

b) When x < t, for reE(z) we write Dr X(z)= a(X(r)) Y(z, r) where the process 
Y =  {Y(z, r); teE(z)} satisfies: 

Y(z, r )= 1 + ~ a'(X(z')) Y(z', r) d W ( z ' ) + b ' ( X ( z ' ) )  Y(z', r) dz'. 
E(z) 

(IV.6) 

As before, one can use Kolmogorov's criterion to show that the process Y 
possesses a version which is continuous in r. 

~0 

z =(t,x) 

z 2 z I :(O,x+t) 
Fig. 9. Case x < t 

Notice also that DrX(z'); is zero unless r < z '  so that we can replace E(z) by 
the rectangle I-r, z] in the double integrals appearing in (IV.5) and (IV.6). Let 
L1 be the line segment with endpoints z o = ( t - x ,  0) and z and L 2 the line segment 
between z and zl=(0,  x + t ) .  Because of (IV.6) we have Y(z, r ) = l  a.s. for any 
r in L 1 u L z ,  and in this case we must have Dr X ( z ) = a ( X  (r)). Moreover, by 
continuity of Y, for P-almost every coef2 there exists an open neighborhood 
of L1 • Lz,  say V(e)), such that Y(z, r )> 0 for re V(co)E(z). 

c) If reB(z), i.e., if r=(s,  y) with y + s < t - x ,  then 

Dr x (z) ~- ~ [ . '  ( x  (z')) Dr x (z') d W(z') + b' (X (z')) D, X (z') d z'l 
/~(z) 

because of (IV.5). In particular, if r=(s,  0) with O<__s<t-x,  or r=(0 ,2)  with 
0 < y < t -  x, an induction argument shows that D r X(z) = 0. Consequently, the 
process {D, X(z); r__<z} may be discontinuous below the line segment L 3 joining 
zo and z2 = (0, t - x ) .  

The analogue of Theorem III.2 in the present situation is: 

Theorem IV.2. Let  us assume that t>  x > 0 and that one of  the following rwo 
conditions hold: 
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(i) a(y) ~ 0 for some y in the closed interval with endpoints 0 and f (x + t) 

(ii) a (y)=0  for all y between 0 and f ( x  +t) and letting J be the maximal 
closed interval containing 0 and f (x + t) on which a vanishes, one of the 
following conditions holds: 
(ii) l J = {0} and a ( f  (4)) 4= 0 for some ~ ~ (0, x + t). 
(ii)2 J={0}  and a( f (~) )=0  for all ~ [ 0 ,  x + t ]  and either g ; ( x + t ) 4 : 0  

or g"_(x+t)+b(O)4=O or g '+( t -x )+2( t -x )b(O)4=O or g ' ; ( t - x )  
+ b (0)4= 0 or one of these derivatives does not exist. 

(ii)3 J does not reduce to a singleton, a (f(~)) 4 = 0 for some ~ E I t -  x, x + t] 
and b'>O on J. 

Then, the distribution of  X (t, x) is absolutely continuous. 

Proof It suffices to show that 

IS (Dz X(z)) z dr > 0 (IV.7) 
B(z) 

almost surely. As before we denote by G the subset of O where the left hand 
side of (IV.7) vanishes, we assume P(G)>0  and we try to find a contradiction 
with our assumptions. 

First we notice that we always have X(z 0 = f ( x  + t) and X(zo)= 0. Moreover, 
since O r X ( z ) = a ( X ( r ) ) Y ( z ,  r), we must have a(X(r))=0 on L i ~ L  2 on G and 
P(G)>0  implies that a must vanish on the closed interval with endpoints 0 
and f ( x  + t) which contradicts i). 

Let us now assume J={0} ;  then if a(f(~))4=O for some ~[-0, x+t] ,  then 
there exists a point z 3 on L2 such that X(z3) has a density. But this would 
contradict P(G) > 0 because {X(z3) = 0} ~ G. 

Now, if J={0}  and a( f (~) )=0  for all ~e[0, x + t ] ,  the argument used in 
Theorem III.2 shows that P (G)>0  implies that g ' _ (x+ t )=0  and g'L(x+t) 
+b(0)=0.  For  any 2 > 0  we set zo(2)=Zo+2U and 

S = inf{2 > 0; a (X (Zo (2))) 4= 0}. 

S is a stopping time with respect to the filtration {~z; 2 > 0} defined by: 

~ = a { W(A); A c B (Zo (2))} v .#'. 

