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Summary. The introduction of new techniques and the access 
to clonal lines of insulin-secreting cells have enabled re-evalu- 
ation of glucose effects on Ca 2+ movements in pancreatic// 
cells. It became evident that glucose, in addition to stimulating 
the entry of Ca 2+, also promotes active sequestration of the 
ion in intracellular stores and its extrusion from the 13 cells. 
The balance between these processes will determine the activi- 
ty of Ca 2 + in the cytoplasm and consequently the rate of insu- 
lin release. With the demonstration that glucose can not only 
increase but also lower cytoplasmic Ca 2+, it follows that expo- 
sure to the sugar under certain conditions results in a para- 
doxical inhibition of insulin release. In diabetic patients this 

may be manifest as prompt reduction of circulating concen- 
trations of insulin and C-peptide after an intravenous injec- 
tion of glucose. The concept of the dual action of glucose 
might aid in explaining a number of poorly understood phe- 
nomena, such as the induction of rhythmic oscillations of the 
membrane potential of//cells and the fact that their secretory 
response is improved by prolonged exposure to glucose and 
after priming with the sugar. 

Key words: Glucose, cytoplasmic Ca 2+ balance, fl cells, insulin 
release, depolarization, intracellular Ca 2+ sequestration, dia- 
betes. 

Oskar Minkowski provided the first definite proof of a 
relationship between the pancreatic gland and diabetes. 
When receiving the Minkowski award 1969, I felt that 
no topic would be more appropriate for the prize lec- 
ture than the pancreatic islets. The last part of  this lec- 
ture was devoted to the presentation of  in vitro tech- 
niques for exploring the mechanisms for glucose regula- 
tion of insulin secretion, employing fl cell-rich pancreat- 
ic islets isolated from ob/ob-mice [1]. On this occasion, 
interest was focused on how the fl cells recognized glu- 
cose as a secretory stimulus. However, after the chance 
observation that metabolism of the sugar might be 
linked to ion permeability of  the plasma membrane by 
changes in thiol/disulphide balance in a regulatory 
membrane protein [2], most of  the subsequent research 
has been concerned with how glucose affects the/3 cell's 
handling of Ca 2+. 

At the meeting of Minkowski prize winners in Capri 
in 1976 evidence was provided that, in addition to the 
stimulatory cytoplasmic pool of Ca 2+, there also exists 
inhibitory calcium in the plasma membrane [3]. Since 
then, the introduction of new techniques and the access 
to clonal lines of insulin-secreting cells have enabled 
considerable expansion of our knowledge of  Ca 2+ 
movement in the pancreatic/3 cell, culminating in the 
discovery that glucose has dual actions on cytoplasmic 
Ca 2+ activity. In addition to presenting evidence for 
glucose initiation of Ca 2+ movement with opposing ef- 

fects on insulin release, it will be shown how the con- 
cept of cytoplasmic Ca 2+ balance could aid in explain- 
ing the rhythmic oscillations of membrane potential 
and other phenomena resulting from exposure of pan- 
creatic/3 cells to glucose. 

Influx of Ca 2+ 

After the original observations that glucose promotes 
the retention of 45Ca in islets from rats [4] and ob/ob- 
mice [5], the La 3 + wash technique made it possible to 
demonstrate that the radioactivity incorporated in re- 
sponse to glucose is located intracellularly [6]. The ob- 
servation of a substantial islet uptake of 45Ca, non-dis- 
placeable by La 3+, does not necessarily imply that glu- 
cose also increases intracellular calcium content. As a 
matter of fact, we have reason to believe that a major ef- 
fect of  glucose is to stimulate intracellular Ca2+-Ca 2+ 
exchange. Both analysis of islets from rats using a fluor- 
ometric technique [7] and of islets from ob/ob-mice em- 
ploying electrothermal atomic absorption spectroscopy 
[8] failed to demonstrate a glucose-induced increase of 
the total amounts of calcium. Neither was it possible to 
confirm reports [9] about pronounced acute glucose ef- 
fects on the 45Ca content of islets loaded to isotopic 
equilibrium [10]. However, even if most of the glucose- 
stimulated long-term uptake of 45Ca can be explained 
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Fig. L Effects of glucose and excessive K + on the intracellular up- 
take of 45Ca into pancreatic fl cells. Aggregates of cells were prepared 
from p-cell-rich pancreatic islets of ob/ob-mice and incubated for dif- 
ferent periods of time with 45Ca (1.28 mmol/1) in a Hepes-buffered 
medinm without additives (�9 or supplemented with glucose 
(20 re tool / l ;  O) or KC1 (25 mmol/1; I ) -  After exposure to 4SCa, the 
cell aggregates were centrifuged through oil into a cold medium con- 
taining La 3 + (1 mmol/1). Mean values + SEM for four to five experi- 
ments 

