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Summary. We consider a 0-recurrent ergodic Markov chain on (E,N), 
generated by a kernel P. Again we consider couplings of two chains (~X,), 
(uX,) starting with the initial distributions v respectively ~t and evolving 
with P. The coupling consists of two randomized stopping times: T, S, with 
~ ( ~ x T )  = ~(~,Xs). 

Under additional regularity assumptions we characterize the existence of 
"short" couplings for two chains (~X~), (uX~) by the property: ( v - # , h ) = 0  
for all harmonic functions h fulfilling certain growth conditions. By "short" 
we mean that the probability to hit CAm before T respectively S decays 
faster than the analogue quantity for the recurrence times of v and #. Here 
the -~m are constructed in terms of recurrence times for a certain class of 
measures (.3, m T E). 

We will also show that the couplings of the chains (~X~)k~, (~X~')k~ 
obtained by stopping the original chains, when first hitting C ~]m, converge 
to a coupling of the original chains, which is also distinguished from other 
exact couplings by space-time properties. We use these results to character- 
ize the recurrent potential kernel. 

O. Introduction and Main Theorems 

a) The Problem 

In this paper our interest is focussed on a Markov kernel P on (E, ~), which is 
m-Harris recurrent, ergodic and has a non-finite (but a-finite) invariant mea- 
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sure Jr. The Markov chain with initial distribution v and transition kernel P is 
denoted by (~X~),~ N. d denotes all "special sets" introduced in 1-43. 

Our main goal in this paper is to sharpen and extend results on the 
longterm behaviour of the chain obtained in Part I. Specializing the results of 
Part I gives the following: 

For  any two probability measures v, # on (E,~)  we can find memoryless 
randomized stopping times T for (~Xn) and S for (,X,) such that 

(i) ~(~XT) = 5Y(,Xs) (5r = Law of X) (1) 

(ii) T, S < oo a.s. (2) 

( ) (iii) t/A ~ = 0  r/(A) = ~  1A(vXk) ( (A)-=~ 1A(~Xk) (3) 
0 0 

t/+ ~ is a-finite. 

Or in our terminology (compare Part I): T, S form a successful coupling for v, 
# with disjoint effects t/, 3. The effects are the negative respectively positive 
part  of a solution of the Poisson equation ( I - P ) ( . ) = v - # .  

For  0-recurrent Markov kernels one can go further and ask whether a short 
coupling exists for a given pair of measures v, #. What do we mean by "short"  
here? There are two possible approaches to this. Let us look at examples. 

1. Consider a simple random walk on Z. Let v be concentrated on the 
origin and let # be a probability measure with mean 0 and finite variance. 
Then we can conclude from well known results (Skorohod's lemma) that there 
exists not only a coupling S, T with S, T < o o ,  but one which is "very short", 
namely 

E(S) < oG T - O  a.s. (4) 

2. Another way to look at "shor t"  couplings can be derived from Theorem 
1 (Part I) and results of Ornstein [-7]: Take for example a symmetric random 
walk on IR 1 with finite variance and absolutely continuous transition density. 
For two probability measures v, # on IR ~ with equal means and compact 
support there exists a successful coupling for v and # such that the effects t/, 
have the property 

lim t/(x) = lim ~(x) = 0; r/A ~=0.  (5) 
x ~ - c o  X~CX3 

So this coupling is not only successful but is short in the sense, that sets "far 
out" are visited seldom by the chains (vX,), (,X,) before the stopping times T 
respectively S. 

Phenomena as described in our first example have been studied in the 
transient case by H. Rost [5]. We will focus here on 0-recurrent kernels and 
ask when two measures have a "shor t"  coupling, where "shor t"  refers here to a 
sharpened and generalized version of Eq.(5). Again we want to show that the 
question whether v, # have a short coupling or not can be resolved by looking 
at ( v - # , h }  for certain (unbounded) harmonic functions h. This will be in 
Theorem 3. These considerations will also shed some new light on the in- 
terpretation of the recurrent potential kernel as introduced in I-6]. We will 
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show that this potential kernel defines a solution to the Poisson equation 
( I - P ) ( - ) = v - / x  which is related to the effects of a coupling with very curious 
spatial and space-time properties. This will be formulated in our Theorem 4. 

b) The Con, cept o f  a Short Coupling 

Our concept of a short coupling is based on the comparison of the stopping times T, S 
constituting the co uplin g with the recurrence times of  v and #. S o let us first have a look at 
recurrence times. 

Definition 1. Suppose that P generates a m-Harris recurrent chain. 

a) We call a randomized stopping time R a recurrence time of v if: 

(i) l < R < o o  a.s. (6) 

(ii) 5~(vXR)=V. (7) 

b) We call a recurrence time for v minimal, if the expected number of visits 
of vX, to any set A ~  before R is smaller or equal than for any other 
recurrence time of v. 

Proposition0 ([8]). I f  the measure v is absolutely continuous with respect to m 
then a recurrence time of  v exists. I f  we denote by ~z an invariant measure of  P 
and assume that v is bounded by a multiple of rc then a minimal recurrence time 
R of  v has the property 

~ ~ ( ~ X , ,  n < R ) = a r c  a = i n f ( a l a z c - v > O )  (8) 
n=0 

In order to compare  stopping times forming a coupling of (v,~), with the 
minimal recurrence times for v, /~, we need a class of sets characteristic for 
recurrence times of measures in a class gl ,  to be introduced precisely in Sect. 
1 a). This class contains for example measures with finite mean in the random 
walk situation. 

Definition 2. We call a sequence of sets A m T E a sequence of characteristic sets 
for P if for every measure v~C1, a minimal recurrence time R for v has the 
property:  

Prob ( ,X k hits C A,, before R) m2% m -  1. (9) 

These sets describe the diffusive behaviour of our chain. To construct these sets 
we need a solution U*(g) of the Poisson equation ( P * - I ) ( . ) = g  (g~go +) with 
certain additional properties, which will characterize the solution uniquely. We 
will construct the map U* in Sect. l b) (45)-(47). Here ~o + denotes bounded 
functions supported by sets in ~ '  (compare 29). We generate characteristic 
sequences/]~ now as follows: (compare Sect. 1, Proposition 3) 

7tm= { U*(g) <=m } (10) 
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We will see later that the asymptotic shape (m ~ oo) of the A~ does not depend 
on the choice of g. This special choice of (~],,) will be justified through 
Theorem 4 and via (45)-(47). 

Furthermore, we are able to define the for the following very important 
cone of harmonic functions: 

Definition 3. A function f, measurable on (E, ~), belongs to .,~ iff 

(i) P * f = f  (11) 

(ii) 3 3 �9 [fr_-<a +b U*(g). (12) 
g ~ , ~  a, bE1R + 

For example in the case of a simple random walk on •1 we have: 

y={c~x+/~r~ , /~e~  +} (13) 

and characteristic sequences have (asymptotically) the form [ - m , m ] .  
Sequences with (8) and U* exist if we require that our kernel P fulfills 

certain regularity conditions which will be summarized in a condition (N*) in 
Sect. 1. Now we are able to define the crucial notion of this paper. 

Definition 4. We say that two randomized stopping times S, T of (vXk) respec- 
tively (~Xk) form a short coupling of v and Ix if for every characteristic sequence 
(Am) generated as in (10) we have 

Prob(~X k hits C/ira before S)+ Prob(,X k hits C A~ before T) 

: o(m- 1). (14) 

The following notation will be used frequently: 

Definition5. Fix a characteristic sequence (Am) for the kernel P. Then we 
denote by (~X'[)k~a~ the Markov chain which is obtained by freezing ~X k when 
it first reaches the set ~ ~]m- 

c) The Results on Short Couplings 

For our main result we need a regularity condition (N*) for P which we will 
introduce in Sect. 1 in detail. 