S > 0  on G so that P { S > 0 } > 0 ;  and P { S > 0 } = I  by the zero-one law. We 
have" 

x (Zo = 1 [ g  (t - x + - g (t - x ) ]  

+ SS [a(X(z ' ) )dW(z ' )+b(X(z ' ) )dz ' ] .  (IV.g) 
E(zo(.~)) 

By definition of S we have a(X(zo(2)))=0 for 2<S,  and hence X(zo(2))=0 for 
2 < S because J = {0}. Consequently, from (IV.8) one gets: 

SS a ( X ( z ' ) )  d z ' = 0  
E(zo(2)) 

and 

� 89  ~ b(X(z ' ))dz '=O. 
E(zo(,~)) 
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The first equality implies that a(X(z'))=0 for all z'sE(z0(2)) and X(z ' )=0 for 
all z'e E(zo (2)) follows by continuity. Using this fact in the second equality gives: 

�89 [g (t - x + ~/2 2) - g (t - x)] + b (0) [-]/2,~ (t - x) + �89 22] = 0 

which implies that g'+(t-x)+2b(O)(t-x)=O and g'+(t-x)+b(O)=O which in 
turns contradicts assumption ii)2. 

Finally let us assume that J is not a singleton and that b' >=0 on J. Let 
us set: 

$1 = sup {2~ [0, x + t] ; a(X(r)) :# 0 for some r~I(2)} 

with I (2) = B (z) c~ {2 u + # u; # 6 R}. Obviously G c {$1 < (x + t)/~f2}. Moreover, 

P {G c~ {$1 > ( t-x)/V2}} > 0 leads to a contradiction in the same way as in the 

proof of Theorem III.2. Consequently S 1 <_<_(t-x)/~ on G which implies that 
a ( f (~) )=0  for all ~e[t-x,  x+t] and this contradicts (ii)3. [] 

The following example shows that condition (ii)3 in Theorem IV.2 cannot 
be weakened into assuming that a(f(~)):~O for some ~ [ 0 ,  x+t]. 
Example. The present example has been inspired by the results of [121. 

Let us assume that g and b vanish identically and that a is a C~ 
such that 0_<a_<l, a (x)=0  for x_<c~ and a ( x ) = l  for x_>2c~ for some c~>0. 
Furthermore, we assume that f (y) = 2 ~ (1 - ] y -  ~o 1/6)+ and z = (t, x) with x < t 
and O<~o-b<~o<~o+6<t-x. For each e>0,  let X~={X~(z); z~R+ xR+} 
be the continuous solution of the stochastic integral equation: 

E(z') 

where X o is defined by (IV.4) as before. We claim that: 

P {X~(z') __< ~ for all z'sE(z)} > 0 (IV.9) 

for e small enough. (IV.9) implies that P{X~(z)=0} > 0  and that the distribution 
of X,(z) has an atom at 0, so it cannot be absolutely continuous even though 
a(f(~o)) = a(2a)= 1. 

In order to show (IV.9) we consider the process Y~ which solves: 

Y~(z')=Xo(z')+ ~ r ~ a(Y~(z"))dz" (IV.10) 
E(z) E(z') 

and the probability measure P~ defined by its restriction to a { W(A); A c [0, t'] 
x [0, x']} by 

dP~=exp [ 1W([O' t'] x [O' 

for each (t', x')c(0, oo)x (0, oo). Then, the multiparameter analog of Girsanov 
theorem tells us that the process W~ defined by W~(A)=W(A)--IA[/e for 
AE~r x R+) has the same distribution for P, as W for P and that the Y~ 
has for P~ the same distribution as X~ for P. Using these facts, one can easily 
check that: 

l imE{ sup I Y~(z')- F(z') 12} = 0 (IV.11) 
e-~O z '~[0, t ' lx[0 ,x  '] 
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where F is the solution of the deterministic equation: 

F(z') =Xo(z'  ) -  ~ a(F(z")) dz". 
E(z') 

Notice that Xo(z' ) = 0 if z'eE(z) so that 

F (z ' )= - -  ~ a(F(z"))" "<  az _ 0  
E(z') 

and 
P{ sup Y~(z')__<a}>P{ sup IY~(z')-F(z')l=<a} 

z'~E(z) z'~E(z) 

> P {  sup I Y~(z')-f(z')[ < ~} 
z '~[0, t ]  • [0 ,x  + t] 

which converges to i as e ~ 0 because of (IV.11). Consequently 

P{ sup Y~(z')<a}>0 
z'~E(z) 

for e > 0  small enough. We can replace the measure P by P~ and this gives 
(IV.9). [] 

The smoothness of the density exhibited in Theorem IV.2 can be investigated 
along the lines of the proof of Theorem IliA. The reader will easily convinced 
himself that the following result holds. 

Theorem IV.3. Let us assume that a and b are C ~ functions with bounded deriva- 
tives of all orders larger than or equal to one and that f and g are locally H61der 

continuous functions. Then, for each z = ( t , x ) ~ R +  •  the random variable 
X(t ,  x) belongs to ~o~. I f  x=>t>0, it has a C ~~ density under the conditions of  
Theorem 111.4 a n d / f  t > x > 0, it has a C ~~ density provided one of the following 
two conditions holds: 

(i) a(y) #: 0 for some y in the closed interval with endpoints 0 and f ( x  + t). 

