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Abstract. Infection by one strain of  influenza type A provides some protection 
(cross-immunity) against infection by a related strain. It is important to 
determine how this influences the observed co-circulation of comparatively 
minor variants of  the H1N1 and H3N2 subtypes. To this end, we formulate 
discrete and continuous time models with two viral strains, cross-immunity, 
age structure, and infectious disease dynamics. Simulation and analysis of  
models with cross-immunity indicate that sustained oscillations cannot be 
maintained by age-specific infection activity level rates when the mortality 
rate is constant; but are possible if mortalities are age-specific, even if activity 
levels are independent of  age. Sustained oscillations do not seem possible for 
a single-strain model, even in the presence of age-specific mortalities; and 
thus it is suggested that the interplay between cross-immunity and age-specific 
mortalities may underlie observed oscillations. 
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1. Introduction 

Infectious diseases like measles and influenza have several features in common; 
they cause recurrent epidemics and have strongly age-dependent contact rates. 
However, there are important  differences. Measles is generated by a single 
infectious viral agent and hence individuals acquire permanent  immunity after 
recovery. The situation with influenza is much more complex (see Kilbourne 
1975; Palese and Young 1982; Beveridge 1977; Selby 1976; Stuart-Harris and 
Schild 1976; Dowdle et al. 1974; Fox and Kilbourne 1973). There are three major 
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recognized types of influenza: A (the most severe), B, and C; and each has various 
subtypes. For example, three recognized subtypes of type A - -  H1N1, H2N2, 
and H3N2 - -  have been isolated from man; and there are several recognized 
strains (comparatively minor variants) within each subtype. The appearance of 
several strains is due to the capacity of influenza viruses to change their antigenic 
structure (see Webster et al. 1982), which effectively allows them to circumvent 
individuals' immune responses. Unfortunately, the development of vaccines and 
vaccination programs, which have been successful for diseases such as smallpox, 
measles and poliomyelitis, is greatly complicated by an ever-changing virus. 

In general, influenza (A) epidemics have severe effects on the human popula- 
tion and occasionally are responsible for pandemics, such as the infamous one 
of 1918, which affected 30% to 60% of the population. These pandemics could 
result from the generation of novel subtypes, or they could result from high 
population susceptibility to a reappearing old subtype. In the latter case, as for 
the reappearance of the H1N1 subtype in 1977-78, the inter-epidemic time must 
depend on the time for a sufficient susceptible pool to develop. 

Because of the complexity and severity of the disease, it is of utmost importance 
to determine the mechanisms responsible for the dynamics of influenza. The 
observed patterns associated with influenza include: secondary waves striking a 
community soon after a first attack, epidemics (occurring annually between 
pandemics and involving successive drift variants of previous pandemic subtypes), 
and worldwide pandemics occurring at approximately 10-to-40-year intervals 
(Fine 1982). Central issues currently under exploration by various investigators 
include study of the extent that these patterns reflect the influence of antigenic 
variants, community structure, weather, and/or geography. 

A specific question of interest to us deals with the possible mechanisms 
underlying the recurrence of epidemics and the persistence of co-circulating virus 
types between pandemics. In related work, Liu (1989) extends these approaches 
to consider the interaction of the human population with other host populations, 
which may be a source of recombinants or mutants. 

In Sect. 2, we introduce a two-strain discrete-time model with cross-immunity. 
This model incorporates age structure via a contact matrix (under the assumption 
of proportionate mixing) and age-specific mortality. This model has been used 
primarily as an exploratory simulation tool in our attempts to understand the 
dynamics generated by the highly heterogeneous interactions of this host- 
pathogen system. The results of extensive but not exhaustive simulations, also 
recorded in this section, show extremely complicated dynamics, ranging from 
damped oscillations and sustained periodic behavior to chaotic behavior, depend- 
ing on the degree of cross-immunity between strains and on the age-step used. 
Because of the difficulty in analyzing this model, we turn in the following sections 
to continuous versions, and systematically incorporate some of the complexities 
of the discrete-time model. Differences remain, however, some of which relate 
to inherent properties of discrete-time models; therefore, some issues remain 
unresolved. 

In Sect. 3, we extend the Dietz-Elveback continuous time model (see Dietz 
1979) for homogeneous populations to include two strains with different degrees 
of cross-immunity. Our mathematical analysis of this model indicates results 
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Fig. 1. Transfer diagram for a single viral strain on a single 
host population. The variables S , / ,  and R denote the number 
of  susceptible, infected, and recovered S ~ 1  # R .  

coincident with the dynamic behavior observed in our simulation model with 
age structure removed. Sections 4 and 5 consider a one-strain continuous model 
with age structure. A threshold condition is computed, and a Lotka-like charac- 
teristic equation is obtained. We then proceed with a preliminary local stability 
analysis of  the steady-state age distributions and establish (numerically) the 
impossibility of bifurcating periodic solutions for a two-step age-specific contact 
rate. After a continuous two strain age-dependent model with partial cross- 
immunity is introduced in Sect. 6, we proceed to obtain partial local stability 
results for a particular case of the continuous two-strain age-dependent model, 
We then comment on the relevance of these results to epidemiological studies.. 
Finally, in a series of appendices, we collect the mathematical details and show 
that the models introduced in Sects. 4 and 6 are well-posed. 

2. The two-strain simulation model 

The model presented in this section subdivides the population into discrete age 
classes, and incorporate age-specific mortalities and contact rates, discrete time 
steps and age-dependent disease dynamics. To introduce the algorithm for the 
model, we need some notation. In what follows, the sub-index i indicates that 
the corresponding class has been infected by or recovered from strain i. In Fig. 
1 the standard transfer diagram for an SIR model is depicted. If  two related 
strains of a virus such as influenza are co-circulating in a population, then 
individuals who have been infected by one strain may have partial immunity (i.e. 
decreased susceptibility) to the other strain (see Castillo-Chavez et al. 1988; 
Couch and Kasel 1983). Assume that individuals, while infected with one strain, 
temporarily are not susceptible to the other, either because of temporary immunity 
or because of  isolation from the rest of  the population. Assume further that an 
individual, once recovered from one strain of influenza, has permanent immunity 
to that strain but is susceptible to the other strain with, perhaps, a reduced level 
of susceptibility due to partial immunity. 

In the transfer diagram (Fig. 2), X is the susceptible class, Y~ denotes those 
infected by strain i but still susceptible to the other strain, and Z~ denotes those 

Fig. 2. Transfer diagram for ~wo co-circulating viral strains or 
subtypes on a single host population. The variables X, Y~, Z~, 
V~ and W are defined in the text 

X ~ Y  ,~Z 
1 I 

Y V 
2 

2 

Z ~ V  ~ W  
2 1 
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recovered from strain i. We introduce % as the relative susceptibility to strain j 
( j  ~ i) for an individual that has been infected by i. Note that o- = 1 corresponds 
to no cross-immunity, whereas o-= 0 corresponds to total cross-immunity. V~ 
denotes those infected with strain i but recovered from the other strain, and W 
denotes those recovered from both strains. 

The population is divided into 80 one-year (360 day) age classes or compart- 
ments, with a fixed (steady-state) fraction Fk of the population being in compart- 
ment k. Note that, as is standard in such models, we balance births and deaths 
to hold population size constant; since there is no disease induced mortality 
assumed, we also assume a stationary age distribution. In general, then, Fk+~ = 
PkFk, where Pk is the survival probability from year k to year k +  1. Let X~, Y~k, 

t t t t t Y&k, Zlk, Z2k, Vlk, V2k and W~ be the fractions of  the total population at time 
step t in age compartment k and the indicated epidemiological class. Note that 

X k - ] -  t t t t t t t Y l k  + Y2k"[- Z l k  q- Z2k-~- Vlk-I- V2k'+ Wk  ~- F k 

for all t and all k. The daily activity level a k of age group k is a measure of the 
relative amount of mixing done by age group k .when compared to other age 
groups. The proportionate mixing assumption specifies that the number of daily 
contacts of  an infective in group l is proportional to activity level al, and that 
these contacts are spread among the age groups in proportion to their activity 
levels ak. Thus the daily contact rate of an infective in group l with individuals 
in group k is proportional to akat. The incidence into Zil is similarly structured. 

