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Abstract. Let S be a signed poset in the sense of Reiner [4]. Fischer [2] defines the homology of S, in terms of a
partial ordering P(S) associated to S, to be the homology of a certain subcomplex of the chain complex of P(S).

In this paper we show that if P(S) is Cohen-Macaulay and § has rank #, then the homology of S vanishes for
degrees outside the interval [n/2, n].
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1. Introduction

Let R be a set of vectors in R". The positive linear closure of R, denoted R is defined to
be the span of all linear combinations of vectors in R with non-negative real coefficients.

Foreachi = 1,2,...,n let ¢; denote the ith unit coordinate vector in R* and let e_;
denote —e;. Recall that the root system B, is the set

B,={x(e;tej):1<i<j<nlU{te:1<i=<n}
Definition 1 A signed poset is a subset S of B, such that

(@) SN(=8) = 9.
®) $NB,=S.

Let (P, <) be an ordinary poset with P = {1, 2,...,n}. Let S be the collection of all
e; — e, such thati < j. Then § is a subset of the root system A, which satisfies conditions
(a) and (b) of Definition 1 (where B, is replaced by A, in condition (b)). Vic Reiner
introduced the notion of signed poset [4] to be a B,-analogue of the notion of poset.

In more recent work Steve Fischer [2] defined a homology theory for signed posets.
According to Fischer’s definition, the homology of a signed poset S is the homology of a
certain simplicial complex C2(S) associated to S. This simplicial complex is analogous to
the simplicial complex of chains in a poset. Fischer showed that the Euler characteristic of
this homology can be computed via a “2-Mobius function” and that analogues of Weisner’s
Theorem and Crapo’s Complementation Theorem can be used to calculate this 2-Mobius
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function when S is a “signed lattice”. In view of these results on the 2-Mobius function, it
would be interesting to know if there are combinatorial labelling conditions which would
imply that the simplicial complex associated to S is shellable.

There is an obvious analogue of EL-labelling that can be defined for signed posets, namely
we say that S is EL-labellable iff P(S) is EL-labellable. Here P(S) is a poset whose chains
are used to define C2(S). An EL-labellable signed poset is pure in the sense that all facets of
CY(S) have the same dimension (which we will call the dimension of S). Originally Fischer
had hoped to show that if S is EL-labellable then the homology of C2(S) is zero except in the
top dimension. But then he constructed two EL-labellable signed posets Sp and S; such that

(a) the homology of C%(Sp) is nonzero exactly in degree equal to half the top dimension.
(b) the homology of C%(S)) is nonzero exactly in degree equal to the top dimension.

He went on to define “signed EL-labelling” to be an EL-labelling that satisfies other con-
ditions and showed that the existence of a signed EL-labelling of S implies that C%(S) is
shellable.

The purpose of this note is to prove that the examples Sp and §; above are the extreme
cases, i.e., we will prove.

Theorem 1 Suppose S is an EL-labellable signed poset of dimension n. Then H,(S) is 0
unless |nf2] <r <n.

2. Homology of a signed poset

We begin this section by defining the simplicial complex C9(S) that Fischer uses to compute
the homology of S. This complex is given in terms of the chains in a certain poset P(S).

Definition 2 Let S be a signed poset in B,. Define the poset P(S) with vertex set
{£1,...,£n} =V as follows. For u, v € V we say

U=<psv
if and only if

(i) e,—e, €85 for|ul#lv] or
(i) e, €S forv=—u.

Fischer showed that P(S) is a self dual poset.
Definition 3  An isotropic r-chain in P(S) is an r-chain
o) <0y <+ <

such that ¢; is not equal to —a; for any i, j. Let A%(S) denote the collection of isotropic
r~chains in P(S) and let C?(S) denote the C-span of A%(S) (with C3(S) = C).
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Note that A%(S) is a simplicial complex in 279, This gives a boundary map 3,: C%(S) —
C,(-)_l (S)’

r
3, (ay <a2<---<a,)=Z(-—l)"‘l(a1 << @< < Q).

i=1
Definition 4 Define H,O(S) to be the rth homology of the complex (Cf(S), dy), l.e.
HY(S) = ker 8, /im 8,4,.

We call HO(S) the signed poset homology of S.

We say S is EL-labellable if P(S) has an EL-labelling. In [2], Fischer computes C2(S)
and HY(S) for a number of signed posets S. In particular he constructs a family of posets
I', € B, such that:

- A%T,) is pure of dimension 7
- T, is EL-]abellable
- A%(T,) is homotopic to the |n/2]-dimensional sphere.

This family of signed posets shows that an EL-labelling on S does not imply that A%(S) is
shellable.

