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Introduction 

In the pape r cited (1975) MARRIS sought to delimit the steady rotational 
universal complex-lamellar motions* of Navier-Stokes fluids. The conclusions 
of the analysis were summarized by the following theorem. 

Theorem 1.5. Let v (x) be a steady rotational universal complex-lamellar motion 
of a Navier-Stoken fluid. The motion must be one of the following: 

(1) A plane or axi-symmetric motion (i.e. a motion in which the stream-lines are 
meridians and the vortex-lines are lines of  latitude on a family of surfaces of  
revolution). 

(2) A motion whose stream-lines are parallel straight lines. 
(3) A motion whose Lamb surfaces** are general helicoids. The stream-lines 

are geodesics on the helicoids, while the vortex-lines, the geodesic parallels, are 
circular helices. The stream-lines are normal to a family of helicoids. The surfaces 
of  constant vorticity are circular cylinders whose axis is the axis of the helicoids. 
The vorticity magnitude is inversely proportional to the square root of the stream- 
line torsion. 

It was pointed out in the paper that the complex-lamellar circular helical 
motion of STRAKHOVlTCH (1963, p. 102) was a special case of the motion of Theorem 
1.5, Part 3. For this motion the physical components of the velocity and vorticity 
are given in cylindrical co-ordinates as 

d k a r  r d k r  2 
V r = O  , V O = - - q - - -  , V z =  - - - - V  O -  

r 2 a a 2 (I.1) 

o r = 0 ,  ogo = k r, e) ~ = k a, 

where d, k and a are constants. 

* A complex - l ame l l a r  m o t i o n  is a mo t ion  in which the veloci ty and  vort ic i ty  are pe rpend icu la r  
vectors. 

** I. e. surfaces con ta in ing  the s t ream-l ines  and  vortex-l ines.  
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Since the publication of that work it was discovered that the conditions 
associated with Case (3) of Theorem 1.5 lead to a clearer and stronger statement 
than that originally given. It could be proved that the vorticity field for the complex- 
lamellar motions that were not plane, rectilinear or axi-symmetric, was the same 
as the vorticity, field for the circular helical motion given by (I.1). 

Accordingly Theorem 1.5 should be replaced by the following: 

Main Theorem. The only steady, rotational, universal complex-lamellar motions 
of a Navier-Stokes fluid are 

1) Plane or axi-symmetric motions, 
2) Motions whose stream-lines are parallel straight lines. 
3) Motions obtained by superposing a steady isochoric irrotational motion on 

the circular helical motion given by (I.1). 

It was then necessary to determine whether Case (3) offered any viable solutions. 
Definite conditions are required for the superposition to be possible.* In Chapter 3 
we construct the following example: 

2 ( z - a O )  
V r - -  ~ - _ ,  

a r r 

21ogr  d k a r  
Vo - + - - - F - - -  

r r 2 

r 2 log r 
V z ~  - - - - V 0 ~  

a a 

d k r 2 

a 2 ' 

(I.2) 

where vr, Vo and vz are physical components of the velocity referred to cylindrical 
co-ordinates. 

1. Summary of Background Material 
The velocity r = v s, where s is the unit vector tangent to the stream-line, and 

the vorticity o~ = curl v must satisfy the conditions, 

v .~o=0,  (1.1) 

div v = 0 ,  (1.2) 

curl (~ x v) = 0, (1.3) 

curl curl ~o = 0. (1.4) 

Since e and o are not parallel or zero, the condition (1.3) guarantees the exis- 
tence of Lamb surfaces ~0=constant containing the stream-lines and vortex- 
lines in accordance with 

v x co = grad ~. (1.5) 

It was shown that (1.1) and (1.3) require that the stream-lines are geodesics in 
the Lamb surfaces. The vortex-lines are geodesic parallels in the Lamb surfaces. 