Motivated by the fact that the average infective period of influenza lies between 
2 and 6 days, we have used a time step of 3 days. Our preliminary investigations 
of the effects of the time step, however, indicate that the choice of time step may 
be of crucial importance, especially as the time step is reduced to zero. It is clear 
that thi s requires further examination, especially to the extent that it affects the 
quantitative results. We introduce the infection at time step 0 by assuming that 
a fraction ~7 of  the individuals in each compartment and class are infectious, and 
the remainder are susceptible. At time step t, the total infectivity of strain i is 
calculated as T~ = ~8o v~,), Yil + 1=1 ak( t i = 1, 2. Let/3i be the incidenceproportionality 
factor for a three-day period for strain i. This means that the incidences into the 
appropriate four age compartments k due to the infectives of each strain at time 

vt+l is fllakX~kT1 the incidence into step t are as follows: the incidence into ~lk 
yt+l  i r t + l  t 2k is t92akX~kT2, the incidence into --lk is oq[3~akZ2T~ and the incidence into 
W+~ is ' make a 2k o'2,82akZ~T2. We simplification for computational purposes by 
ignoring age structure within each 30-day month. All infectives recover after three 
days and move into the removed classes. After every 10 three-day time steps (one 
month), the fractions within each class in each subcompartment are adjusted to 
correspond to natural aging and mortality. Thus (1 - P k ) / 1 2  of individuals in the 
susceptible, infectious and removed classes in age compartment k are removed 
due to mortality, and the survivors are moved into the same epidemiological class 
in age compartment k + 1. After all classes and compartments from age compart- 
ment 80 down to age compartment 1 have been adjusted, susceptible newborns 
are introduced; to account for these, we add Ft/12 to X~. 
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In order to approximate the age distribution in a developed country, we have 
chosen the fractions in the age compartments to be 

f 1-0.2k/50, 1 ~< k<~ 50 
Fk = { "(0.8_0.8(k_50)/30, 50~< k~< 80 

(2.1) 

so that 80% survive to age 50 and none survive past age 80. One should, of 
course, explore other functional forms. The most important aspect of  (2.1) is that 
it differs qualitatively from an exponential model, which has age-independent 
mortalities. The activity levels are chosen for five age categories: preschool (age 
1 to 5), elementary school (age 6 to 12), se~ n d a r  sc ol a e 13 o-18), adults 
(age 19 to 60) and-srnior citizens (age (~1~o 100). One would expect that the 
activity levels would be  highest for the sch~o~l~hildren ffndqowest  fo r the  senior 
citizens. For these five groups, activity leve R 6s 4: 8 : 4: 2: 1 are consistent with 
the non-proportionate mixing contact matrices~used by Longini et al. (1978) and 
Schenzle (1985). Other activity levels are also considered, as shown in Table 1. 
The incidence proportionality factors r ;  are chosen so that the calculated inci- 
dences are consistent with observed incidences for influenza. The 640 susceptible, 
infectious and removed class-compartments must be updated every time step; 
therefore, our analysis has been facilitated by implementation on the Cornell 
supercomputer (IBM 3090/4) with FPS (floating point system) array processors, 
because of  its parallel processing capability. We emphasize that the numerical 
results for the two strain model to be discussed below are from the discrete time 
simulation model, and depend critically on the choice of time step. 

The simulations indicate that for the symmetric contact case (0- = or 1 = 0"2, 8 --~- 

8l = 82 = 0.2), if the two strains are strongly coupled, i.e. 0" is small, the system 
goes through cycles with a period of 10-20 years, where each cycle may contain 
several outbreaks followed by a period with very low disease levels (Fig. 3). For 
intermediate coupling (0.33<~ o-<~ 0.8), we observe regular cycles with a period 
of about 40 months (Fig. 4) and with amplitude that increases with o-. For large 
0- (oq = o-2; 0 .8~ < o-~ < 1.0), the amplitude decreases as the two strains become 

Table 1. Dominant eigenvalues for the non-trivial equilibrium in the 
one-strain age-structure model with proportionate mixing for different 
sets of activity levels. The first column (A) shows the activity levels for 
the different age categories; the second gives the incidence proportionality 
factors (/3); the third gives the equilibrium proportion of infected 
individuals (I) ;  and the fourth and fifth give the real and imaginary parts 
of the dominant eigenvalues. For more details see the text 

A fl I a b 

1 :4 :4 :4 :4  0.10 7.2x 10 -5 -3 .1x  10 -4 
1 :1 :1 :1 :1  2.95 1.3x 10 -4 - 2 . 7 x  10 -4 
1 :8 :1 :1 :1  0.23 1.2x 10 -4 - 2 . 8 x  10 -3 
1 :4 :4 :4 :8  0.195 1.3x10 -4 - 3 . 0 x  10 -4 
4 :8 :4 :2 :1  0.10 7.4x 10 -5 -1 .9x  10 -3 
4 :8 :4 :2 :1  0.13 1.1x 10 -4 - 9 . 0 x  10 -4 
4 :8 :2 :4 :1  0.15 1.2x 10 -4 -9 .0x  10 -4 

0.11 
0.19 
0.35 
0.21 
0.15 
0.22 
0.25 
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Fig. 3. Proportion of  the populat ion 
infected with strain 1, 11 when ~ = 0.05; 
i.e. very strong cross-immunity.  The 
incidences of  the two strains are 
strongly coupled and the system will go 
through cycles with a period of  20 years, 
fl = 0.20 and the infectious period 
t=  time step) is 3 days 

antigenically unrelated. In the transition between strong and intermediate coup- 
ling (tr ~ 0.32), the system exhibits complicated dynamics, indicating a complex 
interaction between age-structure and cross-immunity (Fig. 5). When the two 
strains have equal cross-immunity coefficients and different transmission rates 
] ~ 1  ~ f12, we observe that the amplitude of the regular oscillation decreases for 
increasing Ifll - #21 (Fig. 6a, b). This indicates that as two strains become different, 
the diseases decouple and effectively act as two independent strains. In contrast, 
fo r  equal transmission coefficients but different coefficients of cross-immunity 
o-~ ~ tr2, the changes in the cycles are less pronounced (Fig. 7). The introduction 
of transmission rates that oscillate with small amplitudes due to natural seasonal 
fluctuations does not change qualitatively the observed periodic behavior for the 
appropriate parameter range (Fig. 8). The use of slightly fluctuating transmission 

i 

i i , , 
0.0 5.0 I 0.0 1 5.0 20.0 

'~ I n  y e o r s  

Fig. 4. Proportion I, of  the populat ion 
infected with strain 1, when o-= 0.34 
(smaller amplitude),  a = 0.4 
(intermediate amplitude),  and cr = 0.5 
(larger amplitude).  For these 
intermediate values of  cr, 11 cycles with 
a period of  3 to 4 years (/~ = 0.20 and 
infectious period is 3 days) 
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Fig. 5. For 0" = 0.32 and/3 = 0.20, 
the model exhibits very 
complicated dynamics, switching 
between two unstable spirals. The 
trajectories are shown here in the 
coordinate system (11(0, 
I,(t+ T,), l l ( t +  T2)), r 1 =300 
days, T 2 = 600 days. Note that T 1 
is about half the period of the 
oscillation and T 2 = 2 7"i. 
Coordinate systems of  this kind 
were proposed by Ruelle and 
Takens (1971) and first used in 
ecological models by Schaffer 
and Kot (1985). Technically and 
practically, Ruelle-Takens' 
coordinate systems may provide 
more insightful dynamical 
representations 

l(t) 

I(t+T~) 

I(t+T 2) 

rates can also be seen as the formal superposition of a forcing term to check the 
structural stability of  the observed periodic solutions. For an extensive discussion 
of this model see Andreasen (1988). 