in terms of increased turnover of intracellular calcium 
pools, there is no longer any doubt that exposure to the 
sugar can also result in an increased net uptake of Ca 2 + 
into the/~ cells. In ob/ob-mouse islets, maintained at 
isotopic equilibrium, a modest (14%) increase in the 
amounts of La 3 +-non-displaceable 45Ca was observed 
30 min after raising the glucose concentration from 5.5 
to 20mmol/1 [10]. Moreover, it has been possible to 
demonstrate a glucose-stimulated net uptake of Ca 2+ 
both in ob/ob-mouse islets [11] and in insulin-secreting 
clonal RINm5F cells [12] by monitoring alterations of 
the Ca 2+ concentration in a suspension medium con- 
taining lxmol/1 concentrations of the cation. The glu- 
cose-promoted intracellular net uptake of Ca 2+ is not 
necessarily due to increased entry of the ion, but may al- 
so reflect a reduced outward transport. One way to dis- 
criminate between these alternatives is to measure the 
unidirectional influx of 45Ca in short-term experiments. 
Several authors have performed this analysis by incu- 
bating the islets with 45Ca in the presence of extracellu- 
lar space markers [5, 13-15]. In an attempt to reduce the 
problems related to the diffusion of 45Ca into the extra- 
cellular islet space and its surface binding, the tech- 
nique was recently modified to allow the measurement 
of uptake of the isotope by suspended fl cells subse- 
quently washed with La 3 + (N. Wesslrn and B. Hellman: 
unpublished data). Figure 1 presents results obtained 
with this approach. It is evident that glucose is a potent 

stimulator of the entry of Ca 2 + into the/3 cells, although 
the effect is delayed in comparison with that obtained 
after depolarization with K +. 

Efflux of Ca 2 + 

The extrusion of Ca 2+ from pancreatic fl cells is mediat- 
ed both by Na+-Ca 2+ exchange diffusion [16-18] and a 
calmodulin-activated transport system based on a high- 
affinity ATPase [19]. The exploration of the Ca 2+ effiux 
mechanism has been considerably aided by measuring 
the washout of radioactivity from islets loaded with 
45Ca. Using this approach, glucose has been found to 
have both stimulatory and inhibitory effects on 45Ca 
efflux (Fig.2). The dose-response relationship for the 
stimulatory component mimics that of insulin release 
in being sigmoidal with a half-maximal response at 
7-9 mmol/l  [20, 21]. The enhanced 45Ca efflux is also 
similar to insulin release in being associated with depo- 
larization of the/~ cells and requiring the presence of ex- 
tracellular Ca 2+. However, loss of calcium with the se- 
cretory granules during exocytosis can only contribute 
to a minor extent to the observed increase of45Ca effiux 
[22]. Neither does the stimulated 45Ca efflux reflect a 
specific action of glucose in mobilizing intracellular cal- 
cium stores. Other depolarizing agents promoting the 
entry of Ca 2+ initiate an even greater stimulation of 
45Ca effiux. We are therefore left with the alternative 
that the stimulatory component of 45Ca efflux is essen- 
tially due to displacement of 45Ca from intracellular 
binding sites following increased entry of non-radioac- 
tive Ca 2+ [20, 21, 23]. This explanation is in accordance 
with data, already alluded to, indicating that a major ef- 
fect of glucose is to increase the turnover of intracellular 
calcium. Evidently glucose promotion of the intracellu- 
lar 4~ exchange is sufficient to overcome the 
competitive inhibition of the outward transport of 45Ca 
exerted by the entering 4~ Isolated pancreatic islets 
are not unique in responding with a stimulated 45Ca ef- 
flux, when exposed to agents which increase the entry 
of non-radioactive Ca 2+. Similar effects have been ob- 
served during perifusion studies with the posterior pitu- 
itary and adrenal medulla [24]. 