Theorem 3a. Let P be a Markov transition kernel with property (N*). Consider 
two measures v, #eC~(P). 

The following statements are equivalent (compare Definitions 3-5): 

(i) There exists a short coupling for v, #. 

(ii) ( v - # , h ) = 0  Vh~o ~.  (15) 

(iii) Let (ft,,) be a characteristic sequence of P generated by some ge~+o. 
For any sequence of couplings (S~, T=) with disjoint effects of the chains 
(~X'~)k~, (uX~")k~ we have 

Prob(S~ = + oo) + Prob(T m = + oo) =o(m-  1). (16) 
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Corollary3.1 (Application to hitting probabilities). Let (7t) be a characteristic 
sequence and (B ) any sequence with B,~_~fl, Vn~N.  Denote by H~, H 2 the 
hitting times of ~X k respectively uX k for the sets B,. I f  v and # have a short 
coupling then 

II s  - s e ( ~ x ~ ) H  = o ( n -  ~). (17) 

I f  the above relation holds for all sequences B, with B, ~ ~ A, then v and # have 
a short coupling. 

An example: 
Let P(x,y) by the transition kernel of a symmetric random walk on ;gZ.with 

finite variance a. Then P fulfills the regularity conditions (N) and (N*). We can 
show: 

1. The characteristic sequences generated by a function g ~ o  + have asym- 
ptotically the form: 

f tm=a2[-m,m].  (18) 

2. Probability measures v, # on ~ with finite means have a short coupling 
if and only if 

+ o o  + o r  

Z kv(k)= Z k#(k), (19) 
- o o  - ~  

Theorem 3b. The effects tl, ~ and the final distribution p of a short coupling for v 
and # can be calculated as follows: 

t/(A)= lira v - # ) P  k (A) 
n ~ o o  k - -  

~(A)= lim v - p ) U  A) 
n ~ o O  k _  

(Here d denotes all special sets [41). 

V A ~ d  

(20) 

p = - q + q P + v = - ~ + ~ P + g .  (21) 

in the case of a random walk on Z ~ for example this means that tt, ~ can be 
calculated by the recurrent potential kernel a(i,j) [6] through 

q( j )= (v(k)-#(k))a(k,j  , ~(j)= (v(k)-g(k)a(k, j  , 
~ - - o 9  ~ - - o O  

whenever the measures v, # have finite mean and fulfill (19). 
If we compare Theorem 1 (Part I) and Theo rem3  we notice a formal 

resemblance. In both cases the existence of the desired coupling is equivalent 
to the requirement ( v - # , h ) = O  for an appropriate  set of harmonic functions. 
In the case of successful coupling we consider the set of all bounded harmonic 
functions, while in the case of a short coupling (for recurrent P) we consider all 
harmonic functions which are bounded by a slowly growing subharmonic 
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function. Furthermore, the effects of successful or short couplings (with disjoint 
effects) are obtained via the potential kernel for the kernel P generating the 
chains. 

d) Space-7~me Structure of a Coupling; Recurrent Potential Kernel 

In this section we will show that effects q, ~ given by (20) and the correspond- 
ing final distribution (given by (21)) are distinguished by two remarkable 
properties stated in Theorem 4. We need some preparations: 

1. Consider a characteristic sequence A,, generated by some g , ~ o .  For 
two measures v, #~#1, look at the chains (~X~'), (uX~') obtained by freezing the 
original chains when they first hit ~ A,~. 

By Theorem 1 of Part I, there exist couplings (Tin, S~) of these chains which 
have disjoint effects. These effects denoted by t/(m), ~(") and the final distribution 
p(") are uniquely determined. In order to understand the spatial structure of 
the original-coupling we study the behaviour of (~/(~), ~(m), p(,~)) for m--* oe. 

2. Now we want to include the space-time structure into our considerations. 

Definition 6. Consider the time-space chains (~Xk, k), (,Xk, k). We call a pair S', 
T' of randomized stopping times for these chains a space-time coupling of v and 
#, if 

~e(~x~,, s') = 2e(~x~,, T'). (22) 

Now given any successful coupling T, S of v and # with disjoint effects, we can 
find a space time-coupling (not necessarily successful) such that 

S < S '  a.s., T__<T' a.s. (23) 

(Apply Theorem 1 to the space-time kernel and the measures ~(~Xs, S), 
5q(uXr, T)!). 

Consider now special couplings S, T of v and #, which single out the purely 
spatial aspect in the different position of v and # with respect to P; or more 
precisely: 

Definition 7. We call a coupling S, T of v and # regular, if there exists a space- 
time coupling S', T' of v, # with the property (23) and for which exists a 
sequence Aj T E such that for every j e N :  

lim(E~I~vxk~Aj,k~[r,T')}--I(,xk~Aj,k~ES, S')}) =0" 
n ~ o e  k = 0  

Theorem 4. Let P be an ergodic m-Harris recurrent Markov kernel on (E, ~). 
(a) Assume that P has the property (N*). Let (fit,~) be a characteristic 

sequence for P. Then we have: (with the notation as introduced in 1 above) 

lim r/(m)(A)=r/(A); lim ~(m)(A)=~(A) V: A with ~(A)<c~. (24) 
m ~ o o  r r t ~  oO 

P - - H ' J I -  lira (pC,,)). (25) 
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With 
n + 

VA~s~(P) 
~(A)= lira ( v - # ) P  k (A) (27) 

\ n ~  oD 

p =  - t l + t / P + v =  - ~ + ~ P + # .  (28) 

Statements (24) and (25) hold also m-a.e. (i.e., if we consider the m-densities of 
the involved measures). 

(b) Assume that P is normal. Then for every pair v, # of probability measures 
in E 1 (P), there exists a regular successful coupling with disjoint effects. 

The effects rl, ~ of any regular successful coupling for v, #~EI(P ) with disjoint 
effects are given by (26), (27) and the final distribution by (28). 

Remark. This result justifies especially our choice of sequences among the 
characteristic sequences for P which we performed in (10). 

1. Recurrent Chains from the Point of View of Stopping Sequences 

In this chapter we will introduce the regularity conditions (N), (N*) and their 
most important consequences. (Proposition 2, 3). We also study the class of 
measures gl appearing in Theorems 3 and 4, and prove a crucial lemma on 
subharmonic functions, 

a) Some Classes of Measures 

Our ultimate goal will be to study couplings of measures in a certain class d~ 
In order to obtain a better understanding for this class C1, we study also 
related classes go, C2, d~ which are easier to identify. The basic class is go- In 
the case of a discrete state space E the basic class g0 would contain all 
measures with finite support. In the case where the dynamical system (P, E) has 
a suitable topological structure go would contain all measures with compact 
support which are dominated by an invariant measure. We need again the 
following class of sets (which is a subclass of the special sets in the sense of 
Neveu): 

/ K 

Aef f f  <=> 3 3 " ( ~, W(x ,B)>b~(B)  V B ~ A ,  x e A ) .  
\ 

(29) 
b>0 K<oo \ k = 0  

In the general case we define the classes o~i as follows: 

Definition8. Let P be an ergodic m-Harris-recurrent Markov kernel who ad- 
mits a positive a-finite invariant measure rc which is not finite. For a probabili- 
ty measure v on (E, ~)  we define: 

(a) v~d~0 ~> There exists a set A ~  which supports v and v is dominated 
by a multiple of 7c. 
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(b) v e #  2 ~ There  exists a # e g  o and two s topping sequences (v,(v.)), (#,(p.)) 
with final dis t r ibut ion # respectively v and o--finite effects. 