3. The main result

Let Q be a finite, ranked, self-dual poset. Let x — x* be a fixed order-reversing involution
on Q. Split @ = QL U QU so that Q" is an order ideal in Q, (QX)*N QL =(x € Q :
x* = x}and (QY)* € QL. Foreachchainy = a; < @, < --- < «; define w(y) to be the
number of pairs (¢, ;) with i < j and a; = of. We say y is isotropic if w(y) = 0.

Let C,(Q) denote the span of all r-chains and Cf( Q) the span of all isotropic r-chains.
The boundary map 8,:C,(Q) — C,—1(Q) preserves C(Q) and so (C%(Q), d,) is a
subcomplex of (C.(Q), .). Let H,?(Q) denote the homology of that subcomplex. The
main theorem for this section is:

Theorem 2 Suppose Q is Cohen-Macaulay of rank n. Then
HY(Q)=0 unless g <d<n

Proof: We prove this byinductiorron |@|. If Q is the empty poset then Ht? (Q)is O unless
d = 0. This agrees with the statement in Theorem 2 since n = 0 in this case.

Consider an arbitrary Q and assume the result is true for all Q' with {Q’| < |Q|.

Let y be a chain in C,(Q). We assign a non-negative integer p(y) to y as follows:
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1) If y is isotropic then p(y) = 0.
2) If y is not isotropic, write y as

o <0y <. <O

Then p(y) is the rank of o; where i is maximal subject to the condition that &} = «; for
some j > i. We also write A(y) to denote a;. Note that A(y) € Q.

Forr, p € Nlet C, ,(Q) denote the span of all r-chains y with p(y) = p. Note that the
boundary map 9 satisfies:

3(Crp(2) € P Crr(D).
t<p

Thus (C.(@), 8) is filtered by the parameter p. Let (E', 3') be the associated spectral
sequence which abutts to E® = H,(Q). Background material on spectral sequences can
be found in any introductory text in homological algebra (e.g. [1] or [3]).

Our first step will be to compute the E! term in this spectral sequence.

EQ is the associated graded complex. Let y be an r-chain in E°. Write y as

Y=0 <@ < <0G <Oy <o <oy <O =0 < Qg <ccc < 0.
Then
r
3%y = 2 D Ny < <@ < <ap). ¢))
s=1, s#i,j

Let E%[«r] denote the span of all r-chains y with A(y) = « and let E%[0] denote C%(Q).
Then

1) E? = CYQ) ® Dy giyp) EVlo)
2) 3%(E%a)) € E°_,[e] foralla € QL U (0).

So the complex (E?, 3°) splits as a direct sum of the subcomplexes

P (Elda), 2.

acQl\(0}

We now analyze the subcomplex (Ef[a], 8%). Assume o € QF and that o* > «. Fora
chain y to have A(y) = «, it is necessary and sufficient for y to consist of any chain up to
«, then an isotropic chain « to &, and then any chain from o* upward. So,

E2 o] = Cu(ly) ® C(ar, @*)) ® Cu(I™) 2)

where I, denotes the open order ideal generated by a in Q, %" denotes the open order filter
generated by o* in Q and (e, &) is the open interval from « to a* in Q. Moreover, (1)
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shows that the tensor product of vector spaces given by (2) extends to a tensor product of
complexes.

Let p be the rank of « so the rank of ¢* is n -+ 1 — p. Since @ is Cohen-Macaulay we
have

Hy(l,) = Hd(fa‘) =0 unlessd =p-—1.

The self-dual poset (a, «*) is Cohen-Macaulay of rank (n — p) — p = n —2p. By our
induction hypothesis

n—2

Hg((a, a®)) =0 unless P <d<n-2p.

Combining these observations we find:
E}[@] =0 unless % +p<d<n.
At this point we know nothing about
El[0] = Homology of (CX(Q), 3) = H)(Q).

However we can draw a diagram of E," » letting a square box denote values of r, p where
E} » might be non-zero. This appears in Figure 1.
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The 8' differential on E' maps E} , to E}
E’ maps E , to E]

-1, p-1- More generally, the 3° differential on

-1, ps’ It follows by induction on s that

Efo=E}y= E}0] = H(Q)
for0 <r < 3 and all 5. Thus
HYQ)=EX S H(Q)=0 for0<r< %

This proves Theorem 2. |

Theorem 1 follows immediately from Theorem 2 by taking @ = P(S).

4. Other problems

The question answered by Theorem 2 has an obvious generalization. Let C be a simplicial
complex, pure of dimension n, with vertex set V and let G C Sym(V) be a group of
automorphisms of C. Let C? be the collection of all faces of V' which do not contain two
elements of V from the same orbit.

Question Suppose C is shellable. What can you say about the dimensions ¢ where H, (C®)
is nonzero?
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