In accordance with the idea that stimulation of 45Ca 
effiux results from increased entry of Ca 2+, a lowering 
of the extracellular concentration of Ca 2+ unmasked 
the inhibitory component of glucose action (Fig.2). 
When the extracellular concentration of Ca 2+ was 
< 0.1 ~tmol/1, only inhibition was observed. The inhib- 
itory component not only precedes the stimulatory 
phase but also disappears more rapidly on omission of 
glucose. Thus, at moderately reduced concentrations of 
Ca 2+, the result is a substantial "off-induced" increase 
of 45Ca efflux (Fig. 2 B). Glucose has been found to in- 
hibit the effiux of 45Ca during perifusion with a 
Ca2+-deficient medium also when the islets are loaded 
to isotopic equilibrium. The observed inhibition cannot 
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Fig.2. Effects of glucose on 45Ca 
effiux from ob/ob-mouse islets 
perifused with different concen- 
trations of Ca 2+. The islets were 
loaded with 45Ca in the presence 
of glucose (20 mmol/1) and peri- 
fused with media containing (A) 
1.2 retool/l, (]3) 0.5 mmol/1 or 
(C) < 0.1 ~mol/1 Ca 2+. The lowest 
concentration of Ca z+ was ob- 
tained by including EGTA 
(0.5 mmol/1) in the medium. Glu- 
cose (20 mmol/1) was introduced 
into the perifusion medium during 
the period indicated by the hori- 
zontal bar. The data are given as a 
percentage of the average 45Ca ef- 
flux during the 10-min period pre- 
ceding the introduction of glucose. 
Mean values + SEM for four 
experiments 

consequently be explained by preferential mobilization 
o f  calcium stores with low specific radioactivity. 

Although it is generally agreed that inhibition o f  
45Ca efflux reflects a true decrease in the rate of  Ca 2+ 
effiux, divergent opinions have been expressed about  
the mechanisms involved. Apart  f rom the original con- 
cept that glucose interferes with the active extrusion of  
Ca 2+ f rom the fl cells [15, 20], the impaired efflux may 
result f rom trapping of  the cation in cellular organelles 
[22]. It is essential for  the understanding of  glucose reg- 
ulation of  insulin release to discriminate between these 
alternatives, because o f  their opposite effects on the cy- 
toplasmic concentrat ion of  Ca z+. Although islets have 
been reported to contain Ca2+-activated ATPase activi- 
ty subject to glucose inhibition [25], the relevance of  this 
observation for the outward transport  of  Ca 2+ remains 
to be proven. We have no reason for believing that glu- 
cose inhibits Ca 2+ efflux by increasing Na + activity in 
the pancreatic fl cells. Instead, it has been postulated 
that glucose inhibition of  the Ca z+ efflux reflects an in- 
creased product ion of  H +, competing with Ca 2+ for ex- 
it by Na+-Ca  2+ counter  transport  [20, 26, 27]. Observa- 
tions in our  laboratory led us to doubt  that glucose in- 
terferes directly with the system for  active extrusion o f  
Ca 2+. It is, for  example,  difficult to reconcile such an ef- 
fect with the finding that inhibition of  the 45Ca efflux 
obtained in the presence of  a low concentrat ion of  glu- 
cose (4 mmol/1) remains relatively unaffected by  alter- 
ations of  the magnitude and even direction of  the Ca 2+ 
gradient across the plasma membrane  [28]. Moreover,  
glucose was found to be equally effective in inhibiting 
45Ca effiux in the absence of  Na  +, when the loss of  in- 

I 
tracellular K + was prevented by replacing Na  + by K + 
[291. 

In addit ion to disproving the arguments for a direct 
inhibitory action o f  glucose on the outward transport  of  
Ca 2+, we have reasons for believing that this process in- 
stead will be stimulated following glucose-mediated en- 
try of  Ca 2+. So far, it has not  been possible to measure 
the unidirectional efflux component  during stimulated 
influx of  the ion. However,  when taking into account  

that the sugar considerably enhances the entry of  Ca 2+ 
(Fig. 1) without much increasing the intracellular con- 
tent of  the element, it can be anticipated that the effiux 
of  Ca 2+ is raised. Indeed,  it is likely that the rate of  the 
outward transport  for  Ca 2+ represents a complex func- 
tion o f  cytoplasmic Ca 2 + activity, as has been postulat- 
ed for other cells [30]. 