(c) v ~ # l ~  There  exists a decompos i t ion  E = ~ A  k with A k e ~  and a 
measure  2~#o such tha t  we can find for  every v 1Ak a recurrence t ime of the 
form k k k (V,) O(# , )  where  in v ( v , ) . ~  starts 1Ak and  has  final dis t r ibut ion I[v 1A~I[ 2, 
while (#k) .~  starts in Irv last[ 2 and  has  final dis t r ibut ion v 1a. and the effects of 
these recurrence t imes have the p roper ty  

~ vk+#k is a o--finite measure.  (30) 
k = 0  n = 0  

(d) Assume  that  P has the p rope r ty  that  for some A s s ~  there exists a 
posit ive and finite solut ion f of  the equa t ion  

(P* - I) ( f )  = 1 A with the addi t ional  p roper ty :  
(31) 

( v - # , P * ' ( f ) )  converges  to 0 for all v , # s #  0. 

Le t  f be such a subha rmon ic  function. Then  we define for a p robabi l i ty  
measure  v on ( E , ~ )  

w # 3 ( f )  ~=~ ( v , f )  < oo and v is domina t ed  by a mul t ip le  of  7:. (32) 

One easily shows that :  #o c # 1 ~ #2 -~ #3. (33) 

Example 1. For  a symmet r ic  r a n d o m  walk on Z ~ with finite mean  the classes 
#1, #2, #3 coincide. In fact in this case a probabi l i ty  measure  on 2g ~ is in #~ (i 
= 1, 2, 3) if it has finite mean.  

Example 2. For  a left cont inuous  r a n d o m  walk on Z ~ with mean  0 and infinite 
var iance the classes #~ do not  coincide. 

We  come now to our  first sufficient cr i ter ion for a measure  v to be in #1 
(besides the trivial one V~#o). 

Proposi t ion 1. Assume that P is ergodic and m-Harris recurrent with o--finite 
invariant measure 7z, satisfying ~z(E)= + oo. Let f be a subharmonic function with 
property (31) above. Let 2 be a measure in #o. Denote by F~(v) the effect of the 
(v, 2)-filling scheme. 

I f  there exists a positive function a( ' )  such that: 

r~(v) <-5_ q a dv) 

P* (a) -- a ~ L + (E, ~) 

(34) 

(35) 
(36) 

then a measure w #  2 belongs to #1, if there exists a partition E=2 Ak, A k E ~  
such that: 

~, Ply 1AkH ~ < OC. (37) 
k = O  

Here I]7[] ~ denotes the essential supremum of the ~z-density of the measure "c. 

Remark. In  Sect. 2b) there will be a p ropos i t ion  guarantee ing  #2 =#3  in certain 
cases. 
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b) The Property (N) and main Consequences 

For  our  further considerat ions  the following not ion  will be very useful" Let  cg 
be a collection of measurab le  subsets of  E and  let m be a posit ive a-finite 
measure  on (E,N). We say a sequence (fn) of  functions in LI(E,m) converges 
locally with respect  to (Cg, m) to a function feLl(E,m), if 

f = l i m f ,  a.e., l im ]](fn--f)  lA] l l=0  V, A~Cg. (38) 
n ~ c ~  n ~ o o  

A sequence of measures  (v~) with v n ~ m  is said to converge locally with respect  
to (Cg, m) to a measure  v(v~m), if the m-densities of the v~ converge locally to 
the m-density of v. We write short ly 

v = (cg, m) - l im v,. (39) 
t l ~ c o  

N o w  we formula te  a regulari ty condi t ion on t ransi t ion kernels which is central  
for our  theory.  The  ma in  and mos t  impor t an t  consequences of (N) are con- 
ta ined in Propos i t ion  2. 

Definition 10. The  p rope r ty  (N). 
Let  P be a M a r k o v  t ransi t ion kernel  on the state space (E,N'). We say P 

has the p roper ty  (N), with respect  to some a-finite measure  m on (E ,~) ,  if: 

(i) P is null recurrent  and ergodic. We denote  by n a posit ive and  m- 
cont inuous  a-finite invar iant  measure  of P. (40) 

(ii) P is no rmal  in the following sense: 

~ ( v - # ) P  k converges  for n ~  oo locally with respect  to (s) ,m);  for all 
k = 0  

measures  (v, #)~E o x O~o (41) 

(iii) P(x, .)egl ,  V x~E. (42) 

(iv) There  exists a par t i t ion  E = ~ A  k with (Ak)C_s) such that  we have the 
following inequali ty for the n-densities p(x, ") of the measures  P(x, .) 

lip(x, ") 1A~[[ ~ < oe V x~E. (43) 
k = 0  

Let P be a M a r k o v  t ransi t ion kernel  with the p roper ty  (N). For  all pairs  
v, # e g  o we define an ope ra to r  U by 

(v - # )  U-= (S), m) - lira (v _#)pk  V V, #eg  o. (44) 
n ~ c o  

An impor t an t  p roper ty  of  the class E1 is the possibil i ty to extend the domain  
of the ope ra to r  U to the set { v - # l v , # ~ C 1 } .  The  mos t  impor t an t  consequence 
of p roper ty  (N) is (for p roof  see Chap.  4): 

Proposition 2. Let P be a Markov transition kernel with property (N). 
n 

(a) ~ ( v - # ) P  k converges locally with respect to ( s ) , m ) f o r  all v,p~g 1. 
0 
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(b) For any function g ~ +  
function k with the properties 

(i) <v,k><oe V w g  o 

(ii) ( P * - I ) ( k ) = g  m-a.e. 

(iii) <(v-#)  U,g)= - < v - # , k )  

A. Greven 

there exists a positive and finitely valued 

(45) 

(46) 

(47) 

In fact this function is uniquely determined if we require that it is the minimal 
function with (i)-(iii). We denote it henceforth by k = U*(g). Note that: 

(P* - I )  U* =I ,  <(v-p)  g , g )  = - < v - p ,  U*(g)) (47') 

Furthermore, if gl,  g 2 ~ o  + then there exists a real number c such that with 
setting a=<n, g2), b=(n,  gl)  

la U*(gl) - b  U*(g2) I =<c 1 m-a.e., (48) 

Remark. The last estimate shows that the class d~a(f) as defined in (32) does not 
depend on f if P has the property (N) and furthermore that 4 , , =  {U*(g)<m} 
does not depend on g very much if m--, oo. 

c) The Property (N*) 

First, we need some preparations. 

Definition l l .  Let P be a Markov transition kernel with property (N). We 
define a set J& of positive measurable functions on E by setting 

f E ~ , ~  P*( f )> f a,b~a3 + g~r f <_a+bU*(g). (49) 

We say that a positive function f is slowly increasing with respect to P, if P*(f)  
is not much bigger than k on the set {x]f(x)<k} for large k. 

More precisely, define 

(2P' l~f>=k}'f) (50) 
ak(f):=sup k(2P,  I~S=>k} ) 

where the supremum is extended over all finite m-continuous measures 2 
concentrated on { f  <k}. 

We say f is slowly increasing, if 

lim ak(f) =< 1. (51) 

Definition 12. "The property N*" 
We say that a Markov kernel P has the property (N*) if in addition to (N) the 
following holds. 

For every g~-~o + the function U-*(g) is slowly increasing. 