* For  an i r ro ta t iona l  mo t ion  IJ 2 to be superposed  upon a c i rcu la t ion-preserv ing  mo t ion  rl  wi th  

vor t ic i ty  ~ol, one mus t  have  (1960, p. 396) 

c u r l ( o l  x r2 )=0 .  
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The unit tangent b to the vortex-line points along the bi-normal to the stream- 
line; thus 

o~=~o b (1.6) 

where ~o is the vorticity magnitude. 

We denote the principal normal and bi-normal to the vortex-line by nb and 
bb, respectively. It was shown that (1975, p. 146) 

(~c + div n) s - 0 n 
b b = (1.7) 

Kb 

and 
- 0 s - ( t c +  div n) n 

nb= , (1.8) 
Kb 

where tc is the stream-line curvature, div n is the first curvature of the Lamb 
surface and 0 = b �9 grad s.  b is the geodesic curvature of the b �9 lines on the Lamb 
surfaces. Two further vector field parameters appeared, the torsion z of the stream- 
line and the quantity ~ = n �9 grad s .  n. The quantity 

K~ b = [(K "~ div ?i) 2 "-~ 02]  �89 (1.9) 

is the curvature of the b-line (vortex-line). 
It was shown that the torsion Zb of the vortex-line was minus the stream-line 

torsion z, 

zb= - - z .  (1.10) 

It was also shown that 

div b=O,  (1.11) 

and it was proved that each of the quantities O, 0, z, ~:, K b, z b, div n, v, and m bears 
a constant value along a b-line. 

One has the representations 

curl s=~cb ,  (1.12) 

curl n = 0  b,- (1.13) 

curl b =(• +d iv  n) s - 0  n - 2 z  b, (1.14) 

formulae which exhibit ~ and tp as the curvatures of the vector-lines of s and n 
and verify that the curvature of the vector-lines of b is as given by (1.9). One 
notes from (1.14) that the abnormali ty of the vector-lines of b has the value - 2  z. 
Hence the vortex-lines will be the orthogonal trajectories of a family of surfaces 
if and only if the motion is plane. 

The following compatibility relations among the vector field parameters 
have to be satisfied: 

6z  
- - + 2 z ( t c + d i v  n ) = 0 ,  (1.15) 
6n 

60 
6n + ( 0 - ~ ) ( ~ c + d i v  n ) = 0 ,  (1.16) 
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f 
fs (~:+div n ) + 0 ( 2 x + d i v  n )=0 ,  (1.17) 

f ' c  

f ~ + 2 0 z = 0 ,  (1.18) 

60 
f ~ -  --t- 02 - -  K7(/s -I- div n) - z2 =0 ,  (1.19) 

fK ~// K2 ~t2 3.c2=0, (1.20) 
6n fs 

6 
fin (~c+div n )+0O+(~c+div  n ) " - ' c 2 = 0 .  (1.21) 

J s  6 In these formulae the symbols ' finn denote the directional derivatives s. grad 
and n. grad. 

Finally it was shown that the vorticity magnitude co must satisfy the conditions 

6 
fs log co = 0 (1.22) 

and 

f 
fin log co=~c+div n. (1.23) 

2. Proof  of Main Theorem 

It is evident from (1.22) and (1.23) that if the vorticity magnitude co is spatially 
constant, then 0 and (~:+div n) are zero. It then follows from (1.21) that ~ is also 
zero. These conditions suffice to ensure that grad b=O (see equation (1.8) of 
(1975)). In this case the vector-lines of b are parallel straight lines and one has the 
case of plane motion. We discount this case and require that co be not constant. 

From (1.8), (1.22), and (1.23), and the fact that co is constant along a b-line, we 
have 

1 
I1 b = - - - -  grad log co. (2.l) 

/s 

The representation (2.1) shows that the vector-lines of n b are the orthogonal 
trajectories of the family of surfaces co = constant. 

Since nb is the principal normal to the vector-lines of b (the vortex-lines), it 
follows that the b-lines are geodesics on the surfaces co= constant. The relation 
(1.7) checks also that the vector-lines of bb, namely the bi-normals to the vortex- 
lines, lie on the surfaces co = constant. 