Sequestration of  Ca 2+ into intracellular stores 

I f  glucose-induced suppression o f  Ca z+ effiux reflects 
reduction of  the cytoplasmic concentration after organ- 
elle uptake, it should be possible to demonstrate a Ca 2+ 
incorporat ion into the organelles different from that fol- 
lowing depolarization. Experiments with labelling of  
the organelles in situ in the r-cel l-r ich pancreatic islets 
f rom ob/ob-mice indicated that mitochondria  account 
for a considerable part  of  the 45Ca taken up in response 
to glucose [8, 31, 32]. In the intact cells the mitochon- 
drial net uptake of  45Ca was activated even at 4 mmol/1 
glucose, a concentrat ion insufficient for  opening the 
voltage-dependent  Ca 2 channels in the plasma mem- 
brane. Moreover,  the effect of  glucose in retaining 45Ca 
in the mitochondria  could not  be mimicked by intro- 
ducing depolarizing concentrations of  K + in a medium 
deficient in Ca 2+. Since procedures for  raising intracel- 
lular Na  + activity have been found to be effective for 
mobilizing the 45Ca incorporated in response to glucose 
[21, 33], it is pertinent to note that the concentrat ion o f  
Na + is an important  denominator  for the net accumula- 
tion of  Ca 2 + in mitochondria  isolated both  from normal 
islets [34] and a rat insulinoma [35, 36]. The B-cell mito- 
chondria  can be expected to be particularly active in 
buffeting Ca 2+ under  conditions of  raised cytoplasmic 
concentrations of  this ion. The set point  for Ca 2+ buf- 
fering by isolated insulinoma mitochondria  has been es- 
t imated as 0.9 gmol/1 [35], a concentrat ion five to nine- 
fold that of  the cytoplasm in the unstimulated fl cell. 

Glucose, but  not  excessive K +, p romoted  the net 
uptake of  Ca 2+ into insulin-producing cells, when the 
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Fig.3. Effects of carbamylcholine on 45Ca effiux during perifusion 
with glucose-containing medium deficient in Ca 2+. The islets were 
loaded with 45Ca in the presence of glucose (20 mmol/1) and perifused 
with a CaZ+-deficient medium supplemented with EGTA (0.5 mmol/ 
1) and glucose (20 mmol/1). Carbamylcholine (100 Ixmol/1) was intro- 
duced during the periods indicated by the horizontal bars. The data 
are given as percentage of the average 45Ca effiux during the 10-min 
period preceding the first introduction of carbamylcholine. Mean val- 
ues _ SEM for four experiments are shown 
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Fig.4A and B. Effects of glucose on the cytoplasmic Ca 2+ activity in 
suspended fl cells. Isolated cells were prepared from t-cell-rich pan- 
creatic islets of ob/ob-mice and loaded with the fluorescent indicator 
quin-2. At zero time glucose (20 retool/l) was added to a Hepes-buf- 
fered medium containing A 1.20 or B 0.20 retool/1 Ca 2+. Open sym- 
bols and dotted lines indicate the Ca 2+ activities expected without 
modifications of the media. Mean values _ SEM for 11 (A) and four 
(B) experiments respectively. Statistically significant differences ob- 
tained with the modifications of the media are indicated by *p < 0.05 
and ***p < 0.001. Reproduced from Rorsman et al. [39] 

ion was present  in concentrat ions o f  10-20 ktmol/1 [11, 
12]. This observat ion has encouraged the search for 
non-mitochondr ia l  uptake  o f  Ca  2+ stimulated by  glu- 
cose. During perifusion of  islets f rom ob/ob-mice  with 
a CaZ+-deficient medium,  muscarinic  receptor  stimu- 
la t ion with carbamylchol ine  resulted in an immediate  
mobil izat ion of  45Ca, provided that  the islets had  been 
exposed  to glucose (B. He l lman  and E. Gylfe,  unpub-  
lished data). This might  indicate high affinity accumula-  
t ion of  Ca  2+ in the carbamylcholine-sensi t ive pool,  im- 
plying that  the pool  was also filled during perifusion 
with the Ca2+-deficient medium.  It  was consequently 
possible to induce a second peak  of  st imulated 45Ca ef- 
flux, when  carbamylehol ine  was re- introduced into the 
perifusion med ium supplemented  with glucose (Fig. 3). 
Muscar inic  st imulation of  the polyphosphoinosi t ide  
b reakdown  m a y  initiate a p r o m p t  mobil izat ion of  a sep- 
arate pool  o f  calcium in the pancreatic/3 cells by  a num- 
ber  of  mechanisms.  The rapid  response is, for  example,  
compat ib le  with both  release of  calcium bound  to the 
inner face of  the p lasma  m e m b r a n e  and  mobil izat ion of  
calcium f rom the endoplasmic  reticulum media ted  by  
inositol 1,4,5-triphosphate. In  support  for  part icipat ion 
of  the endoplasmic  reticulum, the carbamylchol ine  ef- 

fect was found to depend  on uptake  of  Ca  2+ p romoted  
by  K + but  not by  N a  +. 