Example. A random walk on ~1 with finite mean has property (N*): Let us 
finish this chapter with the most important consequence of property (N*). 
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Proposition 3. Let P be a Markov transition kerne! with property (N*). Consider 
a minimal recurrence time R of a probability measure v~g 3. Let (7t,,) be a 
characteristic sequence of P, generated by gEYo + ; (10). Then we have, when we 
denote by % the quantity Prob(X k hits ~A,, before R) 

lim (% m) = c < ~z, g >  with c:  -- inf(b I v < b ~). 
m ~ o o  

(53) 

d) A Criterion for ~2 = 0~3 

With the notion introduce so far we can complete our knowledge about the 
classes gi (i = 1, 2, 3) of measures and their natural relations. 

Proposition 4. Let P be a Markov transition kernel with property (N). Now if the 
following conditions hold. 

(i) E , : = { U * ( g ) < n } e ~  V n e N  (for ge~o+). (54) 

(ii) There exists a partition of E: E = ~  B k and real-valued functionals ek(V, lO 
defined for v, # e g  o such that 

(c 0 I(V--II) U--y'C~k(V, II)~IBkllcE <a, 7c, lira a , = 0  (55) 
k n ~  

(/?) lim <rclBk,P*"(1B)>> fl for some B e ~  
n ~ o o  

with re(B)>0 and fl>0.  (56) 

then we can conclude 
g 2 = g  3 . (57) 

Example. A symmetric random walk on IR 1 with finite variance and absolutely 
continuous transition density. (B l =  ( - o %  0], B 2 =(0, + oo]). 

e) Some Basic Relations Concerning Subharmonic Functions 

We start with a very basic combinatoric relation for stopping sequences. As in 
Part I we use the fact that all problems concerning randomized stopping times 
can be translated into problems concerning measures on the statespace via the 
notion of stopping sequences (compare Part I, Sect. 1). 

Lemma 1 a. Let (v , ) ,~  be a stopping sequence with initial distribution 'v and final 
distribution p, such that ]lvll = ]IPlI. Furthermore let f be a subharmonic function 
with ( v , f  > <oo, f ~ 0 .  Then 

(a) < v , , f ) = < v , f ) - < F  o+. . .  +F,+ 1,f>+<v o+. . .  +v,,g> (58) 

where g : = P * ( f ) - f ;  Fk+I:=VkP--vk+ 1. (59) 

In order to formulate the second part of this lemma we need to introduce 
some more notations. 
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Let f be a slowly increasing subharmonic function in ~ Define the set Am: 
= { f < m } ,  d,: v ,+l=v,  Pd .. 
Then we define 

~{m):~-~V d~ k=l I~I (1AmPdk)jl~Am (60) 

P{m" = v(1-do)  (j~=1 k=*I~ (1am P(1--rig))) (61) 

j=0 k=l 

Note: If a stopping sequence (v,) ,~ is derived from a randomized stopping 
time T of (~X,).~ N then with Hm: =inf(kl~Xke C Am) we have 

9~(A): = Prob(~Xa, eA; T > Hm) (63) 

tim(A): = Prob(vXreA; T < Hm) 
Lemma 1 b. 

(vn , f )  = ( v , f }  - ( F , f }  + (0 ~, g). (65) 

Proof of Lemma 1. a) Is shown by induction over n (details omitted). 
b) This follows from a) by considering the stopping sequences (v~).~ N de- 

fined by 
k :=(v~)Pd, l ~  with d,: v ,+l=v,  Pd, (66) !;n + 1 

Part a) gives for each k 

( v ~ + , , f ) = ( v , f ) - - ( F o k +  ... +~k+ a , f ) +  (V~ + ... + V,k,g) (67) 

Now by construction 

(vk., f )  <= k ]l vk, II, (68) 

(69) 

(F0k+ ... +Fk+ 1 , f ) / ( / ~ k  + ~ , f )  < 00 

I ~=oV',g) s <g',g) 

which leads together with (67) immediately to b). 

2. The Proof  of Theorem 3 

a) Proof of Theorem 3 a 

1. (i) ~ (ii) 
Now, if ((v,)(#,)),~ is a short coupling of v, p, we have n [Ig*F[ =o(1) and by the 
fact that P has property (N*) that: ( Y , f ) ~ n .  rjg-lr. Therefore we conclude with 
(65): 

(p - v ,  U*(g)) = (rl, g). (70) 
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From this we obtain with part a) of Lemma 1 

lira <v., U*(g)) =0;  <p, U*(g)) < oo. (71) 
t l ~ c O  

This gives for a harmonic function h with Ihl <__a+b U*(g) 

lira ( v . , h )=0  (similar lira ( # . , h ) = 0 ) .  (72) 

Now define (F.1).~, (F.2).~N by 

v, p = F~+ 1 + v,+ 1, # , p =  F, + 1 + #,+ 1 2  (73) 

and conclude from (58) by using F~+ ... +F,+ 1T p ( i= 1,2) and <p, U*(g))<  oo 
that 

<v-#,h)=-<v-#, ,h)+<(Fo~+ ... +F,~+ 1)-(FoZ + ... +F~2+a),h)~ ~ 0. (74) 

q.e.d. 
2. (ii) ~ (i) 

The proof of this part relies on the following facts, which allow us to 
reduce our problem to one dealing with a kernel of a type much easier to 
handle. 

Lemma 2. Under the assumptions of Theorem 3, the following, holds: 
(a) For the implication (ii) ~ (i) it is sufficient to consider only kernels with 

the additional property 
x~ m({x})>0. (75) 

(b) I f  P fulfills the assumptions of the theorem and has property (75) it is 
sufficient for the proof of the implication (ii) ~ (i) to show that this holds for 
v, #~CI(P) with 

<v - #, U*(l{x}) ) = 0. (76) 

In the following we will in view of Lemma 2 (a) assume, that our kernel has 
the property (75). 

Now in order to prove (ii)~(i),  assume that for v, #~gl(p) exists no short 
coupling. This implies that for an exact coupling with effects ( v - # ) U  +, (v 
- # )  U-  we have: (upper index with respect to { U* (l{x})< n}, see (60)-(62)) 

lim ([19"1[ + ]]/~"]k) n - - a  > 0. (77) 

By part (b) of our Lemma2  we can furthermore assume without loss of 
generality 

< v - # ,  U* (l{x})) =0.  (78) 

We will construct a harmonic function h with 

( v - # , h )  =a=#0 Ihl <b+c.  U*(l{x}). (79) 

The construction proceeds as follows: 
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(i) Consider the sets (g denotes the m-density of v !) 

A; :  = {(~-~) ~-__>0} ~ C E, A,+:= {(~-~) 0 + >0} n C E, 

where 

and define functions h~ +, h~- as follows: 

I 
n z ~ A  + 

0 z~A 2 ~ {x} 

h. +(z).'= harmonic continued 

elsewhere 

e n , = { u *  (1{~) < n} 

in z~A 2 
=~0 z~A + U{x} . 

hT(z): [harmonic continued 

(elsewhere 

(80) 

(81) 

Now we define a sequence (h.).~ N of bounded functions on E by 

h,: =h ,  + - h  i .  (82) 

In order to apply a compactness argument to this sequence (h,) ,~ we will 
consider h n as element of (LI(E,~)) *, with the measure ~ defined as follows: 

~: = (U* (l{x}) + 1) din(" ) (assume re(E) = 1), (83) 

Here we associate g*--~ [ . ,  g] ~(LI(E, z))* with 

[ f , g ] : = ~ f . g d m  feLl(E,z) ,  [g[<a'+b'U*(l~}). (84) 

From the general theory of normed spaces it is known that a sequence in 
(LI(E,z)) * is weak-,-compact if the sequence is bounded in the norm. Therefore 
we show 