To understand better the mechanisms behind the observed sustained oscilla- 
tions, we have performed further numerical experiments. When the age structure 
for the mechanism for transmission of the viral diseases is changed by setting all 

S 

t ~  i ~  t ~  t ~  t ,  

- - 9 . ~ "  I I I I I ~ I 

- - 9 . 6  - 

- - 9 . 8  - 

0 . 0  ,5 .0  1 0 . 0  1 5 . 0  

8 f I n  y e a r s  b 

Fig. 6. a Sensitivity of  the regular cycles (o" 1 =0" 2 =0.50, fll =0.15) to changes in/32,/32=0-15, 0.17, 
0.18. The amplitude of  the cycle decreases with increasing/32. When the transmission coefficients, 
and thereby the time scales of  the two strains, become different, the disease dynamics decouples. 
b Proportion of  the population infected with strain 1,/1, when/31 = .15 and/32 = .15 (larger amplitude), 
/3~=.17 (intermediate amplitude), and fl3=.18 (smaller amplitude). The coordinate system (not 
shown for clarity) is as in Fig. 5 
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- - - - - .  I(t+T1)l~ 
i(t+T2 ) 

Fig. 7. Sensitivity of the regular 
cycles (cq = 0.50, <r 2 = 0.50, 
/31 =/32 = 0.20) to changes in the 
cross-immunity of the strain tr2, 
where tr 2 = 0.50, 0.55, 0.60. The 
coordinate system is as in Fig. 5. 
The cycles change very little 
when ~2 changes 

the activity levels equal to one,  sustained oscil lat ions are still observed for o- = 0.5. 
If, however,  instead of us ing the survivorship curve given by (2.1), we assume a 

cons tant  death rate for the first 80 age classes fol lowed by no survival into the 

81st age class, then the results change. This mortal i ty  structure resembles a 
negative exponent ia l  survivorship curve (see Hethcote et al. 1981). In  this situ- 

at ion,  only a stable fixed point  is observed. Final ly,  a set of  numer ica l  experiments  

have been  performed in which a strain is removed from circulat ion by setting its 
cor responding  t ransmiss ion  coefficient (~i) equal  to zero. Using again the sur- 
vivorship curve given by (2.1), we have performed extensive s imulat ions  (see 
Table 1) for different sets of activity levels. In  all of  these cases damped  oscil lations 

l(t+ ) 

Fig. 8. The effect of a small seasonal 
variation in the transmission coefficient 
/3 = 0.20 + 0.005 sin oJt where 
~o = 2~r/year, ~r = 0.50. The coordinate 
system is as in Fig. 5 
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are observed. The dominant eigenvalues are complex, and their imaginary part 
b may be estimated by b =27r/tr, where tr is the time for one revolution of the 
spiral. Then if a is the real part of the complex eigenvalue and peaks of Y, Y~, 
occur at times tl and t2, a can be estimated from 

t 2 e 
e a % - q ) _ Z  Y ~ - ~ ,  Yk  

Z Y~,'- E Y~," 

The large ratios of b to a in Table 1 indicate that the solutions spiral slowly into 
the equilibrium, so that they would be difficult to distinguish from periodic 
solutions if one observed them for a short time period. The equilibria in Table 
1 are reached before 2000 years. These results are not surprising since it is 
generally believed that symmetric age-specific contact rates by themselves can at 
most drive slowly damped oscillations (for example, see Anderson and May 
(1984), Schenzle (1985)). Our results suggest that age structure is important, but 
perhaps primarily in its direct effect on the fraction of  susceptibles; that is, an 
age structure relatively skewed towards earlier age classes will have a higher 
proportion susceptible. We remark again that these simulations have provided 
us only with a suggestive picture that we feel deserves further investigation. To 
examine the results just outlined, in the following sections we look at a sequence 
of  continuous time approximations which can be derived from the same basic 
principles used in the derivation of  our simulation model. 

3. The continuous model for two strains without age structure 

The model in this section incorporates the effects of  two co-circulating strains 
into the dynamics of  a homogeneous population. Let X ( t ) ,  Y ( t ) ,  Zi( t ) ,  V~(t), 
and W ( t )  denote the fractions in the respective classes as specified in Sect. 2. 
Here, fli denotes the transmission coefficient of strain i, Yi denotes the recovery 
rate from strain i,/x denotes the constant mortality rate, and again, ~ represents 
the relative susceptibility of types Zi in terms of  their acquisition of  strain j (i.e. 
the degree of  cross-immunity). If  we now follow the transfer diagram in Fig. 2, 
we arrive at the following set of  equations: 

X ' ( t )  = -[,B,(Yi + VO +f12(Y2+ V2)]X + / z - / z X  (3.1) 

Y~( t) = fl~( Y~ + V~)X - (y~ +/~) Y~ (3.2) 

Z~( t) --- T,Y~ - ( ~ j (  Yj + Vj) + t,t )Z, (3.3) 

V~( t) = ~r~fl~( y~ + V~)Zj - (y~ +/~) V~ (3.4) 

W'( t) = ya Vl + y2 V2-1~ W (3.5) 

X(O) = Xo, Y~(0) = Y~o, Z~(0) = Z~o,  V~(0) = V~o, W(0) = Wo (3.6) 

where j = 2 if i = 1 and j = 1 if i = 2. The Eq. (3.5) is redundant since for all times 
we have 

X ( t ) +  Yl(t) + Y 2 ( t ) + Z a ( t ) + Z 2 ( t ) +  Vl(t) + V2(t) + W ( t ) =  1 (3.7) 
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The non-negative orthant in R 7 is positively invariant for (3.1)-(3.7) and unique 
solutions exist for all time. The contact number for strain i is 

/3, 
R ,  = . ( 3 . 8 )  

7i +/.t 

This model is similar to the model in Dietz (1979) except that his model has 
0-1 = ~ = 1 so that recovery from one strain does not reduce a person's susceptibil- 
ity to the other strain. Dietz's model is based on the Monte Carlo simulation 
models of Elveback et al. (1964). Some of the analysis of the model above is 
similar to the analysis in Dietz (1979), so we omit some details. 

The model has four equilibria G~ for i = 1, 2, 3, 4. The trivial equilibrium 
G1 has X = 1 and all other variables equal to zero so that neither viral strain is 
present. I f  the contact numbers satisfy R1 ~< 1 and R2 ~< 1, then G 1 is the only 
equilibrium in the non-negative orthant and all solutions in the non-negative 
orthant approach G1. The global asymptotic stability of G1 in this case is shown 
by using the Lyapunov function YI+ 111+ II2+ V2 and the Lyapunov-LaSalle 
theorem (Hale 1969). 

If  R1 > 1, then there is a boundary equilibrium G2 given by 

a2 : ( X,  YI , Z1, Y2, Z2, Vl , V2) 

( 1 ,  /x (1__~1) 7____k__l ( 1 _ ~ )  0 , 0 , 0 , 0 ) .  (3.9) 
-- R1 71-[-] "L ' 71AFJ I~ ' 

Analysis of the Jacobian of the system at (32 reveals that (32 is locally asymptoti- 
cally stable if R1 > 1 and 

R1 
R2 < 1 -~ 0"2(R1 - -  1)71/ (71  +/.~)" (3.10) 

The equilibrium G2 is an unstable saddle if condition (3.10) is not satisfied. If  
R2> 1, then there is an analogous boundary equilibrium G3. 

