(C) Springer-Verlag 1987

# A Remark on Almost Sure Convergence of Weighted Sums 

Rolf Thrum<br>Department of Statistics, Humboldt-University at Berlin, Unter den Linden 6, DDR-1086 Berlin, German Democratic Republic

> Summary. As a generalization of a theorem of Chow [1] it is shown by an elementary method that for i.i.d. r.v.'s $X_{1}, \ldots, X_{n}$, with expectation zero and finite $p$-th absolute moment $(p \geqq 2)$ the weighted sums $\sum_{i=1}^{n} a_{n, i} X_{i} / n^{1 / p}\left(\sum_{i=1}^{n} a_{n, i}^{2}\right)^{1 / 2}$ converge to zero a.s.

## 1. Results

The theorem to be presented here is closely related to two theorems of Chow [1].

Theorem 1 (Chow 1966). If $X_{1}, \ldots, X_{n}, \ldots$ are independent identically distributed random variables (i.i.d. r.v.'s) with expectation zero and finite second moment and $\left\{a_{n, i} / i=1, \ldots, n ; n=1, \ldots\right\}$ is a sequence of real numbers satisfying $\sum_{i=1}^{n} a_{n, i}^{2}=1$ for $n \geqq 1$ then $\sum_{i=1}^{n} a_{n, i} X_{i} / n^{1 / 2} \xrightarrow[n \rightarrow \infty]{\longrightarrow} 0$ almost surely (a.s.).

The proof of this and other similar theorems is based on the concept of pseudo-Gaussian variables, on Kolmogorov's strong law of large numbers as well as on truncation techniques (comprehensive theory of pseudo-Gaussian variables can be found in Stout [5]).
Y.S. Chow also modified an idea of Erdös and proved ([1], Theorem 6) the following result, which is a generalization of theorems of Hsu, Robbins, Franck and Hansen.

Theorem 2 (Chow 1966). Suppose that in addition to the assumptions of Theorem $1 E\left|X_{1}\right|^{p}$ is finite for some $p \geqq 2$ and $n^{1 / p} \max \left\{\left|a_{n, k}\right| \mid k=1, \ldots, n\right\}$ is bounded, then $U_{n}=\sum_{i=1}^{n} a_{n, i} X_{i} / n^{1 / p} \quad$ converges completely to zero, i.e. $\sum_{n=1}^{\infty} P\left(\left|U_{n}\right|>\delta\right)<\infty$ for arbitrary positive $\delta$.

Our aim is to generalize Theorem 1 for the case of r.v.'s with finite $p$-th moment.

The method of proof seems to be new and is based on two "elementary" tools. An inequality for moments of quadratic forms is used to apply Beppo Levi's lemma. Secondly, a special summation procedure is defined which allows the application of the law of large numbers given in Neveu [3].

Theorem 3. Suppose that $\left\{X_{i} / i=1, \ldots\right\}$ is a sequence of i.i.d. r.v.'s with expectation zero and finite $p$-th $(p \geqq 2)$ absolute moment and $\left\{a_{n, i} / i=1, \ldots, n ; n=1, \ldots\right\}$ is a sequence of nonrandom weighting coefficients with $\sum_{i=1}^{n} a_{n, i}^{2}=1$ for all $n \geqq 1$. Then $\sum_{i=1}^{n} a_{n, i} X_{i} / n^{1 / p} \underset{n \rightarrow \infty}{\longrightarrow} 0$ a.s.

