A Note on the Homology of Signed Posets

PHIL HANLON*

Department of Mathematics, University of Michigan, Ann Arbor, MI 48109-1003

Received February 7,1994; Revised May 17, 1995

Abstract. Let S be a signed poset in the sense of Reiner [4]. Fischer [2] defines the homology of S, in terms of a partial ordering P(S) associated to S, to be the homology of a certain subcomplex of the chain complex of P(S). In this paper we show that if P(S) is Cohen-Macaulay and S has rank n, then the homology of S vanishes for

degrees outside the interval [n/2, n].

Keywords: poset, Cohen-Macaulay, signed poset

1. Introduction

Let R be a set of vectors in \mathbb{R}^n . The positive linear closure of R, denoted \overline{R} is defined to be the span of all linear combinations of vectors in R with non-negative real coefficients.

For each i = 1, 2, ..., n let e_i denote the *i*th unit coordinate vector in \mathbb{R}^n and let e_{-i} denote $-e_i$. Recall that the root system B_n is the set

$$B_n = \{ \pm (e_i \pm e_j) : 1 \le i < j \le n \} \cup \{ \pm e_i : 1 \le i \le n \}.$$

Definition 1 A signed poset is a subset S of B_n such that

(a) $S \cap (-S) = \emptyset$. (b) $\overline{S} \cap B_n = S$.

Let (P, \leq) be an ordinary poset with $P = \{1, 2, ..., n\}$. Let S be the collection of all $e_i - e_j$ such that i < j. Then S is a subset of the root system A_n which satisfies conditions (a) and (b) of Definition 1 (where B_n is replaced by A_n in condition (b)). Vic Reiner introduced the notion of signed poset [4] to be a B_n -analogue of the notion of poset.

In more recent work Steve Fischer [2] defined a homology theory for signed posets. According to Fischer's definition, the homology of a signed poset S is the homology of a certain simplicial complex $C^0_*(S)$ associated to S. This simplicial complex is analogous to the simplicial complex of chains in a poset. Fischer showed that the Euler characteristic of this homology can be computed via a "2-Mobius function" and that analogues of Weisner's Theorem and Crapo's Complementation Theorem can be used to calculate this 2-Mobius

^{*}Research partially supported by the National Science Foundation and the John Simon Guggenheim Foundation.

function when S is a "signed lattice". In view of these results on the 2-Mobius function, it would be interesting to know if there are combinatorial labelling conditions which would imply that the simplicial complex associated to S is shellable.

There is an obvious analogue of EL-labelling that can be defined for signed posets, namely we say that S is EL-labellable iff P(S) is EL-labellable. Here P(S) is a poset whose chains are used to define $C^0_*(S)$. An EL-labellable signed poset is pure in the sense that all facets of $C^0_*(S)$ have the same dimension (which we will call the dimension of S). Originally Fischer had hoped to show that if S is EL-labellable then the homology of $C^0_*(S)$ is zero except in the top dimension. But then he constructed two EL-labellable signed posets S_0 and S_1 such that

(a) the homology of $C^0_*(S_0)$ is nonzero exactly in degree equal to half the top dimension. (b) the homology of $C^0_*(S_1)$ is nonzero exactly in degree equal to the top dimension.

He went on to define "signed EL-labelling" to be an EL-labelling that satisfies other conditions and showed that the existence of a signed EL-labelling of S implies that $C^0_*(S)$ is shellable.

The purpose of this note is to prove that the examples S_0 and S_1 above are the extreme cases, i.e., we will prove.

Theorem 1 Suppose S is an EL-labellable signed poset of dimension n. Then $H_r(S)$ is 0 unless $\lfloor n/2 \rfloor \leq r \leq n$.

2. Homology of a signed poset

We begin this section by defining the simplicial complex $C^0_*(S)$ that Fischer uses to compute the homology of S. This complex is given in terms of the chains in a certain poset P(S).

Definition 2 Let S be a signed poset in B_n . Define the poset P(S) with vertex set $\{\pm 1, \ldots, \pm n\} = V$ as follows. For $u, v \in V$ we say

 $u \leq_{P(S)} v$

if and only if

(i) $e_u - e_v \in S$ for $|u| \neq |v|$ or (ii) $e_u \in S$ for v = -u.

Fischer showed that P(S) is a self dual poset.