Cytoplasmic Ca 2+ activity 

With the introduction o f  the fluorescence indicator 
quin-2, it has been  possible to measure  directly the cyto- 
plasmic Ca  2+ activity associated with alterations of  in- 
sulin release. Basal Ca  2+ activity was found  to be 
100-180 nmol/1 in clonal t u m o u r / 3  cells [37, 38] and 
normal  fl cells f rom ob/ob-mice  [39], and it increased 
substantially during st imulation of  insulin release. The 
effect o f  glucose on normal  fl cells is shown in Figure 4. 
It  is evident that, in addit ion to raising cytoplasmic 
Ca  2+, the sugar also has the ability to lower the activity 
o f  this ion. The latter ,effect became apparen t  when pre- 
venting the glucose-mediated entry of  Ca  2+ by  either 
lowering the extracellular concentrat ion o f  the ion or 
blocking the potent ia l -dependent  Ca  2+ channels with 
D-600. 

The observations described so far make  it possible 
to summarize  the principal  actions of  glucose on the cy- 
toplasmic Ca  2+ activity as shown in Table 1. It  is evi- 



498 

Table 1. Principal actions of  glucose on  Ca  2+ movement  in pancreat ic  fl cells 

Property studied Action of  glucose Latency of  effect 
(s) 

Entry of Ca 2+ Stimulation 
Intracellular sequestration of Ca 2+ Stimulation 
Outward transport of  Ca 2+ Stimulation 

60 
10-20 

> 6 0  
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Threshold concentration for Alteration of 
the effect of glucose cytoplasmic Ca 2 + 
(retool/l) activity 

5 Increase 
0 Decrease 
5 Decrease 
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dent  that the available data  call for  a reconsiderat ion o f  
previous ideas that Ca 2+ mobilization from intracellu- 
lar stores is a factor in glucose-stimulated insulin release 
[15, 36] and that the sugar inhibits the outward transport  
f rom the pano'eat ic/3 cells [15, 20]. Since glucose appar- 
ently has the opposite effect, its action on  cytoplasmic 
Ca 2+ activity instead will reflect the balance between 
increased entry of  Ca 2+ and the enhanced removal of  
the ion f rom the cytoplasm by intracellular trapping 
and outward transport.  It is important  to note that glu- 
cose stimulation of  these three important  Ca 2+ move- 
ments occurs with different latency (Table 1). As sug- 
gested f rom the 45Ca efflux studies, and in accordance 
with the measurements o f  cytoplasmic Ca 2+ activity, the 
intracellular sequestration of  Ca 2+ can be expected to 
be manifest  earlier and at lower concentrations of  glu- 
cose than those which facilitate Ca 2+ influx with subse- 
quently increased outward transport.  

Inhibition of insulin release 

Glucose is the major  physiological stimulator of  insulin 
release. However,  it follows from its ability to lower 
the cytoplasmic Ca 2+ activity that, under  certain condi- 
tions, the sugar may also inhibit insulin release. Indeed,  
we have demonstrated an apparently paradoxical  inhib- 
ition o f  insulin release in a number  of  experimental  situ- 
ations. Although it was not  commented  on at the time, 
glucose inhibition of  insulin release was already ob- 
served in a Ca2+-deficient medium 10 years ago [40]. 