(ii) f ( x  + t) = 0, a (0) = 0 and a (n) (0) ~: 0 for some n > 1 and either 
(ii h a(f(~))+O for some ~ ( 0 ,  x +t) or 
(ii)2 f ( ~ ) = 0  for all ~ [ 0 ,  x + t ]  and either g is C 2 and g'(x+t)~:O or 

g is C a and g"(x+t)+b(O)@O. 

V. The case of a bounded interval 

Let us assume that I = [0, L] for some L~(0, ~) ,  and let us consider the random 
wave equation (II.3) on [-0, ~ )  x I. We will assume that f :  I ~ R is a continuous 
function satisfying f (O)=f (L )=O because we want to deal with the operator 
of second derivation with respect to the space variable x ~ I with Dirichlet bound- 
ary condition at the endpoints of I. For simplicity we will assume that g vanishes 
identically. 

We obtain a weak solution by finding the continuous solution, say X = {X(z); 
zeR+ x [0, L]} of the following stochastic integral equation: 

x(t, x)=Xo(t, x)+ SS E~,(,,x)(s, y) a(X(s, y)) dW(s, y) 
[0, ~ )  • [O,L] 

+ ~b(t,x)(s, y) b (X  (s, y)) ds d y] 
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where 
+oo 

~b(t,x)(S, y ) = l  ~ (lto, oo)• 2kLl<t_s}(S ' y) 
k =  - oo 

- lto, ~) • to,L>{ly + x- ZkLI <t-s}(S, Y)) 
(~(~,~) vanishes except on the shaded region of Fig. 10 where it takes successively 
the values + 1 and - 1) and where 

X o (t, x) =-} [q f(e) + ezf(fi)] 

where el, e2, c~ and fi are the functions of(t, x) defined for kEZ by: 

a=2kL--( t ,  x), f i=(2k+2)L--( t+x) ,  
e 1 = + l  and e 2 = - i  if t - x - 2 k L < O < t + x - ( 2 k + l ) L  

e = t - x - - 2 k L ,  f i=(2k+2)L- ( t+x) ,  
g ~ = e 2 = - i  if t + x - ( 2 k + 2 ) L < O < _ t - x - 2 k L  

e = t + x - ( 2 k + 2 ) L ,  f l = t - x - 2 k L ,  
e , = l  and e 2 = - i  if t - x - ( 2 k + l ) L < _ O < _ t + x - ( 2 k + 2 ) L  

and 

and 
e=t+x - - (2k+2)L ,  f l = 2 k L - ( t - x ) ,  

e a = e 2 = l  if t+x--(2k+3)L<_O<<_t-x-(2k+l)L 

~-L 

t§ 

t - x - 2  

Fig. 10 
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Using the ideas presented in Sects. III and IV one can show that the distribu- 
tion of the random variable X(t, x) is absolutely continuous if 

(i) a (0 )+0  and either t>x and O<x<__L/2 or t>L--x and L/2<x<L (i.e., 
(% x) is in the shaded region of Fig. 11.a). 

(ii) a (0 )=0  and there exist a sequence { x , ; n > l }  decreasing to 0 and a 
sequence {x',; n> 1} increasing to zero such that a(x,)+O and a(x',)+O for all 
n and a(f(~o)):~ 0 for some ~oE(0, L)c~(x-t, x+t). Note that if we define: 

A = sup {~ ~ [0, L] ; a ( f  (4)) = 0} 
and: 

B = inf{~ e [-0, L] ; a(f(~)) = 0} 

condition ii) means that A < B and (% x) is in the shaded region of Fig. 11.b. 

z= (t,x) 

o 0 L 
Fig. 11 

The proof  under condition (i) is immediate. Now, if we assume condition 
(ii) the proof  is as follows. If one assumes that: 

P{ SS ID, X(z)l 2 dr=O} >0, 
[0, co) • [0,L] 

then P { X ( z 0 = 0  } > 0  for any point z 1 in the open segment L 1 with endpoints 
z = (t, x) and (t + x - L, L). This implies: 

P{ S~ [DrX(z)12dr=O}>O 
[0, ~ )  x [0,L] 

and therefore, that P { X ( z 2 ) = 0 } > 0  for any point z 2 in the open segment L2 
with endpoints zl = ( t l ,  x~) and (0, t 1 - x 0 .  Iterating this argument along a bro- 
ken line joining z and (0, 40) as shown in Fig. l l .b,  we obtained a(f(~o))~:0 
which contradicts ii). 

Finally, the reader will easily be convinced that the density so-obtained 
is actually smooth when the coefficients a and b are smooth, f is a-H61der 

\ \  

// 

b 0 A~O8 
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continuous for some ~ > 0  and one of the above conditions hold. The proof  
is in the same spirit as the previous ones. 
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