If the two conditions 

R1 
R2> (3.11) 

1 -~- 0"2(R1 - 1)71/ (71  -~ ].~) 

R2 
R~> (3.12) 

1 + 0"1(R= - 1) 72/(72 + r 

are both satisfied, then there is a nontrivial equilibrium G4 at which both strains 
remain endemic. Equivalently, these may be written 

R1 R1 
1+ (R1-1)A > R2> 1 + (R1-1 )B '  (3.13) 

where B = 0"271/(3'1 + Iz) and A = (1 -(0"13,2/(72+/z))-l) -1. Note that a necessary 
condition for this to occur is 

71+/x~ 72+/z<1" 
710"2 720"1 

If  0"1 = 0, then recovery from strain 2 also gives complete immunity to strain 1 
so that no one ever enters class V~. In this case threshold condition (3.12) reduces 
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to R1 > R2. I f  both 0-1 = 0 and 0-2 = 0, then states Va, V2 and W are always empty 
since no one enters them. In this case the equilibrium G2 is locally asymptotically 
stable if R1 > 1 and R1 > R2, while the equilibrium G3 is locally asymptotically 
stable if R2 > 1 and Re > R1. I f  R1 = R2 > 1, then there is a line segment of  neutrally 
stable equilibria joining (32 and G3, and which equilibrium is approached depends 
on the initial conditions. In the following, we assume that 0-1 > 0 or 0"2 > 0 to 
avoid the unusual case above. 

I f  we let A1 and A 2 be the G 4 equilibrium values of  ill( Y1 + Vl) and f12( II2 + V2), 
respectively, then the coordinates of  the equilibrium (34 are 

X - /x (3.14) 
A I + A 2 + / ~  

/zA~ 
Y~ = (3.15) (aa+a2+~)(%+~) 

Z, - (3.16) 

V~ = ~ yp-,)t ~Aj (3.17) 
(aa + A~+ ~ )(rj+ ~)(0",~,+ ~)(% + ~) 

where j = 2 if  i = 1 and j = 1 if i = 2. The local stability of  the equilibrium (34 is 
not easy to analyze since one must show that all eigenvalues of  the 7 x 7 Jacobian 
matrix at G4 have negative real parts. However, numerical calculations with 
system (3.1)-(3.4) suggest that if (3.11) and (3.12) are satisfied and both Y1 and 
Y2 are initially positive, then all solutions in the non-negative orthant approach 
the equilibrium G4. The eigenvalues were computed for different values of  o h 
and cr 2. In all cases, we found that the eigenvalues have negative real parts. We 
note that the eigenvalue with largest real part  usually has its real part  around 
- 1 0  -4 and its imaginary part  a r o u n d  10 -2 , SO the imaginary part  is approximately 
100 times the real part. Hence solutions will spiral rapidly as they approach 
equilibrium. More detail on these simulations is shown in Table 2. 

T a b l e  2. D o m i n a n t  a n d  s u b d o m i n a n t  e igenva lues ,  gx a n d  82, fo r  the  non t r iv i a l  e q u i l i b r i u m  in the  

t w o - s t r a i n  m o d e l  fo r  d i f ferent  va lues  o f  0-1 a n d  0.2 (/31 = 0.8, /32 = 0.9, 3'l = 3'2 = 0 .33 , /x  = 0.00004).  All 

the  e igenva lues  h a v e  nega t ive  rea l  p a r t s  i n c l u d i n g  those  no t  s h o w n  here .  The  i m a g i n a r y  p a r t  o f  the  

d o m i n a n t  e i g e n v a l u e  is a b o u t  100 t imes l a rge r  t h a n  its real  p a r t  

~ 0.2 Re(6~) I m ( 6 : )  Re(82)  Im(62)  

0.9 0.9 - 3 . 7 6 7  x 10 -5 4 . 1 3 6 x  10 -3 - 6 . 5 1 4 x  10 5 4.683 x 10-3 

0.9 0.8 - 3 . 1 3 7 x  10 -5 4.076 x 10 -3 - 7 . 1 3 7 x  10 -5 4.603 x 10 -3 

0.9 0.4 - 2 . 7 9 0  x 10 -5 3.581 x 10 -3 - 7 . 6 9 6  x 10 -5 4.423 x 10 3 

0.8 0.9 - 3 . 6 5 5 x 1 0  5 3 . 9 4 6 x 1 0 - 3  - 6 . 6 2 2 x 1 0  -5 4 . 7 0 4 x 1 0  3 

0.8 0.8 - 3 . 1 8 4 x  10 -5 3.869 x 10 -3 - 7 . 0 3 1  x 10 5 4.643 x 10-3 

0.8 ,0.4 - 2 . 6 7 0  x 10 -5 3.369 x 10 -3 - 7 . 5 4 6  x 10 -5 4.477 x 10 -3 

0.4 0.9 - 3 . 9 6 4  x 10 -5 3.024 • 10 -3 - 6 . 5 7 1  • 10 -5 4 .746 x 10 -3 

0.4 0.8 - 3 . 5 3 3  x 10 -5 2.927 x 10 -3 - 6 . 7 1 5 x  10 -5 4 . 7 1 9 x  10 -3 
0.4 0.4 - 2 . 3 0 0  x 10 -5 2.453 x 10 -3 - 6 . 9 5 9  x 10 -5 0 
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When the viral strains are similar so that/31 =/32, 3'a = 3'2, and o- 1 = 0 "  2 and 
the initial conditions are symmetric, then Yl(t) = YE(t), Za(t) = Z2(t) and Vl(t) = 
V2(t) for all time. In this case the system (3.1)-(3.4) reduces to a four dimensional 
system. Furthermore, when the threshold condition R =/3/(3' + Ix) > 1 is satisfied, 
then there is a nontrivial equilibrium corresponding to the equilibrium G4 for 
(3.1) to (3.4). This nontrivial equilibrium is locally asymptotically stable. This 
suggests that periodic solutions do not arise by Hopf bifurcation at the equilibrium 
point (34 for the system (3.1)-(3.4). For further details we refer the reader to 
Appendix A. 

4. The threshold condition for the continuous age-structured one-strain model 

The basic epidemiological model for one strain of influenza virus (or one infec- 
tious agent) is formulated in terms of continuous variables. Then a threshold 
condition is obtained which determines the asymptotic steady-state age distribu- 
tions. The population is separated into susceptible, infected, and removed classes, 
where x(a, t), y(a, t) and z(a, t) are the probability densities in these respective 

a 2 a 2 classes. In this SIR epidemiological model,. ~a, x(a, t) da, Sa, y(a, t) da, 
~ z(a, t) da, denote the proportions of the population in each class that have 
ages in the age-interval (al ,  a2) at time t. The transfer diagram for this model is 
that of Fig. 1. 

Assume that the population has reached a steady-state age distribution, that 
all newborns are susceptible, and that the transfer of infection is due to a 
proportionately-mixed age-dependent bilinear incidence rate. The dynamics of 
the classes are governed by the following initial boundary value problem (see 
Hoppensteadt 1974; Dietz 1975; May 1986; Schenzle 1984; Dietz and Schenzle 
1985; Webb 1985): 

Ox(a, t) q_Ox(a, t) 
h( t )b(a)x(a,  t ) - t z ( a ) x ( a  , t), (4.1) 

3a Ot 

Oy( a, t) .bOy(a, t) ) ,(t)b(a)x(a, t ) - ( y+ ix (a ) ) y (a ,  t), (4.2) 
3a at 

Oz( a, t) ~_Oz(a, t) yy(a,  t ) - i x (a)z (a ,  t), (4.3) 
Oa 3t 

fo h(t)  = 3' b(a')y(a', t) da', (4.4) 

x(a, O) = xo(a), y(a, O) = yo(a), z(a, O) = zo(a), (4.5) 

1 
M(a)  = f~  Ix(a) da, x(O, t) = p - So e-~a(a') da" 

y(0, t) = 0 = z(0, t), (4.6) 

where Ix(a) is the age-specific mortality rate, p is the birth rate, 3" is the constant 
recovery rate, b(a) is the age-specific activity level, A(t) is the instantaneous 
force of infection, and/3 is a transmission scaling factor. In this model the activity 
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level between a susceptible person of age a and an infected one of age a'  is 
proportional to b (a) b (a'). This is a particular case of the so-called proportionate 
mixing assumption used by Barbour (1978), Nold (1980), Hethcote and Yorke 
(1984), Dietz and Schenzle (1985), and Hethcote and Van Ark (1987). The initial 
age distributions are assumed to be zero beyond some maximum age. 