In view of  the small effects of  suppressing an al- 
ready low cytoplasmic Ca 2§ activity, it is not  surprising 
that the inhibitory component  in glucose action on insu- 
lin release has essentially escaped notice. When search- 
ing for experimental  procedures  to demonstrate an in- 

Fig.5A and B. Insulin secretory response to different 
concentrations of glucose in the absence (A) or presence 
(B) of D-600. Islets. from ob/ob-mice were cultured 
for 3 days in Ca2+-deficient RPM11640 medium 
supplemented with glucose (1 mmol/1), 10% serum 
and EGTA (0.2 mmol/1). After culture the islets were 
exposed to different concentrations of glucose during 
60 min of incubation in the same type of medium 
containing Ca 2+ (0.42 mmol/1) and albumin (1 mg/ml). 
Culture and subsequent incubations of the islets were 
performed either in the (A) absence or (13) presence of 
D-600 (50 Fmol/1). The amounts of insulin released 
during the incubation period are presented as mean 
values + SEM for 10 experiments. Statistically 
significant differences from control media lacking 
glucose are indicated by *p < 0.02 and **p < 0.005 

hibitory action of  glucose on insulin release, it was con- 
sidered important,  therefore, not only to counteract  the 
glucose-mediated entry of  Ca 2+ into the fl cells, but also 
to perform the studies under  conditions in which the cy- 
toplasmic Ca 2+ activity was raised. In this way, glucose 
was found  to inhibit the release o f  insulin obtained by 
N a  + mobilization of  intracellular Ca ~+ [33]. The inhib- 
itory component  in the glucose action on insulin release 
could also be clearly demonstrated after increasing the 
Ca 2+ permeability of  the fl cells by prior culture of  the 
islets in a Ca2+-deficient medium [41]. Some of  the re- 
sults obtained when using this approach are shown in 
Figure 5. Thus glucose (6 mmol/1) significantly inhib- 
ited insulin release, whereas a maximally depolarizing 
concentrat ion of  the sugar was stimulatory (Fig. 5A). 
The addit ion of  D-600, a blocker  of  the voltage-depen- 
dent Ca 2+ channels, modif ied the secretory response to 
glucose (Fig. 5 B). In the latter case glucose became in- 
hibitory even at a concentrat ion of  20 mmol/1. The pres- 
ence of  D-600 had consequently t ransformed a stimula- 
tory action of  glucose into inhibition, an observation 
reinforcing the idea that entry of  Ca 2+ through the volt- 
age-dependent  channels is the mechanism initiating in- 
sulin release. 

Functional significance of the cytoplasmic Ca 2+ balance 

The discovery of  opposing actions of  glucose on cyto- 
plasmic Ca 2+ activity might aid the understanding of  
several unresolved questions related to the fhnction of  
the islets in normal and diabetic organisms. Some im- 
portant  phenomena  supposedly depending on the 
promot ion of  the intracellular sequestration of  Ca 2 + by 
glucose are given in Table 2. 
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Since lowering cytoplasmic Ca 2+ activity has al- 
ready been suggested as a decisive factor in glucose-in- 
duced oscillations of membrane potential [42-44], it is 
noteworthy that in the present model the time-average 
effect of high concentrations of glucose is to increase 
cytoplasmic Ca 2+ activity. However, for glucose con- 
centrations up to 5 mmol/1, it is implicit from the con- 
cept of Ca 2 + balance that there will only be suppression 
of cytoplasmic Ca 2+ activity. With the acceptance of a 
Ca2+-dependent K + conductance of the fl cell plasma 
membrane [42-44], it is easy to understand how a reduc- 
tion of cytoplasmic Ca 2+ resulting from intracellular 
buffering will initiate depolarization. Glucose concen- 
trations above 5 mmol/1 further increase the Ca + buf- 
feting, resulting in additional depolarization with bursts 
of  action potentials related to the opening of voltage- 
dependent Ca2+-channels. Lowering the cytoplasmic 

Table 2. Phenomena postulated to be related to glucose promotion of 
intracellular sequestration of Ca 2+ 

Depolarization induced by Ca 2 +-regulated K + permeability with sub- 
sequent influx of Ca 2+ into pancreatic fl cells. 

Appearance of a progressively increasing second phase of insulin re- 
lease. 

Potentiation of glucose-stimulated insulin release after priming with 
the sugar 

Demonstration of a paradoxical glucose inhibition of insulin release 
in certain cases of defective fl cell function. 

Glucose-induced inhibition of glucagon release from pancreatic a 
cells. 
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Ca 2 + activity to below the resting level will consequent- 
ly be a phenomenon that only occurs during a short pe- 
riod preceding the burst. When the glucose concentra- 
tion is raised further, there is a concomitant increase of 
the sequestration and outward transport of Ca 2+, result- 
ing in prolongation of the bursts. A continuous burst 
pattern emerges at maximally stimulating concentra- 
tions of glucose, when the processes for elimination of 
Ca 2+ from the cytoplasm balance the influx. Even if the 
time-average Ca 2+ activity reaches a maximum in the 
latter situation, the highest peak activities occur at con- 
centrations of glucose which stimulate secretion sub- 
maximally. The fact that regulation of K + conductance 
by Ca 2+ can in itself explain the depolarizing effect of 
glucose by no means excludes the existence of addi- 
tional mechanisms by which the sugar affects the mem- 
brane potential. Recent patch clamp studies have dem- 
onstrated that the fl cells also possess K+-selective 
channels, which are rapidly and reversibly blocked by 
cytoplasmic ATP [45, 46]. 