## 2. Proof of Theorem 3

The square of $U_{n}=\sum_{i=1}^{n} a_{n, i} X_{i} / n^{1 / p}$ is the sum of
and

$$
V_{n}=\sum_{i=1}^{n} a_{n, i}^{2} X_{i}^{2} / n^{2 / p}
$$

$$
W_{n}=\sum_{i \neq j}^{n} a_{n, i} a_{n, j} X_{i} X_{j} / n^{2 / p}: \quad U_{n}^{2}=V_{n}+W_{n}
$$

By Lemma 2 the inequalities $E\left|W_{n}\right|^{p} \leqq C / n^{2}$ hold for every $n$ where $C$ does not depend on $n$. Applying Beppo-Levi's Theorem (see Révész [6], p. 13) it even follows that $\sum_{n=1}\left|W_{n}\right|^{p}<\infty$ a.s. and therefore $W_{n \rightarrow \infty} 0$ a.s. Hence it suffices to show that $V_{n} \xrightarrow[n \rightarrow \infty]{n=1} 0$ a.s. Let us define new r.v.'s $Y_{i}=X_{i}^{2}-E X_{i}^{2}$ and coefficients $b_{n, i}=a_{n, i}^{2} i=1, \ldots, n$,

$$
\tilde{a}_{n, i}=a_{n, i}^{2} /\left(\sum_{i=1}^{n} a_{n, i}^{4}\right)^{1 / 2} \quad i=1, \ldots, n
$$

and denote $\tilde{p}=p / 2$, then $\sum_{i=1}^{n} b_{n, i}=1$ and $\sum_{i=1}^{n} \tilde{a}_{n, i}^{2}=1$. Using

$$
\left(\sum_{i=1}^{n} a_{n, i}^{4}\right)^{1 / 2} \leqq \sum_{i=1}^{n} a_{n, i}^{2}=1
$$

for $\tilde{V}_{n}=\sum_{i=1}^{n} b_{n, i} Y_{i} / n^{1 / \tilde{p}}$ and $\tilde{U}_{n}=\sum_{i=1}^{n} \tilde{a}_{n, i} Y_{i} / n^{1 / \tilde{p}}$ one gets:

$$
\begin{gather*}
0 \leqq V_{n}=\tilde{V}_{n}+E X_{1}^{2} / n^{1 / \tilde{p}}  \tag{1}\\
\left|\tilde{V}_{n}\right| \leqq\left|\tilde{U}_{n}\right| \tag{2}
\end{gather*}
$$

If $p$ belongs to the interval $[2,4)$, then $\tilde{p} \in[1,2) \subseteq(0,2)$ and Lemma 1 can be applied which ensures that $\tilde{V}_{n}$ and by (1) also $V_{n}$ tend to zero a.s. In the case $p \in\left[2^{k}, 2^{k+1}\right.$ ) with a natural number $k>1$ the same argument can be repeated for $\tilde{U}_{n}$ and $\tilde{p}$ with $\tilde{p} \in\left[2^{k-1}, 2^{k}\right)$. The conclusion now follows by induction.

## 3. Remarks and Relationship to Least-Square Estimators

a) Without any additional assumption on the coefficients $a_{n, i}$ the normalizing factor $n^{-1 / p}$ cannot be improved. Indeed, if $a_{n, n}=1$ and $a_{n, i}=0$ for $i<n$ then $n^{-1 / p} X_{n} \xrightarrow[n \rightarrow \infty]{ } 0$ a.s. iff $E\left|X_{1}\right|^{p}<\infty$.
b) From Borel-Cantelli's lemma it follows that the assertion of Theorem 2 is stronger than that of Theorem 3 but the assumption on the $a_{n, i}$ is also more restrictive.
c) The connection to least-square estimators may be of special interest. Under the assumptions of a linear model

$$
Y_{i}=f_{i}^{T} b+X_{i}, \quad i=1, \ldots, n, n \geqq 1, b \in R^{k}
$$

the least-square estimator

$$
\hat{b}_{n}=\left(\sum_{i=1}^{n} f_{i} f_{i}^{T}\right)^{-1} \sum_{i=1}^{n} f_{i}^{T} Y_{i}
$$

is used to estimate $b$. Here it is assumed that $n \geqq k$ where $k$ is the rank of $G_{n}$ $=\sum_{i=1}^{n} f_{i} f_{i}^{T}$. The difference of the $i$-th component of $\hat{b}_{n}$ and $b$ can be written as