When the activity level b(a) and the mortality rate ~ (a )  are independent of 
age a, then integration of the differential equations (4.1)-(4.6) over all ages leads 
to a time-dependent SIR model with vital dynamics. For this ordinary-differential- 
equation model involving the fraction of individuals in each class at time t, the 
contact number R (basic reproduction number) is f l b2 / ( y+~) .  If R <~ 1, then 
the disease dies out; if R > 1, then the fractions in each class approach endemic 
equilibrium values (Hethcote (1976)). 

The model (4.1)-(4.6) is well-posed. The proof  is found implicitly in Appen- 
dix D since this model is a special case of  the two strain model that is shown to 
be well-posed there. In the remainder of  this section we determine a threshold 
condition, that is, a quantity that must exceed one for the disease to remain 
endemic (persistent). This threshold condition was obtained previously by Dietz 
and Schenzle (1985) and also for a simpler model by Webb (1985). Due to its 
importance in our stability analysis and numerical experiments, a brief derivation 
of the threshold condition is presented. 

Assume that the steady-state age distributions are reached as time approaches 
infinity, so that the force of infection asymptotically is a constant denoted by A *. 
The method of characteristics is used to obtain the following expressions for the 
steady-state age distributions. 

x*(a) = p e - [ A *B ( a ) +M ( a) ] ,  (4.7) 

fo y*(a) = p e -M(~ A*b(a') e -~*B(~'~-:'(a-a'~ da', (4.8) 

z*( a) = p e -M(a) - -  x*( a) - y*( a), (4.9) 

where 

B(a)  = b(a)  da. (4.10) 

If  we now substitute y*(a)  into Eq. (4.4), we obtain that either A*= 0 or else A* 
satisfies the characteristic equation 

l=flfob(a)pe-M(a)(f:b(a)e-**B(~)-~(~-")da)da, (4.11) 

which has a positive solution A* provided that the threshold condition 

l<flfob(a)pe-M(a~(ffb(,~)e-~(a-~)d~)da (4.12) 

is satisfied. 
Above the threshold (that is when inequality (4.12) is satisfied) the force of 

infection A* is a positive constant, and Eqs. (4.7)-(4.9) correspond to an endemic 
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(persistent) steady-state age distribution. Below the threshold (that is when Eq. 
(4.12) is not satisfied), the force of infection A* is zero and Eqs. (4.7)-(4.9) 
correspond to a trivial steady-state age distribution where the disease has died 
out and there are no infected or recovered individuals. 

5. Stability of the steady-state age distributions for the 
continuous one-strain model 

We now proceed with a local stability analysis of the steady-state age distributions 
of the model of Sect. 4 by taking perturbations of the steady states: 

x(a, t ) = x * ( a ) + ~ ( a ,  t), (5.1) 

y(a, t )=y*(a )+Tl (a ,  t), (5.2) 

A ( t ) = A * + O ( t ) .  (5.3) 

A linearization approach leads to the following first order approximate model 
for r 71, and 0: 

0r + ~_~= - A * b ( a ) , ~ -  O ( t ) b ( a ) x * ( a ) - / z  (a)r (5.4) 
Oa Ot 

O~+a~= A*b(a)~+ O ( t ) b ( a ) x * ( a ) -  (~ + g(a))~/, (5.5) 
Oa Ot 

Io o 0(0= /3  b(a)rt(a, t) da, (5.6) 

r t )=  7(0, t )=0 ,  (5.7) 

r  r l ( a ,O)=yo (a ) - y* (a ) .  (5.8) 

If there exists a solution of (5.4)-(5.8) in separable form r t) = ~(a) f ( t ) ,  then 
it corresponds to a steady-state age distribution since the fractions in any age 
bracket are constant. Since the right hand sides of (5.4)-(5.6) are linear in the 
parts of the separable forms involving t, these parts involve an exponential in t. 
Thus we restrict ourselves to perturbations of the form 

r t) = ~-(a) e p', (5.9) 

~7(a, t) = ~(a)  e pt, (5.10) 

O(t) = Oe p', 0 a constant. (5.11) 

A straighforward computation shows that 

^ ~ -[A*B(a)+M(a)] (^2 
~(a) = -p t ,  e b (a)  e -p(a-~) da, (5.12) 

Io ~(a)  = -O~p e -~ ( ' )  b(a') e -t(p+z')("-a')+x*m"')] 

= fl I -~ b(a)Ct(a) da. (5.14) 
J o  
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Putting Eq. (5.13) into Eq. (5.14) leads (provided that 0 ~ 0 )  to a Lotka-type 
characteristic equation for p: 

fo 1 = ~ b(a)p e -M(~) b(a') e -~(a-~')-~*B(a'~ 

x[e-P(a-a '~-A*f] 'b(a)  e -P(~-~dalda '}da .  (5.15) 

If all roots of (5.15) have negative real parts, then all solutions of the form 
(5.9)-(5.11) will tend to zero as t tends to infinity. Using the threshold condition 
given by the expression in (4.12) so that A*>0,  we quickly find that no non- 
negative p can satisfy Eq. (5.15). The study of the nature of all the roots of Eq. 
(5.15) is more difficult. Nevertheless, in some particular instances we have 
determined numerically that their corresponding nontrivial endemic steady-state 
age distributions are locally asymptotically stable. 

For the trivial steady-state age distribution (A* =0),  Eq. (5.15) becomes: 

fo rf 1 1 = ~ b(a)p e -M(a~ b(a') e -~(~-a')-p(~-~') da' da. (5.16) 
i _ , i o  

If  Eq. (4.12) is not satisfied, then the monotone character of the integrand in Eq. 
(5.16) implies that it has a unique real root po<~0, and that po=0 only at the 
threshold. It is also clear that complex roots (if any) appear in conjugate pairs. 
If  we now let p = r + i s  denote a complex root in (5.16) with s > 0 ,  then by 
equating real and imaginary parts we observe that 

1 = ~ b(a)p e -M(a~ b(a - O) e -(~'+r~~ cos(s0) dO da, (5.17) 

and since cos(s0) < 1 for some values of 0 in the range of integration, it follows 
that 

i0 fo ~ b(a)p e -M(~) b(a - O) e -(~+r)~ dO da > 1. (5.18) 

From this we conclude using (5.16) that r < Po <~ 0. Hence if we are strictly below 
the threshold, then the trivial steady-state age distribution is locally asymptotically 
stable, at least for perturbations of the form (5.9)-(5.11). If inequality (4.12) is 
satisfied, then (5.16) has a unique positive root Po so that the trivial steady-state 
age distribution is unstable. In this case the disease does not die out, but persists. 

In the remainder of this section we indicate how a numerical analysis of a 
particular case for Eq. (5.15) leads us to believe that the one-strain model without 
age-specific mortality rate ~ ( a ) = t x  (a constant) has an endemic equilibrium 
point that is locally exponentially stable. In this particular case we take the 
age-specific activity level rate to be 

b(a) = {  1' O<'a<C' (5.19) 
D, C < ~ a < ~ , O < D # I .  