The intracellular buffering of Ca 2+ can be expected 
to be less pronounced with time due to a limited capaci- 
ty for sequestration. The concept of  a dual action of glu- 
cose might thus explain its ability to induce an increas- 
ing second phase of insulin release and the fact that the 
secretory response is improved after priming with the 
sugar. The cyclic burst pattern of the electrical response 
persists during prolonged exposure to glucose, a con- 
dition supposed to be associated with saturation of 
the intracellular buffering system. It is likely therefore 
that the calmodulin-dependent plasma membrane 
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Fig. 6A and B. Effects of intravenous (A) glucose 
(300 mg/kg body weight) and (B) tolbutamide (1 mg) on 
the serum levels of glucose, insulin and C-peptide in a 
14-year-old girl with mild diabetes. Reproduced from 
Hellman et al. [50] 
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C a  2 + - A T P a s e  is deactivated more slowly than the cyto- 
plasmic C a  2+ activity decreases. Such a mechanism 
should lead to reduction of cytoplasmic C a  2 + below the 
resting activity with subsequent initiation of depolariza- 
tion. When glucose is omitted, release of Ca 2+ from the 
sequestrating organelles prevents a rapid decrease of 
the cytoplasmic Ca 2+ activity so that there is time for 
the plasma membrane Ca 2+ ATPase to adapt to the new 
situation. 

The effect of glucose in promoting intracellular se- 
questration can be changed to be more easily recog- 
nized under conditions, when metabolism of the sugar 
is unable to initiate the depolarization of/3 cells. The ob- 
servation of a glucose-induced inhibition of insulin re- 
lease in itself suggests a defect in/3 cells which may be 
significant for their ability to counteract diabetes. It is 
evident from recent studies in our laboratory (unpub- 
lished data) that the normal insulin secretory response 
to glucose can be altered into an inhibitory action in the 
presence of diazoxide, a compound supposed to coun- 
teract the depolarizing action of glucose [47]. Further 
evidence that impairment of/3 cell function may be ap- 
parent as a paradoxical inhibition of insulin release has 
been obtained in studies of the perfused pancreas from 
rats made diabetic with alloxan (W. Grill: personal com- 
munication). 

Whereas glucose-stimulated entry of Ca 2+ can be 
regarded as specific for pancreatic/3 cells, the promo- 
tion of intracellular sequestration of C a  2+ by the sugar 
might be a phenomenon of more general relevance. 
When rapidly metabolized, glucose also potentially 
lowers the cytoplasmic Ca 2+ activity in other cells. It is 
still an open question whether such a mechanism ac- 
counts for the inhibitory action of glucose on the release 
of glucagon from pancreatic a cells. If this is the case, 
the excessive glucagon secretion in diabetes can be ex- 
plained by saturation of the intracellular buffering sys- 
tem for calcium following prolonged exposure to raised 
concentrations of glucose. 

In the light of the available data, it cannot be ruled 
out that glucose-induced suppression of circulating in- 
sulin is due to endogenous production of a non-adren- 
ergic inhibitor of secretion, such as somatostatin. How- 
ever, at least in certain cases of diabetes, it seems likely 
that the reduction of serum insulin reflects glucose-in- 
duced inhibition of insulin release mediated by lower- 
ing of cytoplasmic Ca 2+ in analogy to the observations 
made in the experimental studies. Although sulphonyl- 
urea compounds are known to promote the release of 
somatostatin [51], tolbutamide was found to be a potent 
stimulator of insulin release in the patient demonstrated 
in Figure 6. Sulphonylureas are depolarizing agents, 
which promote the entry of Ca 2+ by opening the volt- 
age-dependent channels in the/3 cell membrane [21, 24, 
52]. The patient could, therefore, be an example of a sit- 
uation, where the inhibitory component in the glucose 
action on insulin release was unmasked due to interfer- 
ence with the depolarizing action of the sugar. 
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