Ihn[<a+b U*(I{~}) for some a , b ~ R  +. (85) 

For that purpose consider 

hn: =h.- +h + (Note [h.I <hn V n~N). (85) 

From the construction of (h.) .~ we know that there exist numbers an, bn>0 
and functions kn, l n > 0 such that 

P*(h.) - h .  = a .  1{~} -kn ,  P*(U*(g) A n) -- U*(g) A n=b  n 1{~} -1  n. (87) 

This implies 

P * ( h . - U * ( g ) A n ) - - ( h n - U * ( g ) A n ) = ( a . - b . )  l { x} -k .+ l  n. (88) 

Now observe that l i k .  =0  and conclude that 

h . - (U*(g)  A n) is subharmonic and bounded on En\{x  }. (89) 

Since by definition hn - U*(g) A n =0  on C En u {x}, we can conclude 

hn < U* (l{x})/~ n <  U*(l~x}) V n~IN. (90) 
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Now select a subsequence (nj)c_N such that (h,j)j~ converges in the weak-,-  
topology of (LI(E, z))* and define 

/~: =w- , - ! im h, . (91) 
j ~  ao 

This function/~ has the properties 

I/~] < U*(I{~); P*(]~) -f4=c 1{~} for some cEIR. (92) 

(ii) Our harmonic function h is now defined as 

h :=  l~-c  U* (1~}). (93) 

It remains to show that (v-#,h)+O. To see this note first we have by 
construction of I~ and with (v + #, U*(I{~}) ) < oo 

(v -/~, t~) = lim (v - #, h,j) (94) 
j ~  oo 

and since we assumed that ( v - # ,  U*(I{~I) ) = 0  we also have 

{ v - # , h )  = lira ( v - # ,  h,j). (95) 
j ~ o o  

But from Lemma 1 b we obtain 

(v - #, hm, ) = ( 7 ,  -fi=,, h,,,) + (~'~, -f i~, ,  hm, ) - (~m, _~, . , ,  l{x} ) %, (96) 

and this gives us since ( ( v - # )  U, l {x } )= (v -# ,  - U * ( g ) ) = 0  that 

{v - # ,  h~,,) = ( 7 '  _tim,, hm,} + (fiT' -fi~", hmj) (97) 

and so we get by noting (p, U*(g)) < oo and p"l'J2/p that 

( v -# ,h )  = lira (v - # ,  h,,,)= !im ( 7 '  - ~ %  hm,) 
j ~ o o  J~eO 

= lim rnj(ll~"'N + It~"lk)=a>0. q.e.d. (98) 
j + o o  

3. (i) <*  (iii). 
This follows immediately from the following lemma. 

Lemma ([-8]). Consider a coupling [v,(v,); #,(#n)] 
( , , -#)  u +, ( v - # )  t7-. 

for v,#egl(P) with efJects 

Vrob(T, = + c~)+ erob(S,  = + oo)__< 119"1[ + [lfi'lh (99) 

I]9"][ + []fi"k] < Prob(T, = + m) + Prob(S, = + oo) + o ( n -  1). (100) 

b) Proof of Theorem 3b 

From Lemma 1 b we conclude for the coupling (v, (v,); #, (#~)) 

(~ ,  v* (g)) = (~, ~* (g)> - (~7, c~* (g)) + (,7 ~, g) 

(g~, u*(g))=(~, U*(g)) -<~2, U*(g)) + <77.", g)  

0ol) 
(lO2) 
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SO that by using the following consequence of the property (N*) 

<v',u*(g)>=llg-ll n+o(1) (103) 

we obtain that for a short coupling with effects ~/, 

(v -/~, U*(g)> = - Q / -  4, g)- (104) 

With Theorem 2b of Part I it follows that there is at most one pair of dis- 
joint effects r/, { for a coupling of v and # with the identity (104), namely 
( v - # )  U + ' - .  q.e.d. 

c) Proof of Lemma 2 

We proof this lemma by constructing a new transition kernel (7) which satisfies 
the conditions of our lemma but also preserves the fact that v, # have no short 
coupling. We will not prove that the new kernel has property (N*), we will just 
show that we have all the properties we used in the proof of Theorem 3, Part 2. 

1. Define the following Markov transition kernel Q on (E, ~). 

Q :=1 /2  ~ (1/2P)'. (105) 
n = O  

Furthermore, we define the operator U~ by setting 

U~(g) = U . ( g ) - g +  1 Ilgll ~ Vge~0 + (P). (106) 

Now U~ has on ~0(P) all the properties stated in Proposition 2b and further- 
more U~(g) is slowly varying with Q. We omit the straightforward but lengthy 
calculations here (see [8]). 

The following fact is essential to show that for our problem Q is equivalent 
to P: suppose for v, #e#1(P) exists a function h with 

Q*(h)=h, Iht<a+bU~(g) for some g ~ 0 + ( P )  (107) 

and for suitable a,b~lR +. 

Then an elementary calculation shows that (compare [8]) 

P*(h)=h, Ihl<a'+b' U*(g) for some a',b'~, +. (108) 

Now, a lemma of Neveu in [4] shows that Q is m-Harris recurrent and has the 
following property which will be important for our next step 

3 J �9 Q>lA,| (109) 
Ai'~ E bi>O 

where 7r is a positive ~-finite invariant measure of P (and also of Q !). 
2. To proceed further we have to obtain a transition kernel with an atom. 

So we consider a statespace Ew{*} and "extend" Q to a Markov transition 
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kernel ~) on ( E u { . } , ~ )  in such a way that we have 

(v-# ,U~(I~ .~) )=0 ,  rn(~<rn with r~:=rn+6~.~. (110) 

(~ is constructed as follows: choose Ae~'(Q)c~s~/(P) and a function k(- on E 
such that 

(i) 0 < k ( x ) < l  VxcE, l e ak - -0  , l > ~ k d n > 0  (111) 

(ii) Q > 1A | (a rc 1A) for some a >0. (112) 

(iii) (v -# ,  U~(k))=0 (113) 

(iv) (re 1A) Q~d~ supess(U~(la)(x))< or. (114) 
x E A  

Fix a number b~(O,a). Then define Q according to the following list: 

O_(x,B)=Q(x,B); V: x6CA , B6~) (115) 

(2(x,B)=Q(x,B); V: x~A, Be_CA (116) 

Q(x,B)=Q(x,B)-bk(x)u(B); V: xEA, Be_A, (117) 

Q(x,{*})=bk(x)rc(A); V: x~A (118) 

Q({*},B)=(~Q(',B)du)Tt-I(A); V: B e ~ .  (119) 
A 

We define the operator U~ on ~o+(P) now as follows: 

U*'" fU~(g) on E (120) 
o(g)-I(Ir(A))-l(rclA, U~(g)) on {*} 

0~ (121) 
U~(I(,~)= U~(k)+c2 1E on E c 1 :=b(1 +b{n,k))- 

on {*} c2,=l-b(rc, k)(l +b(n,k))- 

One again verifies (using (i)-(iv) above) that U~(I~.~) has the properties (ii)-(iii) 
in Proposition 2b and is slowly varying with Q. For details of this straightfor- 
ward calculation we refer the reader to [8]. The following statement is now 
crucial for our considerations: suppose we have a function h on Ew{ .}  such 
that 

Q*(h)=h, (v-p,h)4=O, [h[<a+b U~ (1(.}) (122) 

then we obtain by setting 

h: = h l E + c  Up(k) c :=  -b((n 1a,h ) -h({*})) (123) 

a function with the properties 

(V-l~,h) =4=0, Q*(h)=h, [hi <a~ +a 2 U~(1A) (124) 

for some a~ ,a2~R + 
(this is obtained by an elementary calculation). 