In this case the threshold quantity in Eq. (4.12) becomes 

[ l _ ( 1 - D )  e -(~'+z')c ( D  2 D 1 ) ]  ~ ~(-+~) (~+~)~ ~ e  - ~  ~(~+~)~ (~+~,) - , ( 5 . 2 0 )  
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the characteristic equation is given by 

1 ( 1 - D )  e -(€ 
(~ +,t*)(~ + V) (~ + ~/)(7- h*) 

D 2 D 
+e-('+x*)c (/z+A*D)(/x+3Q ~(3~-h*)(/z+7) 

and Eq. (5.15) reduces to 

h* [1 - e -("§ 
P 

1 ] 1 
(r-A*)(. +x*) -~-~= o, 

(5.21) 

"y[1 + ( D -  1) e -("+r+p)] 
(r (~,-,~*)(g+a*+p) (~/-a*+p)(v-,~*)(~+v+p) 

A* A* 
1 D - -  

[ - P I- D(I.~+p) p ] 
e-('~+x*)CD '7 A*+p (I,~+A*D)(~+A*D+p) / z + h * D + p  ~ /z + ' y+p  

D A* e-(~+a*+p)c [ 1  ]1_o 
/ z+T+  p ~ /z + A ;--D +p /3, 

The numerical procedure computes the threshold quantity from Eq. (5.20). If it 
is greater than one, then the characteristic equation (5.21) is solved for h*. Using 
the force of infection h*, we solved the Eq. (5.22) numerically for p. For example, 
if the average infectious period 1/y is 1 week, the average lifetime 1//z is 70 
years, C = 5 years, D = 4 and/3 = 0.2, then the threshold quantity (5.20) is 2.99, 
the solution of the characteristic equation (5.21) is h*= 0.000132 and the roots 
of (5.22) with largest real part are p = -0.000693 + i0.0228. Results of numerous 
runs with reasonable epidemiological parameters for influenza, different values 
of D and C, suggest strongly that the p roots always have negative real parts so 
that (at least for these particular cases) the stable age distribution is locally 
asymptotically stable for the one-strain continuous model. We note that for this 
b(a), the p root with the largest real part usually has its real part around - -10  -3 

and its imaginary part around 10 -2 so the imaginary part is approximately 10 
times the real part. Since the solutions are very weakly damped, they would 
oscillate rapidly as they approach the equilibrium solution and might look 
numerically like periodic solutions. 

Calculations with the one-strain model in Sect. 2 are consistent with the results 
above. Thus age-specific activity levels do not seem to lead to periodic solutions 
in the one-strain model. Furthermore, simulations with different age-specific 
mortalities do not lead to periodic solutions. 

Other investigators have also shown that models with age-specific mortality 
do not lead to periodic solutions. Andreasen (1988, 1989) considers the model 
(4.1)- (4.6) with constant age-independent activity level (b (a) = 1) and age-specific 
mortality corresponding to a fixed lifespan of A years for every individual. 
He approximates the Lotka-type characteristic equation (5.15) by observing that 
the infectious period is four orders of magnitude smaller than the lifespan A of 
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the host. The approximate p roots suggest that solutions are slowly damped with 
the period given by 27r K~-K-D where D = 1 /y  is the average infectious period, and 
K is the average age at infection. 

6. The model for two strains with partial cross-immunity 

I f  two related strains of  a virus such as influenza both are circulating in a 
population, then individuals who have been infected by one strain may have 
partial immunity (i.e. decreased susceptibility) to the other strain. The two-strain 
model here is the continuous analog of the simulation model in Sect. 2. In what 
follows, the sub-index i indicates that its class is infected or recovered from 
influenza due to strain i. Assume, as before, that those individuals infected with 
one strain are not suceptible to the other, and that an individual once recovered 
from a strain of  influenza has permanent  immunity to this strain, and possibly 
a reduced level of  susceptibility to the other strain. 

The initial boundary value problem governing the dynamics of  these classes 
under proport ionately mixed age-dependent bilinear incidence rates and the 
assumptions of  Sects. 2 and 4 is: 

ax Ox 
- - + - - - - - A l ( t ) b ( a ) x ( a ,  t ) -A2( t )b(a)x (a ,  t ) - t x (a )x (a ,  t), (6.1) 
Oa Ot 

Oyi+Oyi= X,(t)b(a)x(a,  t) - yiy~(a, t) - Iz(a)yi(a,  t), (6.2) 
Oa at 

Oz__j+az___~= yiy~(a, t ) -  o)Aj(t)b(a)z~(a, t)-I.~(a)zi(a, t), (6.3) 
Oa Ot 

Ov----!+Ov---2= o-~Ai(t)b(a)zj(a, t ) -  yivi(a, t ) - t z (a)v i (a ,  t), (6.4) 
Oa Ot 

Ow Ow 
- - + - - =  ylvl(a, t)+ y2vE(a, t ) - i z ( a ) w ( a ,  t), (6.5) 
Oa Ot 

fo hi(t) = fli b(a')[yi(a', t) + vi(a', t)] da', (6.6) 

1 
x(O, t) = p - ~ , yi(O, t) = v~(O, t) = zi(O, t) = w(O, t) = 0 (6.7) 

o e -M(~') da' 

x(a,O)=xo(a) ,  yi(a,O)=yo~(a), vi(a,O)=voi(a), 

zi(a, O) = Zoi(a), w(a, O) = Wo(a), (6.8) 

where i = 1, 2, j = 1 if i = 2, j = 2  if i = 1, y~ denotes constant recovery rate, and 
/z(a) and b(a) denote the age-specific mortality and activity level rates respec- 
tively. The transmission scaling factors here are /31 and /32. The susceptibility 
factors O'a and o-2, which are between 0 and 1, are measures of  the cross-immunity. 
Note that the one strain model in Sect. 4 is a special case with /32 ~--- 0. I f  the age 
specific activity level b(a) and the mortality rate tz(a) are constant, then the 



250 C. Castillo-Chavez et al. 

integration over all ages of the differential equations in the model above leads 
to the two-strain model in Sect. 3. 

The well-posedness of this two-strain model is established in Appendix D. If 
we now assume that the steady-state age distributions are approached as time 
approaches infinity, so that the forces of infection asymptotically are constants 
denoted by A* and A*, then proceeding as in Sect. 4, we obtain that either A* = 0 
or A* satisfies the characteristic equations 

fo~ [I; ( 1 = fl, b(a)p e - ' (~  b(a) e -x'(a-a) e -(a*+x*)m") 

+ o.i'YjAcf e-~,x*, (B(")-s(o)) 

X [ f ;  b(~b)e-r/~ dO)da] da, 

where 
equations correspond to ( i , j ) = ( 1 , 2 )  and ( i , j )=  (2, 1). We have not found 
threshold conditions that are necessary and sufficient conditions for the two 
characteristic equations to have positive solutions A* and A* (for further details 
see Appendix B). 

We now proceed to linearize the system (6.1)-(6.8) around its steady-state 
age distributions as in Sect. 5 (details are found in Appendix C). If we assume that 

x(a, t )=x*(a)+~(a)e pt, (6.10) 

y,(a, t) = y*(a) + ~(a)e  et, (6.11) 

zi( a, t) = z*( a) + ~i( a)e p', (6.12) 

v,(a, t)= v*(a)+ t~,(a)e p', (6.13) 

Ai ( t )  = Ai ~ + O~e p', (6.14) 

for i = 1, 2, then we arrive at the following Lotka-type characteristic equations 
for p: 

io o O~ =ill b(a)[~(a)+~(a)]  da, (6.15) 

for i =. 1, 2. The local stability analysis of the general case has then been reduced 
to the study of the roots of Eqs. (6.9) and (6.15). Unfortunately, the general case 
is complicated; however, the analysis is be carried out here for the special case 
when o'1 = o'2 = 0. In this case recovery from one strain gives complete immunity 
to both strains so that no one ever enters classes v~, v2 and w. If  

Hi(A*) = r b(a)p e -M(") b(a) e -''("-~)-~*B(") da da, (6.16) 

then the characteristic equations (6.9) for o- 1 = o.2 = 0 become Hi(A* + A*) = 1 
and H 2 ( A * + A * ) = I  (note that each characteristic equation is similar to the 

(6.9) 

M(a) =So tz(a) da and B(a)=Io b(a) da. The two characterist ic  
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characteristic equation (4.11) for the one-strain model), and the Lotka-type 
characteristic equation (6.15) for p reduces to 

f0 fo O~ =fl~ b(a)pe -M(a) b(a) e -',(a-~)-(~*+A*)B(~) 

[ *Io ] X O " i e - P ( a - ' ~ ) - ( O l + O 2 ) A  i b(~)e-P(a-~dr~ dada. (6.17) 

For the trivial steady-state age distribution (A* = A* =0),  Eq. (6.17) reduces to 

fo fo 1 =fli b(a)pe -M(~) b(a) e -(I'+~'?(a-'~ dada, (6.18) 

which is similar to Eq. (5.16) for the one-strain model. Thus the analysis there 
can be used. If  Hi(0) < 1 for i = 1, 2, then the trivial steady-state age distribution 
is locally asymptotically stable. If  Hi(0) < 1 for i = 1, 2, then there is a positive 
real root of  the characteristic equations so that the trivial steady-state age distribu- 
tion is unstable. 