Definition 3 An *isotropic* r-chain in P(S) is an r-chain

 $\alpha_1 < \alpha_2 < \cdots < \alpha_r$

such that α_i is not equal to $-\alpha_j$ for any i, j. Let $\Delta_r^0(S)$ denote the collection of isotropic r-chains in P(S) and let $C_r^0(S)$ denote the C-span of $\Delta_r^0(S)$ (with $C_0^0(S) = \mathbb{C}$). Note that $\Delta_r^0(S)$ is a simplicial complex in $2^{P(S)}$. This gives a boundary map $\partial_r \colon C_r^0(S) \to C_{r-1}^0(S)$,

$$\partial_r(\alpha_1 < \alpha_2 < \cdots < \alpha_r) = \sum_{i=1}^r (-1)^{i-1}(\alpha_1 < \cdots < \hat{\alpha}_i < \cdots < \alpha_r).$$

Definition 4 Define $H_r^0(S)$ to be the *r*th homology of the complex $(C_*^0(S), \partial_*)$, i.e.

$$H_r^0(S) = \ker \partial_r / \operatorname{im} \partial_{r+1}.$$

We call $H^0_*(S)$ the signed poset homology of S.

We say S is *EL-labellable* if P(S) has an *EL-labelling*. In [2], Fischer computes $C^0_*(S)$ and $H^0_*(S)$ for a number of signed posets S. In particular he constructs a family of posets $\Gamma_n \subseteq B_n$ such that:

- $\Delta^0(\Gamma_n)$ is pure of dimension *n*
- Γ_n is EL-labellable
- $\Delta^{0}(\Gamma_{n})$ is homotopic to the $\lfloor n/2 \rfloor$ -dimensional sphere.

This family of signed posets shows that an EL-labelling on S does not imply that $\Delta^0(S)$ is shellable.

3. The main result

Let Q be a finite, ranked, self-dual poset. Let $x \to x^*$ be a fixed order-reversing involution on Q. Split $Q = Q^L \cup Q^U$ so that Q^L is an order ideal in Q, $(Q^L)^* \cap Q^L = \{x \in Q : x^* = x\}$ and $(Q^U)^* \subseteq Q^L$. For each chain $\gamma = \alpha_1 < \alpha_2 < \cdots < \alpha_r$ define $\omega(\gamma)$ to be the number of pairs (α_i, α_j) with i < j and $\alpha_j = \alpha_i^*$. We say γ is *isotropic* if $\omega(\gamma) = 0$. Let $C_r(Q)$ denote the span of all *r*-chains and $C_*^0(Q)$ the span of all isotropic *r*-chains.

Let $C_r(Q)$ denote the span of all *r*-chains and $C^0_*(Q)$ the span of all isotropic *r*-chains. The boundary map $\partial_*: C_*(Q) \to C_{*-1}(Q)$ preserves $C^0_*(Q)$ and so $(C^0_*(Q), \partial_*)$ is a subcomplex of $(C_*(Q), \partial_*)$. Let $H^0_*(Q)$ denote the homology of that subcomplex. The main theorem for this section is:

Theorem 2 Suppose Q is Cohen-Macaulay of rank n. Then

$$H^0_d(Q) = 0$$
 unless $\frac{n}{2} \le d \le n$.

Proof: We prove this by induction on |Q|. If Q is the empty poset then $H_d^0(Q)$ is 0 unless d = 0. This agrees with the statement in Theorem 2 since n = 0 in this case.

Consider an arbitrary Q and assume the result is true for all Q' with |Q'| < |Q|. Let γ be a chain in $C_*(Q)$. We assign a non-negative integer $\rho(\gamma)$ to γ as follows: 1) If γ is isotropic then $\rho(\gamma) = 0$. 2) If γ is not isotropic, write γ as

$$\alpha_1 < \alpha_2 < \cdots < \alpha_r$$

Then $\rho(\gamma)$ is the rank of α_i where *i* is maximal subject to the condition that $\alpha_i^* = \alpha_j$ for some j > i. We also write $A(\gamma)$ to denote α_i . Note that $A(\gamma) \in Q^L$.

For $r, p \in \mathbb{N}$ let $C_{r,p}(Q)$ denote the span of all r-chains γ with $\rho(\gamma) = p$. Note that the boundary map ∂ satisfies:

$$\partial(C_{r,p}(Q)) \subseteq \bigoplus_{t \leq p} C_{r-1,t}(Q)$$

Thus $(C_*(Q), \partial)$ is filtered by the parameter ρ . Let (E^s, ∂^s) be the associated spectral sequence which abutts to $E^{\infty} = H_*(Q)$. Background material on spectral sequences can be found in any introductory text in homological algebra (e.g. [1] or [3]).

Our first step will be to compute the E^1 term in this spectral sequence.