3. Observe now that C) is a Markov transition kernel for whom the 
arguments in (75)-(98) apply. Therefore, putting Part 1 and Part 2 ((107), (108), 
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(123), (124)) together allows us to conclude, that if v, # have no short coupling 
with respect to (~ then there exists a P-harmonic function h with [h ieS(P)  and 
( v - # , h > # 0 .  In order to prove our Lemma 2 it remains now to show, that if v, 
# have no short coupling with respect to P, then they have no short coupling 
with respect to (~. 

To prove this observe that Lemma lb  implies 

v, # have a short coupling ( v , f > < ( p , f >  

with respect to P and with ~- ( # , f ) < ( p , f )  V f ~  +(P) (125) 

final distribution p (p, f )  < oe 

Here we used that U*(g) is slowly varying for the " ~ ' '  direction. But with the 
definition given in (120) and (121) this equivalence holds also for Q. Now 
observe that i f f  is a positive P-subharmonic function then the function 

f:  f ( x ) = f ( x )  for xEE, f ({ .})  = (Tr l a , f )  0r(A)) -1 (126) 

is (~ subharmonie and lies in ~&(Q). Therefore the equivalence (125) and 
(~({.}, E) = 1 imply our assertion. 

3. The Proof of Theorem 4 

a) Proof of Theorem 4b 

1. We will show that by the (v,(v-#)U+), (# , (v -#)U-)  flooding schemes a 
regular exact coupling is defined, which has final distribution p. For  this 
purpose we will apply Theorem 2b (Part I) and therefore we are going to show 
that the assumptions made there, are met in our situation. Denote by G,u the 
effect of the (v, #)-filling scheme. Since 

we have" 

G,u>O G , u - G , , P = v - #  (127) 

n 

~ (v -# )Pk=G,  u -  G,uP "+ ~ < G,u (128) 
0 

n 

(v - #) pk = _ r/u, v + rl~, ~ p,+l >= _ flu, v (129) 
0 

and furthermore since v, #~# l (p )  we also know 

G,u+tlu, v=aTc for some a~N, +. (130) 

By definition of U we get from (128), (129), (130) 

I(v--#) UJ<aTz. (131) 

This gives immediately that the assumptions of Theorem 2b are fulfilled for 
J(v-#) Uf and that therefore there exists a coupling with this effect and final 
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distribution p. (It can be obtained by the (v,(v-#)U+), (# , (v-#)U-) - f looding  
schemes as shown in the proof of Theorem 2b in Part I). To show regularity of 
a coupling [v,(%); #,(#,)] obtained as described above, we use the following 

Lemma3.  Under the assumption of Theorem 4b, we have for a coupling, [v,(v,); 
#, (#,)] with a-finite effects (if we denote by ^1 ^2 (ft,,p,) the continuation to a space- 
time coupling (22, 23)) that 

where 

n 

(132) 

V,(B): = ~ (Pk(J,̂ l �9 B) -Pk^2 (j,. B)). (133) 
j ,k=O 

By the definition of U the right side of (132) converges to 0 for every B c ~ ,  
and therefore our coupling is regular. 

2. The uniqueness of the effects and final distribution of a regular exact 
coupling with disjoint effects is an immediate consequence of our Lemma 3. 

Proof of Lemma3. From the definition of/31,/32 and the time-space operator _fi 
it follows 

0 0 j = O  k - O  

and therefore with the analogous relation for (#,), we conclude 

n n 

E ( v _ # ) W = E ( v k _ # k ) +  ~ ~ (fil_~2)pk(j,.) V: neN.  (1351 
0 0 j = 0  k = O  

On the other hand, we get from relation (32), Part I since/~ is transient 

~, (/31 _fi2)pk(j, . )= ~ /3~ (j, ") --Pktj'2':, .). (136) 
k = 0  k ~ 0  

Now note that by construction ~1 of (Pk)k~, (fi~lk~: 

J 

(~1 _fi2)pk(j,.)= ~ (~1 _/~2)pk(j,.) V j e N  (137) 
k = O  k = O  

J 

( /~l_fi2l(j , . )= ~, O~-/3~)(J, ')  VjEN. (138/ 
k = O  k = 0  

With the two last equations, we obtain the assertion immediately from Eq. 
(135). 

b) Proof of Theorem 4a 

O. The main ingredients of our proof are the following lemmata (the straight- 
forward proof of Lemma 4 will be omitted, Lemmas 5 and 6 are proved in 
part c) and d) of this section). 
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Lemma 4. Let P be a Markov transition kernel with the property (N*). Consider 
a successful coupling [v,(v,); p,(p,)] with effects given by ( v - p ) U  +, ( v - p ) U - .  
Here we assume v, peg~. Let g be a function in ~,~o + . Denote by pro, tl~, ~ final 
distributions respectively effects of the couplings for v, p with disjoint effects with 
respect to the transition kernel I ~ , . P + l c E  ~ where Em:={U*(g)<=m }. Then 
r/m [4"] is dominated by the effect of the (v, p) [(#, v)]-filling scheme. 

Lemma 5. Under the assumptions of Theorem 4b we have for all geL1+ (E, ~z) 

(i) lim (r/",g) = (r/,g) q : = ( v - # )  U + 
,~o~ (139) 
lim (~",g) = (~ ,g)  ~ : = ( v - p )  U -  

n ~ o 9  

(ii) lim (p",g) = ( p , g )  - p : = ( v - p )  U + ( I - P ) - v  
n ~ o o  

=(v--p)  U - ( I - P ) - p .  (140) 

The following notation will be useful in the sequel 

2B: =(2) (lcBP)" 1B , v .--((v--p)C~,) �9 (141) 
n _  

Lemma 6. Under the assumptions of Theorem 4b we have 

(i) (v"-p") u + ( ~ " - ~ " ) = ( v - p )  v (142) 

(ii) V 3 �9 (v"-p")  U 1 ,=( (v~-p~)  U+O,70 1B (143) 
Be~r OnelR 

(iii) lira (v" R-p~) U(B)=0 V: Bex)(P). (144) 
n ~ o o  

lim (~- /2~)  U = 0  m(.)-a.e., V: Be~'(P) (145) 
n ~ o o  

where ~ denotes the m-density of v. 

1) Let us first study the beha~iour of (r/'),~, (4"),~ and strengthen (139) to 
an a.s. statement. By using Lemma 6(ii),(i) and Lemma 5 (i), we can conclude 
with Lemma 6 (iii) that 

lira [(~" -/~") U] = 0  m(')-a.e. (146) 
n ~ c o  

Now by using the equations in Lemma 6(i) and the fact q"A 4" =0, we obtain 
(~ denotes the re-density of a measure ~) 

lim g/"=0 lim ~"=~. (147) 
n ~ o o  n ~ o o  

The dominated convergence theorem can be applied now (see Lemma 4) to get 

i? = (s~, m ) -  lira r/"; ~ =(s~', m ) -  lira 4". (148) 
n ~ o o  n ~ o o  

2) Now let us consider the sequence (p"),~. (149) 
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From the Poisson equation for t/" we obtain 

p" = tl~ P - rl" + V - v ~. 

We know already that 

(15o) 

lira Y/" = s (151) 
n ~ o o  

and by the dominated convergence theorem together with Lemma 4 we can 
also conclude from (151) 

lim O"P=s (152) 

Now, by construction v (m) converges a.e. to 0, Putting these statements all 
together leads to 

lira t5" = s - g / +  v =t5 m(.)-a.e. (153) 
n ~ o o  

Now we have the following situation: 
tS" >0, /5>0; lira 15" =-t5 a.e.; 

n ~ o o  

(154) (pn, lA)  n -~  {p, 1A) VAELI (E ,x ) .  