$$
U_{n}^{i}=\left(\hat{b}_{n}-b\right)_{i}=\sum_{k=1}^{n} a_{n, k}^{i} X_{k}
$$

where $a_{n, k}^{i}=e_{i}^{T} G_{n}^{-1} f_{k}$ and $e_{i}^{T}=(0, \ldots, \stackrel{i}{1}, 0, \ldots, 0)$.
Under considerably weaker assumptions on the sequence $\left\{X_{k}\right\}$ than those of Theorem 1 recently it was shown by Chen et al. in [8] that

$$
U_{n}^{i} \xrightarrow[n \rightarrow \infty]{ } 0 \quad \text { a.s. iff } \sum_{k=1}^{n}\left(a_{n, k}^{i}\right)^{2}=e_{i}^{T} G_{n}^{-1} e_{i} \xrightarrow[n \rightarrow \infty]{\longrightarrow} 0
$$

They assume that $X_{1}, \ldots, X_{n}, \ldots$ forms a convergence system, i.e. $\sum_{i=1}^{\infty} c_{i} X_{i}$ converges a.s. if $\sum_{i=1}^{\infty}\left(c_{i}\right)^{2}<\infty$. This very deep result depends heavily on the special structure of the $a_{n, k}^{i}$ and cannot be deduced directly from Theorem 3 even if arbitrarily high moments of $X_{1}$ exist. From Theorem 3 it follows only that $\hat{b}_{n} \xrightarrow[n \rightarrow \infty]{ } b$ a.s. if $e_{i}^{T} G_{n}^{-1} e_{i} n^{1 / p}$ is bounded.

But this remains also true for linear models where $f_{i}$ may depend on $n$ while in this case the Theorem of Chen et al. cannot be applied.

## 4. Auxiliary Results

Lemma 1. Suppose that $X_{1}, \ldots, X_{n}, \ldots$ are i.i.d. r.v.'s with $E X_{1}=0$ and $E\left|X_{1}\right|^{p}<\infty$ for some $p \in(0,2)$. Assume that the nonrandom coefficients $b_{n, i}$ fulfill

$$
\sup \left\{\sum_{i=1}^{n}\left|b_{n, i}\right| \mid n \geqq 1\right\}<\infty \text {. Then } \sum_{i=1}^{n} b_{n, i} X_{i} / n^{1 / p} \underset{n \rightarrow \infty}{\longrightarrow} 0 \text { a.s. }
$$

Proof. Define $S_{i}=\sum_{j=1}^{i} X_{j} / i^{1 / p}$

$$
c_{n, i}=(i / n)^{1 / p}\left(b_{n, i}-b_{n, i+1}\right) \quad \text { if } 1 \leqq i \leqq n-1
$$

and

$$
c_{n, n}=b_{n, n} .
$$

Then

$$
\begin{gather*}
\sum_{i=1}^{n} b_{n, i} X_{i} / n^{1 / p}=\sum_{i=1}^{n} c_{n, i} S_{i},  \tag{3}\\
\sum_{i=1}^{n}\left|c_{n, i}\right| \leqq 2 \sup \left\{\sum_{i=1}^{n}\left|b_{n, i}\right| \mid n \geqq 1\right\},  \tag{4}\\
\lim _{n \rightarrow \infty}\left|c_{n, i}\right|=0 \quad \text { for every fixed } i . \tag{5}
\end{gather*}
$$

From (4) and (5) one obtains easily that for every sequence of real numbers $r_{n}$ with $r_{n} \longrightarrow 0$ it holds

$$
\begin{equation*}
\sum_{i=1}^{n} c_{n, i} r_{i-} \xrightarrow[n \rightarrow \infty]{ } 0 \tag{6}
\end{equation*}
$$

By the law of large numbers (see Neveu [3], p.216, Theorem IV.7.1) we have $S_{n} \xrightarrow[n \rightarrow \infty]{ } 0$ a.s.