A steady-state age distribution with A* > 0 and A* > 0 seems to occur only for 
very special parameter values, so we do not consider this case (see Sect. 3). 
Consider the case when Hi(0) > 1 and /42(0) < 1 so that there is a steady-state 
age distribution with A*> 0 and A* =0.  Now /-/2(0)< 1 implies that Eq. (6.18) 
with i = 2 has only roots p with negative real part so that this steady-state age 
distribution in which only the first strain persists is locally asymptotically stable. 
If/42(0) > 1, then there is a positive root p so that this steady-state age distribution 
is unstable. There is also a steady-state age distribution in which only the second 
strain persists; this has analogous stability properties. Recall from Sect. 2 that 
the two-strain simulation model had periodic solutions for some age-specific 
mortalities, but not for exponential removal survivorship corresponding to a 
constant mortality rate /x. Consequently, Andreasen (1988, 1989) considers the 
symmetric version of model (6.1)-(6.8) with b(a) = 1 and age-specific mortality 
corresponding to a fixed lifespan of A years for all individuals. He approximates 
the Lotka-type characteristic equation (6.15) by using the fact that the infectious 
period is four orders of magnitude smaller than the lifespan A of the host. The 
approximate roots are purely imaginary, which suggests that there are periodic 
oscillations around the endemic steady-state age distribution. Furthermore, the 
approximate period is 2 ~r K,/K-D/o- where D = 1 /y  is the average infectious period, 
K is the age at first infection, and ~r is the relative susceptibility due to cross- 
immunity. Thus the approximate results above and the simulation results in Sect. 
2 are consistent. 

7. Discussion 

In his excellent survey paper Fine (1982) says: "Rather than continue to force 
influenza into simple epidemic theory an effort should be made to tackle some 
of the major puzzles of  influenza patterns in large communities - -  the bimodal 
or undulating incidence pattern Which is often observed, the apparent disappear- 
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ance of virus for several months in large areas, or the recent recognition of 
widespread co-circulation of  different shift viruses. Simulation techniques which 
incorporate important factors such as weather patterns, seasonal factors (e.g. 
school terms), or social geographic structure may be useful here." It is this 
challenge that motivates us to introduce and analyze (at different levels) models 
that incorporate age structure through age-dependent proportionately mixed 
contact rates, age-dependent mortality rates, and interactions among viral strains 
or subtypes. It is the incorporation of two viral strains in our simulation model 
that produces the most interesting albeit the less reliable results. These two strains 
are coupled by a coefficient of cross-immunity (o-); the coupling is strong when 
o- is small (antigenically very similar strains) and weaker when o- is intermediate 
(different strains same subtype). In both instances, the simulations yield sustained 
oscillations. Periods of 10 to 20 years are observed when o- is small, while periods 
of 3 to 4 years are observed when cross-immunity is intermediate. These results 
are consistent with the recently documented evidence on the co-circulation of 
strains of the same subtype (Couch and Kasel 1983; Thacker 1986, Fig. 2). When 
only one strain is present, we have not found sustained oscillations; however, 
we observe very slowly damped oscillations. Hence, from a biological point of 
view, age structure by itself is capable of driving "sustained" (that is, slowly 
damped) oscillations. These results are in agreement with those previously 
reported by Anderson and May (1984) and Dietz and Schenzle (1985). When the 
age-structure is removed from the one- and two-strain models, we observe damped 
oscillations. Hence, for sustained oscillations, we require at least an age-structured 
population and two or more co-circulating viral strains. Age-structure enters this 
model through age-dependent activity levels and age-dependent mortality rates. 
Our simulations suggest that the interaction between cross-immunity and age- 
dependent survivorship may be enough to drive sustained oscillations, and that 
age-specific activity level rates with constant mortality are not sufficient (even in 
the presence of cross-immunity) to drive sustained oscillations. Variation of the 
transmission coefficients (/31,/32) of our two viral strains seems to have significant 
effects on the amplitude of  the oscillations. In contrast, the oscillations seem less 
sensitive to changes in the coefficient of cross-immunity (tr) and slightly fluctuat- 
ing transmission rates. 

The consequences of co-circulating viruses within age-structured populations 
provide us with new insights and hypotheses into the dynamics of epidemics and 
pandemics. Our results suggest that the interactions between the immune system 
and multiple viruses could play a prominent role in the dynamics of viral infections 
such as influenza. The coefficient of cross-immunity provides a measure of this 
interaction between multiple strains of a virus. A very rough attempt at computing 
this parameter from the epidemiological data can be found in Castillo-Chavez 
et al. (1988). 

Further numerical and analytical investigations of the models presented would 
be helpful in achieving a more complete understanding of models related to 
influenza. In particular, it would be desirable to analyze further the steady state 
age distributions of the continuous age-structured model in Sect. 6 and to consider 
various models with time delays, and numerically integrate the systems of partial 
differential equations found in Sects. 4 and 6. 
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Appendix A 

Let hi and "~2 be the G 4 equilibrium values of  131( Y1 + V0 and /32( Y2 + V2), respectively. Since the 
infective replacement numbers  (contact number  times the susceptible fraction) R~ (X + O-lR2) and 
R 2 (X-F 0-2R1) are both one at a nontrivial equilibrium, then A 1 and A 2 satisfy the equations 

(h I + h2+ At) (O"i A 1 + At) = ~R~(ohh ~ + 0"2A2 3'2/(3' 2 + At) + At), (A1) 

(AI + A2 + At )(O'2A2 + P' ) =/zR2(~ ~ 3'I/( 3'1 + ~ ) q-/~). (A2) 

The coordinates of  the equilibrium G4 are given by (3.14)-(3.17). In the symmetric case (131 =/32 = 
/3, 3'1 = 3'2 = % g~ = ~2 = (r) with symmetric initial conditions, the system (3.1)-(3.4) reduces to a four 
dimensional  system 

X ' ( t )  = - 2 f l ( Y +  V ) X  + tz - A t X  

Y'(t) =/3( Y +  V ) X  - ( y + I z )  Y 

z ' ( t )  = 3 " r -  (,~/3( Y +  v )  + ~ , ) z  

v ' ( t )  = ,~/3( Y +  v ) z  - (3" + At) v 

(A3) 

(A4) 

(A5) 

(A6) 

where W(t) can be found from X + 2 Y +  2Z + 2 V+  W = 1. The existence of  a nontrivial equilibrium 
corresponding to the equilibrium G4 is guaranteed provided that the threshold condition R = 
/3/(3' + At) > 1 is satisfied, The Jacobian of the system (A3)-(A6) is 

' -  (2A + At) 0 -2fiX 
0 - ( ~ a  +~,) -cr/3Z 

J =  
0 ~rh o~/3Z - y - At 

a 0 f ix 
/ 

At the nontrivial equilibrium, the Eqs, (A1) and (A2) reduce to 

-2 /3x l 
- ~ / 3 z +  3' I 

~rflZ .]" 

/3 x - 3" - At / 

(A7) 

(2A + At)(o-a +t*)  = t*/3[~ 2. (A8) 

Using the expressions (3.14) and (3.16) for X and Z and Eq. (A8) for/3, the characteristic equation 
d e t ( J -  sI) = 0 for the nontrivial equilibrium reduces to the following equation in the four parameters 
% t*, o- and a. 