With standard techniques from measure theory one concludes from (154) 

lim (I]/3"-/5H~)=0. q.e.d. (155) 

c) Proof  of  Lemma 5 

1. First we analyze the behaviour of (01",g)) ,~,  ({~",g)),,~. By using 
Lemma 4 we obtain the following inequalities (denote by G,p the effect 
of the (v, p)-filling scheme, (38) Part I) 

n.< r/ =%, <t/v,u+q,, =aTe for some a~lR + 

~"_<_t/,,,<t/u,v+~/~, =a~z for some aelR +. 

(156) 

(157) 

(158) 

(L'(E, ~))*_-__ L~(E, ~). (159) 

Now let r +, r -  be weak-.-limit points of (g/"),~, respectively, (~"),~ and 
choose S_~N such that (q),,~s, ~m ~" (4),,~S converge to ~+ respectively -~- in the 
weak-*-topology of (LI(E, n))*. We will show that this implies 

g+ = ( v - # )  t? + (160) 

~- =(v - # )  U-  (161) 

which means that (om)~S; (~')~S are convergent in the weak-*-topology and the 
limit points are (v -# )  0 + respectively (v-/~) U-  and that is just our assertion. 

The inequalities (157) and (158) show that the 7~-densities of ~/", ~", (we will 
denote them by fl", 4") form a weak-*-compact sequence in the space 
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Now in order to show (160) and (161) note that it is sufficient to show 

( v - # , U * ( g ) ) + ( ? + - ~ - , g ) = O  Vg~LI(E, rc). (162) 

To show this identity observe that by Lemma 1 and Theorem l b  ( P a r t  I)  

( v " - #  m, U*(g))= ( v - # ,  U*(g))+(tl"--~m,g) Vm6S. (163) 

It remains therefore to show that 

lira ((v r" -/~m, U* (g))) = 0. (164) 
m ~ o o  

But we assumed that P has the property (N*). Using (N*) ((52)) and the fact 
(v + Iz, U*(g)) < oe we obtain (E,: = { U*(g) < n}) 

( vm + p m leE,., f*(g) ) = (ll/zmlp + Irp" leeml[) (m + o(m)) (165) 

(~" + p" lee ~, g*(g))=(llv"l[ + lip" lee,,ll)(m +o(m)). (166) 

Now apply Lemma 1 and get 

]]vm+#mll=O(m-1), [jpml(v.(g)>=,,;)H=O(rn-1 ) (167) 

(165), (166) and (167) the desired result (102) q,e.d. 

2. Now we analyze the behaviour of ( (p" ,g)) ,~ .  By Theorems 2a and 3a 
we have the following Poisson equations: 

r/" - ~/" P = v - ( v "  + pro) 

q--t lP=v--p.  

we know that v"<q~,u+qu,~=arc and 

(168) 

(169) 

lira v"=0 a.e. Therefore 

lim (vn, g ) = 0  Vg~L~(E, tO.: (170) 

Since g~LI(E,H) implies P*(g)6U(E, ~); the relation (139) has the consequence 

lira (~lnP, g) =(tiP, g) VgeLl(E, re). (171) 
n ~  o o  

Putting (170), (171) together gives now 

lira (p,n,g)=(p,g).  q.e.d. (172) 
m ~ c c  

d) Proof of Lemma 6 

1. First we need some results on properties of the extension of the operator 
U to the following set M 
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v - g e M  ~ v, # are probability measures on (E,~)  with 

" _ _ # )  pk (i) ~0(v <a~t Vnr for some a e l (  +. (173) 

m 

(ii) The m( - )-densities of ~ ( v - # ) P k  converge m-a.e. (174) 
0 

Define ( v - # )  U: =(sg, m ) -  lim ( v - # )  pk for ( v - # ) e M .  (175) 
n ~ c o  

Next we show the following facts, using the definition of U and M: 

(e) (sg, m) - lira [(v - #) UP ' ]  = 0 (176) 
n + o o  

(fi) U ( I - P ) = I  on M (177) 

(2) Let (v -#)eM.  If for v', #' the effects t/, { of the (v,v'), (#,#')-filling 
schemes have the property 

(~', m) - lira 01 + {) P" = 0 (178) 
n ~ a o  

then 
(v ' -# ' )~M.  (179) 

2. Here we prove Lemma 6 (i). From the fact that 

(s), m) - lim (t/" + 4") pm= 0 (180) 
m ~ o o  

we conclude by using (178) above, that (v"-#m)eM greEN. We have from the 
construction of r/m, {" the following Poisson equations 

(v" __#m) U ( I - P ) = v " - # "  (181) 

(t/m _ {m) (I -- P) = (v -- #) -- (v m -- #m). (182) 

An elementary calculation shows then 

n 

~(V--#)Pk=((vm--# ") U+(~lm--~"))--((v"--# m) U+(tf~-r "+' (183) 
o 

Let n go to infinity and get by using (176) 

(v -y )  U=(vm--# ") U+(~f~--~ ") u  q.e.d. (184) 

3. We omit the proof of the Balayage relation (ii) for the operator U. It can 
be carried out completely in our framework. 

4. The proof of the assertion (iii) of our Lemma 6 uses the following facts: 
there exists a system of sets ~ a g  which contains an exhaustion of E with 
(denote by ~ the m-density of v) 

(*) V lim ( ~ - / 2 ~ ) P 0 = 0  m-a.e. (185) 

-,, ~m _ ( 1 8 6 )  (**) V lim (v B - # B ) - 0  m-a.e. 
B e ~  m ~  
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Before we show (,) and (**), let us show how to finish the proof by these 
means. By the Poisson equation for U (we get from (,) and (**)) 

lira ( ~ - / ~ )  0 = 0  m-a.e., V B c ~ .  (187) 
t n ~ c r  

We will show in the proof of (*) that there exists a function q(-): E-~IR + such 
that for all B ~  

(v~+#~,q)<=N<oo Vm~N. (188) 

I(v"~-#~) Ul<(v~+la~,q) ~ + l v ~ - / ~ l ,  q > ~ +  ! (189) 

At this point it is clear that we can conclude from (187), (188) and (189) with 
the dominated convergence theorem that 

( s ~ m ) -  lim [ (v~ -#7  ) U] = 0  V B e ~ .  q.e.d. (190) 
m ~ o o  

In order  to show (,) we establish the following: there exists a kernel U(x,y), a 
function q(x) and a system of sets ~ such that 

(i) A ~ A ~ J ( P ) ;  3 V q(x)<N; 3 ~/ : U*(g)(x) <N (191) 
N x e A  ~ x e A  

(ii) N contains an exhaustion of E (192) 

(iii) lira ( ~  (~--[t)Pk), =!(~-FO(x) U(x,y)dm(x) m-a.e., (193) 
n ~  o~ k =  1 Y) 

for all measures v , / t~o(P) ,  which are concentrated on some set A~@. 

(iv) IU(x,y)[<=q(x)~t(y); m| a.e. (194) 

Now apply this to a measure (v~-/t~) with B ~  and get 

( ( ~ - / ~ )  P) O(y)= J 07'~-/~)(x)U(x,y)dm(x) m-a.e., (195) 

1(7~ -ff~)(x) U(x,y)l<const.[~-~l(~) ~c(y). (196) 

Then from the fact that lira []v~-/~/I = 0  one concludes (,). 