Combining this with (3) and (6) the assertion follows.
Lemma 2. Suppose that $\left\{X_{n} \mid n \geqq 1\right\}$ is a sequence of independent r.v.'s with $E X_{i}$ $=0, E\left|X_{i}\right|^{2 s}<\infty$ for $i \geqq 1$ and some $s \geqq 1$. Assume that $\left\{a_{i, j} \mid i, j=1,2, \ldots\right\}$ is a double array of real numbers with $a_{i, j}=a_{j, i}$ for $i \neq j$ and $a_{i, i}=0$ for all $i$. Then the r.v.'s $Z_{n}=\sum_{i, j=1}^{n} a_{i, j} X_{i} X_{j}$ have the following properties:

$$
\begin{equation*}
E\left|Z_{n}\right|^{2 s}<\infty \quad \text { for all } n \geqq 1 . \tag{7}
\end{equation*}
$$

The sequence $Z_{1}, \ldots, Z_{n}, \ldots$ is a martingale with respect to the sigma-fields $\mathscr{F}_{n}$ generated by $X_{1}, X_{2}, \ldots, X_{n}$.

$$
\begin{align*}
E\left|Z_{n}\right|^{2 s} & \leqq B(2 s)\left(\sum_{i<j}^{n} a_{i, j}^{2}\left(E\left|X_{i}\right|^{2 s}\right)^{1 / s}\left(E\left|X_{j}\right|^{s}\right)^{1 / s}\right)^{s} \\
& \leqq\left(E Z_{n}^{2}\right)^{s}\left(B(2 s) / 2^{2 s}\right)\left(\max \left\{E\left|X_{i}\right|^{2 s} /\left(E X_{i}^{2}\right)^{2} \mid i=1, \ldots, n\right\}\right)^{2} . \tag{8}
\end{align*}
$$

$B(2 s)$ is a constant which depends neither on $n$ nor on the distribution of $\left(X_{1}, \ldots, X_{n}\right)$.

Proof. Using the inequality

$$
\left|Z_{n}\right|^{2 s} \leqq 2^{2 s}\binom{n}{2}^{2 s-1} \sum_{1 \leqq i \leqq j \leqq n}\left|X_{i}\right|^{2 s}\left|X_{j}\right|^{2 s}\left|a_{i, j}\right|^{2 s}
$$

and the independence of $X_{i}$ and $X_{j}(i \neq j)$ one obtains that $E\left|Z_{n}\right|^{2 s}<\infty$.
The martingale property follows from the recursive formula

$$
Z_{n}=Z_{n-1}+2 X_{n} \sum_{j=1}^{n-1} a_{n, j} X_{j} \quad \text { and } \quad E\left(X_{n} \mid \mathscr{F}_{n-1}\right)=0 .
$$

Define $\quad Y_{k}=\sum_{j=1}^{k-1} a_{k, j} X_{j}$ if $k=2, \ldots, n$, then $(\triangle Z)_{k}=Z_{k}-Z_{k-1}=2 X_{k} Y_{k}$ if $k$ $=2, \ldots, n$. Burkholder's martingale inequality (see Shirjajev [4], p. 489-490) implies

$$
E\left|Z_{n}\right|^{2 s} \leqq\left(B_{2 s}\right)^{2 s} E\left(\sum_{k=2}^{n}(\triangle Z)_{k}^{2}\right)^{s}
$$

where $B_{2 s}$ is a universal constant smaller than $18(2 s)^{3 / 2} /(2 s-1)^{1 / 2}$.
By Minkowski's inequality and because $X_{k}$ and $Y_{k}$ are independent r.v.'s it follows

$$
\begin{aligned}
E\left(\sum_{k=2}^{n}(\triangle Z)_{k}^{2}\right)^{s} & =2^{2 s} E\left(\sum_{k=2}^{n} Y_{k}^{2} X_{k}^{2}\right)^{s} \\
& \leqq 2^{2 s}\left(\sum_{k=2}^{n}\left(E\left|X_{k}\right|^{2 s}\right)^{1 / s}\left(E\left|Y_{k}\right|^{2 s}\right)^{1 / s}\right)^{s}
\end{aligned}
$$