[ 3'(2~a + ~,) + (~  (,~A + ~ )] (2a + l* + s ) (~a  + a + s)( 3' + a + s) 2 

- (3'+At)2(~a + ~)(At + s)[(,~a +At + s)(3'+~, + s)+ ~a3'] 

-o-a3'(3' + / . ) ( 2 a  +At + s)(3"+t. + s)(/ .  + s) = 0. (A9) 

We have shown using the symbolic manipulator  M AC SYMA that the Routh-Hurwitz  criteria are 
satisfied for the fourth degree polynomial  equation (A9) so that all eigenvalues have negative real 
parts. Thus this nontrivial equilibrium is locally asymptotically stable. 
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Appendix B 

The steady-state age distributions and characteristic equations are now described for the continuous 
two-strain model (6.1)-(6.8). Assume that steady-state age distributions are approached as time 
approaches infinity so that the forces of  infection are asymptotically constants denoted by A* and 
A2*. The following steady-state age distributions with B(a)=~o b(a) da and M(a)=~o I~(a) da are 
solutions of (5.1)-(5.10) that are independent  of  t. 

x*(a) = p e -MC~) exp[ - (A l* + A2*)B(a)], (B1) 

I: y/*(a) = p  e -M(a) A*b(a )  e -v,("-~)-(x*+"~)a<~) da, (B2). 

i0 rf o ] z*(a) = p  e -~(~) y~A* e-% a*ta(~)-a( ')l  b (4 )  e -'~('~-~1-("*+'~*)8(~') d4 da, (B3) 
L d O  

fo v*(a) = p e -M<~) triA*b(a ) e -r,(~-~) yjA~ e -~,a*Es(~)-n<~ 
�9 , ' 0  L d O  

• ( fo~ b(~b) e-~'J[o-~)-(A*+x*>a(~') d~b) dO] d~, (B4) 

w*(a )  = p e -~(~ - x*(a) -y*(a) -y*(a) - v?(a) - v*(a) - z*(a) - z*(a). (B5) 

Substituting y~*(a) and v*, (a) in 

I: A*=~i b(a)[y*(a)+v*(~)] dol (B6) 

we find that either A* = 0 or A* satisfies the characteristic equations 

1 = ~i f :  b(a)p e-M(a) 

•  b(a) e-,,(a-a)(e-(a*+x*)u(")+o-i3,jA~ f :  e-~, x*(B('~)-'(o)) 

• [ I ;  b(cb) e-~'J(~ dq~] dO)da] do, (B7) 

( / , j ) = ( 1 , 2 )  and (i,j)=(2, 1). 

Appendix C 

Let us consider the following perturbation solutions from the steady-state age distributions to the 

system (6.1)-(6.8) 

x(a, t ) =  x*(a)+ ~(a, t), (el) 

yi(a, t) =y~*(a) + ~i(a, t), (C2) 

zi(a , t) = z * ( a ) +  p,(a, t), (c3) 

vi(a, t ) =  v*( a ) +  toi(a, t), (c4) 

;~,(t) = A* + o,(t), (C5) 

where 0 = r t) = ~ (0 ,  t) = p~(0, t) = wi(0, t) for i = 1, 2. Neglecting terms of  order higher  than one, 
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we find that ~:, ~t, Pt, tot and 0i satisfy the following linear system 

- b(a)[Ol(t) + 02(t)]x*(a) - iz(a)~(a, t), (C6) 

0+0 ( a  
('-~a "~t) ~ 't)=A*b(a)~(a't)-(t~(a)+Yt)~(a't)+b(a)O~(t)x*(a)' (C7) 

,9 ,9 (ra-@O,(o, 
+ ytrlt(a, t)-Iz(a)pt(a, t), (C8) 

('~a+~t)oJi(a, t)=o'ib(a)A*Pj(a, t)+oib(a)Ot(t)z*(a ) 

-[3 ' /+/z(a)]~oi(a,  t), (C9) 

Or(t) = 13t f o  b(a)[r~i(a' t)+ wi(a, t)] da. (C10) 

Separable perturbations of  the form A(a) T(t) require that T(t) = e pt. Hence we consider perturbations 
of  the form ~(a)e pt, r p', ~t(a)e v', ~3t(a)e p', and O(a)e p', where 0 is a constant. We then find that: 

~(a) = - p  e-M(a)-(x*+x*)B(a)(01 + 02) I ;  b(a) e -p(a-~) da, (C11) 

r = P e-~(~) fo b(a) e -~,("-~)-(a*+~ 2.)"(") 

x[Ote-P(a-~)-(O,+O2)A*i l ;  b(&)e-P('~ 6) dc~J da, (C12) 

The expressions for Bit(a) and o3t(a ) are omitted since they are very complicated. When % = ~  = 0, 
then no one enters the classes Vl, v2, w. Hence Eq. (C10) reduces to 

Oi = f o  b(a)glt(a) da. (C13) 

After substituting (C12) into (C13), we arrive at the following Lotka-type characteristic equation for 
P 

4=~,fob(a)pe-M(~ (~*,+~*)~(~, 

x[~te-P(~-~)-(~l+~2)a* f ;  b(4))e-;(~-e') d4)] dada. 

Appendix D 

In this appendix we show that the models (4.1)-(4.6) and (6.1)-(6.8) are well posed. The method of  
proof  is similar to that used by Hoppensteadt  (1974) to show the well-posedness of a very general 
one agent age dependent epidemic model. First let U(a, t) = col[x, Yl, 21, Y2, 22, vl, 02, W] and let A 
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denote the matrix 

(hl+Az)b(a)+lt(a) 0 0 

-Al(t)b(a) Yl + ,u,(a) 0 

0 -Yt c~2A2(t)b(a)+l~(a) 

-Az(t)b(a) 0 0 

0 0 0 

0 0 0 

0 0 -cr2A2(t)b(a) 

0 0 0 

Then the two-strain model is given by 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

y2+/z(a )  0 0 0 0 

--Y2 ~rthl(t)b(a)+lz(a) 0 0 0 

0 -o-aAt(t)b(a) y l + , ~ ( a )  0 0 

0 0 0 y2+/z (a )  0 

0 0 - Y t  --72 /x( a~j 

O +  -~ v + A(U) U = o, 
Ot Oa] 

which along characteristics parametrized by s is given by the system 

(D1) 

(a /ds)  U = - A ( U )  U; U(O) 

~ U(0, t) = col[p, 0, 0, 0, 0, 0, 0, 0], t>0 ,  
=[U(a,O)=col[xo(a),yol(a),zl(a),yo2,Z2, Vo~,Vo2, Zo], a > 0 .  

(D2) 

Since - A ( U )  has only non-negative off-diagonal terms, all solutions to (6.15) are non-negative for 
s ~> 0 provided that U >I 0 at s = 0. If we now let 

n(a, t )= [I U(a, t)[] =x(a, t)+ yl(a, t)+ y2(a, t) +zt(a, t) 

+ zz(a, t)+vl(a, t)+v2(a, t)+w(a, t), 

then the dynamics of n(a, t) obeys a particular case of the MacKendrick (1926)/Von Foerster (1957) 
model, namely: 

(~a+~t+l~(a))n(a, t )=0,  (D3) 

n (0, t) = p, (D4) 

n(a, O) = 11U(a, 0)l I. (D5) 

Our formulation (6.1)-(6.8) is chosen so that the total population probability density n(a, t) is at the 
steady-state age distribution given by p e -M(~) before the disease dynamics starts. Thus the epi- 
demiologic dynamics are not complicated by simultaneous demographic dynamics. Our choice of 
P = [~o e-M-(o') da']-t implies that the total population size has been normalized to 1. With the a 
priori bound given by 1, the existence and uniqueness proof is now exactly the same as the well 
known contraction mapping proof for initial value problems of systems of ordinary differential 
equations. Moreover the a priori bound shows that the solution can be continued for all time. 
Continuous dependence on the data follows from known results on continuous dependence of fixed 
points to parameter-dependent contraction maps. 
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