8Kb 6Zb 
Since ~ -  and 8b- are both zero, the b-lines, being curves of constant curvature 

and torsion, must be circular helices. It follows that the surfaces co = constant are 
circular cylinders. 
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F r o m  (1.8) we have 

curl rib= _ g r a d  ( O )  0 • s - - -  curl s 
Kb (2.2) 

_ g r a d  ( ~ + d i v  n )  K + d i v n  
x n curl n. 

K b K b 

Using the expressions (1.12) and (1.13) for curl s and curl n, the expression (1.9) 
for ~c b and the compat ib i l i ty  condit ions (1.15) to (1.21) we verify that  

curl n b = 0. (2.3) 

It follows that  the vector-l ines of n b are rectilinear. We conclude that  the surfaces 
co = constant  must  be concentr ic  circular cylinders. 

One  m a y  write 
r a 

b = (r 2 + a2)~ e0-t (r 2 + a2)_ ~ ez, (2.4) 

where e 0 and e z are unit vectors  perpendicular  to and parallel to the generators  
of the cylindrical surfaces ~ =  constant.  In the representat ion (2.4) the curvature  
and the tors ion of the vortex-l ine are given by 

r 
K b - -  r2  + a 2  , (2.5) 

and we see that  

a 

rb -- r 2 + a 2 , (2.6) 

272 + I%2 1 
- ( 2 . 7 )  

27b a 

The pa rame te r  a in (2.4) bears a constant  value on a part icular  surface of the 
family r constant .  We claim that  a is, in fact, spatially constant.  Indeed, by (1.9) 
and (1.10) we can rewrite (2.7) in the form 

272 -I- (K -~- div !1) 2 -~- 0 2 1 
- ( 2 . 8 )  

27 a 

Taking  the direct ional  derivative of the left hand side of (2.8) with respect to s 
6a 3a 

and n and using the formulae  (1.15) to (1.21), we verify that  ~ T  and ~2-  - are both  
zero. Hence  a must  be spatially constant .  

Again f rom (1.18) and (1.22) one has 

a 
- -  [ ~ o  2 27] = 0 ,  ( 2 . 9 )  
6s 

while f rom (1.15) and (1.23) 

6 
[co 2 r]  = 0 .  (2.10) 

fin 
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Since 0) and 27 maintain a constant value along a b-line, it follows that 0 )  2 27 is 
spatially constant. We write 

(D 2 27= - - C  (2.11) 

so that by (1.10) 

0)2 27b=c. (2.12) 

From (1.6) and (2.4) and by using (2.6) and (2.12), for the vorticity vector we have 

0)r 0)a 
0) = (r  2 + a2)k eo + ( r  2 + a2)�89 ez = k [-r e0 + a ez], (2.13) 

where 
c ~ 

k = ~ - .  (2.14) a ~ 

Thus the vorticity vector (2.13) is the same as the vorticity vector (I.1) for the 
complex-lamellar circular helical motion of STRAKHOVITCH. 

Consequently, the motion under consideration can only differ from the circular 
helical motion by a superposable steady isochoric irrotational motion. 

This proves the main theorem. 

3. A Particular Solution 

The vortex-lines, whose unit tangent is the bi-normal b to the stream-lines, 
are circular helices on the family of concentric cylinders 0) = constant. The vector- 
lines of the bi-normal bb to the vortex-lines, being the orthogonal trajectories 
of the vortex-lines on the surface, are also circular helices. 

If we write 

f2 b = b. curl b,  f2b~ = b b �9 curl bb, f2,~ = n b �9 curl n b (3.1) 

for the abnormalities of the vortex-lines, their bi-normals and principal normals, 
respectively, then it is known that these abnormalities are connected by the 
formula 

By (1.10) and (1.14) one has 

Also by (2.1), onehas  

f2,,~ + f2b~ = Qb - 2 %.  (3.2) 

f2,b =0 .  (3.4) 

It follows from (3.2), (3.3) and (3.4) that 

f2bb =0 .  (3.5) 

Hence the circular helical vector-lines of bb are the orthogonal trajectories of 
a family of surfaces. The vector-lines of b b are the stream-lines for the complex- 
lamellar circular helical motion of STRAKHOVITCH given by (I.1). Our theorem 

f2 b = - 2 r = 2 27b- (3.3) 
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asserts that the remaining complex-lamellar motions of the class under consider- 
ation are obtained by superposing an isochoric irrotational motion on this flow. 