 E^0 is the associated graded complex. Let γ be an r-chain in E_r^0 . Write γ as

$$\gamma = \alpha_1 < \alpha_2 < \cdots < \alpha_i < \alpha_{i+1} < \cdots < \alpha_{j-1} < \alpha_j = \alpha_i^* < \alpha_{j+1} < \cdots < \alpha_r$$

Then

$$\partial^{0} \gamma = \sum_{s=1, s\neq i, j}^{r} (-1)^{s-1} (\alpha_{1} < \cdots < \hat{\alpha}_{s} < \cdots < \alpha_{r}).$$

$$(1)$$

Let $E_r^0[\alpha]$ denote the span of all r-chains γ with $A(\gamma) = \alpha$ and let $E_r^0[\hat{0}]$ denote $C_r^0(Q)$. Then

1)
$$E_r^0 = C_r^0(Q) \oplus \bigoplus_{\alpha \in Q^L \setminus [\hat{0}]} E_r^0[\alpha]$$

2) $\partial^0(E_r^0[\alpha]) \subseteq E_{r-1}^0[\alpha]$ for all $\alpha \in Q^L \cup \{\hat{0}\}$.

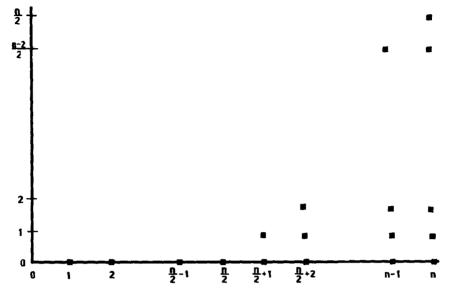
So the complex (E_r^0, ∂^0) splits as a direct sum of the subcomplexes

$$\bigoplus_{\alpha\in Q^L\setminus\{\hat{0}\}} \left(E^0_*[\alpha],\,\partial^0\right).$$

We now analyze the subcomplex $(E^0_*[\alpha], \partial^0)$. Assume $\alpha \in Q^L$ and that $\alpha^* > \alpha$. For a chain γ to have $A(\gamma) = \alpha$, it is necessary and sufficient for γ to consist of any chain up to α , then an isotropic chain α to α^* , and then any chain from α^* upward. So,

$$E^{0}_{*+2}[\alpha] \cong C_{*}(I_{\alpha}) \otimes C^{0}_{*}((\alpha, \alpha^{*})) \otimes C_{*}(I^{\alpha^{*}})$$
⁽²⁾

where I_{α} denotes the open order ideal generated by α in Q, I^{α^*} denotes the open order filter generated by α^* in Q and (α, α^*) is the open interval from α to α^* in Q. Moreover, (1)



shows that the tensor product of vector spaces given by (2) extends to a tensor product of complexes.

Let p be the rank of α so the rank of α^* is n + 1 - p. Since Q is Cohen-Macaulay we have

$$H_d(I_\alpha) = H_d(I^{\alpha^*}) = 0$$
 unless $d = p - 1$.

The self-dual poset (α, α^*) is Cohen-Macaulay of rank (n - p) - p = n - 2p. By our induction hypothesis

$$H_d^0((\alpha, \alpha^*)) = 0$$
 unless $\frac{n-2p}{2} \le d \le n-2p$.

Combining these observations we find:

$$E_d^1[\alpha] = 0$$
 unless $\frac{n}{2} + p \le d \le n$.

At this point we know nothing about

$$E^1_*[\hat{0}] =$$
 Homology of $(C^0_*(Q), \partial) = H^0_*(Q)$.

However we can draw a diagram of $E_{r,p}^1$ letting a square box denote values of r, p where $E_{r,p}^1$ might be non-zero. This appears in Figure 1.

The ∂^1 differential on E^1 maps $E^1_{r,p}$ to $E^1_{r-1, p-1}$. More generally, the ∂^s differential on E^s maps $E^s_{r,p}$ to $E^s_{r-1, p-s}$. It follows by induction on s that

$$E_{r,0}^s = E_{r,0}^1 = E_r^1[\hat{0}] = H_r^0(Q)$$

for $0 \le r < \frac{n}{2}$ and all s. Thus

$$H_r^0(Q) = E_{r,0}^\infty \subseteq H_r(Q) = 0 \text{ for } 0 \le r < \frac{n}{2}$$

This proves Theorem 2.

Theorem 1 follows immediately from Theorem 2 by taking Q = P(S).

4. Other problems

The question answered by Theorem 2 has an obvious generalization. Let C be a simplicial complex, pure of dimension n, with vertex set V and let $G \subseteq \text{Sym}(V)$ be a group of automorphisms of C. Let C^0 be the collection of all faces of V which do not contain two elements of V from the same orbit.

Question Suppose C is shellable. What can you say about the dimensions t where $H_t(C^0)$ is nonzero?

References

- 1. H. Cartan and S. Eilenberg, Homological Algebra, Oxford University Press, Oxford, 1956.
- 2. S. Fischer, "Signed poset homology and q-analog Mobius functions," preprint.
- 3. P.J. Hilton and U. Stammbach, A Course in Homological Algebra, Springer Graduate Texts in Mathematics, Springer-Verlag, 1971.
- 4. V. Reiner, "Signed posets," JCTA 62(2) (1993), 324-360.