Now an inequality for linear forms due to Whittle [7] can be applied to $Y_{k}$ which yields

$$
E\left|Y_{k}\right|^{2 s} \leqq W(2 s)\left(\sum_{j=1}^{k-1}\left(E\left|X_{j}\right|^{2 s}\right)^{1 / s} a_{k, j}^{2}\right)^{s}
$$

where $W(2 s) \leqq 2^{3 s} \Gamma((2 s+1) / 2) / \pi^{1 / 2}$ and $\Gamma$ denotes the Gamma-function. Finally, let $B(2 s)=\left(2 B_{2 s}\right)^{2 s} W(2 s)$ then

$$
\begin{aligned}
E\left|Z_{n}\right|^{2 s} & \leqq B(2 s)\left(\sum_{k=2}^{n} \sum_{j=1}^{k-1}\left(E\left|X_{j}\right|^{2 s}\right)^{1 / s}\left(E\left|X_{k}\right|^{2 s}\right)^{1 / s} a_{j, k}^{2}\right)^{s} \\
& =B(2 s)\left(\sum_{1 \leq j<k \leqq n}\left(E\left|X_{j}\right|^{2 s}\right)^{1 / s}\left(E\left|X_{k}\right|^{2 s}\right)^{1 / s} a_{j, k}^{2}\right)^{s} \\
& \leqq\left(B(2 s) / 2^{2 s}\right)\left(\max \left\{E\left|X_{j}\right|^{2 s} /\left(E X_{j}^{2}\right)^{s} j=1, \ldots, n\right\}\right)^{2}\left(E Z_{n}^{2}\right)^{s}
\end{aligned}
$$

because of $E Z_{n}^{2}=4 \sum_{1 \leqq i<j \leqq n} a_{i, j}^{2}\left(E X_{i}^{2}\right)\left(E X_{j}^{2}\right)$.
Remark. If there exists $4 s$-th moment of $X_{i}$ then an upper bound for $E\left|Z_{n}\right|^{2 s} /\left(E Z_{n}^{2}\right)^{s}$ can be derived directly from an inequality for quadratic forms given in Whittle [7]. In the case $s=2$ a refined calculation is possible and yields sharper bounds (see [2]).

Acknowledgements. I am grateful to Prof. O. Bunke, Prof. P. Révész, Dr. M. Nußbaum and Dr. W. Schmidt for useful comments. I am also indebted to Prof. H. Läuter for stimulating uniform versions of Lemma 1 and Theorem 3 on the basis of the concept given here (see [9]).

## References

1. Chow, Y.S.: Some convergence theorems for independent random variables. Ann. Math. Statist. 37, 1482-1492 (1966)
2. Kleffe, J., Thrum, R.: Inequalities for moments of quadratic forms with applications to a.s. convergence. MOS, Series Statist. 14, 211-216 (1983)
3. Neveu, J.: Bases mathématiques du calcul de probalités. Paris: Masson (1964). (In russ. Moscow: Nauka 1969)
4. Shirjajev, A.N.: Verojatnost. Moscow: Nauka 1980
5. Stout, W.F.: Almost sure convergence. New York: Academic Press 1974
6. Révész, P.: The laws of large numbers. Budapest: Akadémia kiadó 1967
7. Whittle, P.: Bounds for the moments of linear and quadratic forms in independent variables. Teorija Yerojatnost. i primenen, 5, 331-334 (1960)
8. Chen Gui-Jing, Lai, T.L., Wei, C.Z.: Convergence system and strong consistency of least square estimates in regression models. J. Multivariate Anal. 11, 319-333 (1981)
9. Thrum, R.: Uniform almost sure convergence of Weighted sums and applications in regression models. Paper at the 5-th Pannonian Symposium on Mathematical Statistics. May 20-24, 1985, Visegrád, Hungary (1985)