Using cylindrical co-ordinates, we write 

v = v r e,  + Vo eo + v= e z , (3.6) 

where e~ are unit vectors so that physical components are implied. Since 

m = k  [r e o + a e ~ ] ,  (2.15) 

the condition 

requires that 

Since 

we obtain from (2.15) and (3.7) 

and 

From (3.9) and (3.10) one has 

where 

v.(D=O (1.1) 

V0 (Dz a 

/)z (Do r 

~o = curl v, 

(3.7) 

~l) o ~lJ o 
00 + a  ~-z =0 '  (3.8) 

Ov~ + ~ [r Vo] = k a r, (3.9) 
3z ~r 

00  ~- ~r  ( r v o ) = k a r .  (3.10) 

It follows from (3.7) that 

vo = F(u,  r), (3.12) 

v , =  G(u, r), (3.13) 

u = z - a O .  (3.14) 

r #" 
v= = - - -  vo=- - - -  F(u,  r). (3.15) 

a a 

It is evident from (2.15) and (3.14) that ~o.gradu=0.  Hence the surfaces 
u=constant  contain the vortex-lines. These surfaces are the right helicoids 
orthogonal to the vector-lines of bb. Their existence is guaranteed by (3.5). 

The equations (3.8) and (3.11) are integrated directly to give 

~r ~Vr 
00 i- a ~-z = 0  (3.11) 
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The condition 

o r  

gives, by (3.7), 

so that by (3.8) 

div v=0  (1.2) 

1 0 (rv,) Ov o Or: 
T G- =~ 

0 0 r e OVo 
Or ( rvr )+~Vo a ~zz =0 '  

O aZ+r  2 0/20 
Or (rv,)-t a2 0 0 - 0 .  

From (2.15) we verify that 

curl to = 2 k e~, 
so that 

curl curl to = 0. 

Similarly, from (2.15), (3.6), and (3.7), we obtain 

f o x y = k [  a2+r2a 

and we verify that 

- -  V o e r + a V r e o - - r t ~ r e z ]  , 

(3.16) 

(1.4) 

(3.17) 

and using 

Writing 

a2 + r 2 OI) o 
0 (rv,)+ =0. (3.16) 

Or a 2 00  

ct=rv,, (3.18) 

kar z 
fl=rvo 2 ' (3.19) 

u=z-aO,  (3.14) 

we transform (3.10) and (3.16) respectively to 

Off a 0~ 
Or 4 r 0u - 0 ,  (3.20) 

Oct (a2+r  2) 0fl =0. (3.21) 
Or ar Ou 

These are the equations to be satisfied by the motion. 

and 

by virtue of (3.8), (3.11) and (3.16). 
We conclude that the velocity field given by (3.12) to (3.15) has to satisfy the 

two conditions 
Ovr 0 
00 k Or-r (rV~ (3.10) 

curl (to x v)=O, (1.3) 
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A simple pa r t i cu la r  so lu t ion  is given by 

2 
ct = - - -  u + e, (3.22) 

a 

fl = 2 log r + d, (3.23) 

where 2, e, and  d are  constants .  We  ob ta in  

). ( z - a O )  
V r - -  + , 

a r r 

Vo=2 l o g r  d k a r  
+ + (I.2), (3.24) 

r r 2 ' 

r 2 log r d k r 2 
Uz= - - - - / ) 0  = a a a 2 

This  m o t i o n  reduces to the complex- l ame l l a r  c i rcular  helical  mo t ion  (I.1) when 
and 2 are zero. W h e n  2 is zero, the m o t i o n  consists  of  the circular  helical  m o t i o n  
supe r imposed  by the i sochor ic  i r ro ta t iona l  mo t ion  of a source or  a sink on the 
axis. 
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