We can define U(x,y), q(x), ~ as follows: choose some 2~g0(P ) with 11211 
=1, and note that by property (N) (iv) we have (6~P)~gI(P). 

U(x,A):= lira (6~P--2)PfA ~ for all Aesd(P). (197) 
n ~ o ~  k ~ O  

U(x,y) is a version of the m |  density of the measure U on (E x E, ~ | ~), 
which is defined by setting for all A,B~s~(P) 

U (A, B): = j" U (x, B) din(x) 
A 

q(x): = inf(a ]a ~ -- r/,~ e, a > 0) 

(IuI has finite variation on 

sets in N | ~). (198) 

(r/~xe, a: = effect of the 

(6xP; 2)-filling scheme). (199) 

It is now straightforward to show (191)-(194) and we omit the details. 
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6. Now in order to show (**) choose 2 in the construction of U(x, y) to be 
(re 1B). Consider the stopping sequences (vn),~ ~, (/~,),~N generated by the (v, rc IB), 
(#,x 1B)-filling schemes. Denote the effects by t/ respectively ~. Then one ob- 
tains (details are left to the reader) 

I v~  - ~ I = I((v - ~ ) c ~ ) , ,  I ( 2 0 0 )  

= ( vm - #")B + ((P7 -- P'~)C~)B (201) 

+ [[P]'-P~l .x 1B + Ip]'-p'~l +[ ~ U(x, ")d[p'~-p'~l(x)[ 

< (~ - r  + (~  - ~") + Ix 1B - p';'l + Ix aB - p T I  

+ ]l P'~" -P~H x 1R + [p]' -P~'I +(IPT -P~'I, q) rc 1,. (203) 

From the last inequality (**) is an immediate consequence observing that by 
construction for i = 1, 2 

r/"Tt/, ~"l'~; p~+ 2 (204) p ~ < 2 x l  B, p~ ' [x l~ ,  ( x l B , q ) < o e .  

4. Appendix: Proof of Proposition 2b 

Since Proposition 2b is heavily used in the proof of our main theorem we 
sketch the proof here. The uniqueness proof is straightforward, so we con- 
centrate here on showing that if P has the property (N), there exists a positive 
finite function f with the properties (45)-(47). We will need the following fact 
which also appears in different formulations in [3] and [4]. For  the proof we 
refer to Part I, Sect. 5b. 

Lemma 7 ([8]). Let P be a m-Harris recurrent and ergodic transition kernel. 
Consider a measure I~ which is supported by a set A e d  and dominated by a 
positive a-finite invariant measure of P. Then the effect tL.,u of the (v, #)-filling 
scheme has the property that tl~,u(A ) is bounded by a constant for all probability 
measures v on (E,N). 

a) We will define f by a twofold limit procedure. 
First we choose a sequence (Bk)TE with B k ~ d  and a measure Z~g 1 with 
support in B 0. Denote by D the map which assigns to a finite positive function 
h the measure h. dx. (x is a positive a-finite invariant measure of P). Now we 
define continuous linear functionals F, k on L~(Bk, x) by setting 

Ff(I)= D(I)-klD(I)II2,--k p.k(g) V: leL+(Bk,X ). (205) 

Property (N) (iii) allows us now to define 

Fk : = w-*- lim ~k. (206) 
n ~ o o  
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Since the functionals (F~),~ can be represented by re-continuous measures on 
Bk, the same is true for F k by the theorem of Vitali-Hahn-Saks. So we have 

Fk(I) =~fk" Idre with fkeLl(Bk, re). (207) 

Now, define 

f : =  ~ fk+," 1B~+,\B,+f0" (208) 
k = 0  

Since we have ~ (V--p)Pk>--r/,,u, with r/~,u:=effect of the (v,p)-filling 
k = 0  

scheme, we can conclude from Lemma 7, that 

F2(l ) > - C HD(1)II 

or in other words f is hounded below. This allows us to define 

f.. = f + ]infess (f(x))]. 
x 6 E  

(209) 

(210) 

It remains now to show that f has the properties (45)-(47) 
(i) (45) is a consequence of the fact that fk~Ll(Bk, re) ([8]). 

(ii) (46) holds by construction for v, peC 0. So we have to show it holds for 
V, / . / ~ a  1 . W e  will prove that 

lira V--2)pk, g = ( v , f )  V w C  1. (211) 
n ~ o o  k 

oo 

By definition of o~1 we have for a measure vegl a decomposition V=~VlAk 
0 

with A k ~  so that the effects r/k, r of the (v lAP , IlVlakll 2) respectively 
oo 

(IlVlAk/I 2, vlA~)-filling schemes have the property that ~rlk+~ k is a a-finite 
0 

measure. Therefore we can write (define for abbreviation 2k=2" IIV 1A~fl) 

(v-2)P j= ~ ~ (VlAk--)Lk) Pj 
j=o j=o k=O 

= ~, ~ ((v 1Ak)- 2k) PJ' (212) 
k = O  k = O  

Now observe that (rewrite the sum by using the Poisson equations for I/k, ~k) 

~k<~(V 1Ak--2k) PS<r/k+v 14,, V: neN.  (213) 
0 

Since v+ ~ r/k+ ~k is a ~r-finite measure and effect of a recurrence time it is of 
k = 0  

the form are. This now allows to conclude from (212) with the dominated 
convergence theorem, that (211) holds. 
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(iii) In order to show (47) (the Poisson equation ( P * - I ) ( f ) = g  holds), 
consider a measure veg o such that vPeg~. As above we can show that 

< v , f > = l i m  (~-X)P~,g ( v P , f ) =  lim (~P-X)P~,g . (214) 
n,co  n ~ o o  

This means 

<vP,f )  - < v , f >  = lira < v - v P " + l , g ) = < v , g )  ([2]). (215) 
n ~ o o  

We rewrite this statement now as follows: 

(v , (P*-I) ( f ) )=<v,g> gv with re#o, vPeN~. (216) 

One can show that there exists a sequence Bk{E such that 

(v__<arc for some a e N  +, v is supported by B k 

for some keN) ~ (Vego, vPeo~l). (217) 

(217) finishes of course the proof of (47). 
The proof of the assertion (217) proceeds as follows. 
Choose a sequence B~ T E with B~4/ (poss ib le  by the "lemma of Harris"). 

B 2 3 _  k : ={xlq(x)+r(x)<=k} B k - {xlt(x)<k}. (218) 

Here 

q(x)=inf(altloxp, j.<a~z) r(x)=inf(alP(x,')<=a.~z(')) 

[IdP(x,') 1 II 
t (X):k__Z_,011~ a~ll . (220) 

Here, (Ak) is the partition of E whose existence is required in (N)(iv). 
By property, (N)(iii) q(x), r(x) are finite, by property (N)(iv) t(x) is finite. 

Therefore, we can define an exhaustion (Bk)k~nV of E by setting 

B1 --2 --3 (221) Bk= k~lJk  C'~D k. 

In order to show that with this (Bk) (217) holds, we have to prove that vPc• 1 
for v with v ~ a ~ and which are supported by some B k. We show 

~ ( v P )  la~+tlk+~k<2(v,q+r)Tt+(v, t ) ' r t<C'Tr C~IR +. (222) 
k - 0  

Here ~k denotes the effect of the ((vP la~)P,2. IIv 1A~ll)-filling scheme and {k the 
effect of the (2. IIv 1A~I[, vP 1Ak)-filling scheme. The (Ak) are the same as in (220). 
A careful look at the definition of q('), v('), t ( ' )  shows now that the proof of 
(222) is straightforward (compare [8]) for details). 

The proofs of Propositions 1, 3 and 4 can be found in [8] and are omitted 
here. 
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