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Abstract. Let (W, S) be a Coxeter group associated to a Coxeter graph which has no multiple bonds. Let H be 
the corresponding Hecke Algebra. We define a certain quotient/~ of H and show that it has a basis parametrized 
by a certain subset Wc of the Coxeter group W. Specifically, Wc consists of those elements of W all of whose 
reduced expressions avoid substrings of the form sts where s and t are noncommuting generators in S. We 
determine which Coxeter groups have finite Wc and compute the cardinality of Wc when W is a Weyl group. 
Finally, we give a combinatorial application (which is related to the number of reduced expressions for w ~ Wc) 
of an exponential formula of Lusztig which utilizes a specialization of a subalgebra of/t. 
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1. Introduction 

Let (W, S) be a Coxeter group whose associated Coxeter graph F is connected and has no 
multiple bonds. Let I be the set of vertices so that S = {si}ir Let l (w) ,  w ~ W, be the 
smallest number n such that w is a product of n generators. Let H be the corresponding 
Hecke algebra over L~[q, q-1 ]. Denote by (Tw)w~W the standard basis. These satisfy the re- 

lations: (1) TwTw, = Tww,, if w, w' ~ W, l ( w w ' )  = l (w)  + l (w') ,  (2)T~ = (q - 1 )~  + q, 

i f s  6 S. 
Let I be the two-sided ideal generated by the elements 

(,) ~,T,T~ + ~ + T,T.~ + ~ + T~ + 1 

where we have one such expression for each pair of non-commuting generators s, t 6 S. 

Le t /~  = H / I .  
In the case where W is a Coxeter group of type An, this has been studied by Jones [7], 

who attributes the notion to Temperley and Lieb [11]. For more details on this history, see 

[6, p. 104]. 
Let Wc denote those elements of W whose reduced expressions avoid substrings of the 

form sts where s and t are non-commuting generators in S. In Section 2, we show tha t /~  
has a basis parametrized by Wc. In Section 3, we determine when Wc is finite. In Section 4, 
we find explicit formulas for the cardinality of We when W is a Weyl group. Finally, in 
Section 5, we give an application of an exponential formula of Lusztig to derive some 

combinatorial identities. 
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Throughout this paper, we shall use a theorem of Iwahori and Tits which says that any 
reduced expression for w e W may be obtained from any other reduced expression for to 
via a sequence of braid relations (see [3] for an explanation of braid relations and Coxeter 
groups). 

I wish to thank George Lusztig, without whom this paper would not exist. 
(Added April 21, 1995: It has come to the author's attention that Stembridge [10] has 

independently derived the formulas in section 4 using purely combinatorial methods and, 
after heating about the results of this paper, generalized the results of section 3 to the non 
simply-laced case.) 

2. The Hecke algebra quotient 

Let (W, S) be as in the introduction. Depending on the context, we shall allow Tw to mean 
T~ or its canonical projection in/4.  

Let Wc be as defined in the introduction. For example, in type A2, we have Wc = 
{1, s, t, st, ts}, where S = {s, t}. 

Proposition 1 The elements { Tw }wewc form a basis for the algebra fl. 

The remainder of this section is devoted to a proof of Proposition 1. 
Let V be a free Q[q, q-1]-module with basis (Xw)w~w,. 

L e m m a  1 There exists an action of IYl on V with the property that for any to ~ We, we 
have T~,(X O = Xw + (linear combination of Xto, , l(to') < l(to)). 

Before proving the lemma, we show how the lemma implies the proposition. 
First, we claim that {Tw}wewc spans/-). Let Hc C /-) be the L~[q, q-1]-module spanned 

by {Tto}to~wc. We proceed by induction on the length. I f / (w) = 1, then to = 1 and T1 ~ He. 
Suppose Tw ~ Hc for all to ~ W, l(to) < m. Choose to ~ W of length m. If  to ~Wc, then 
Tw e /arc. Otherwise, there is some reduced expression silsi2sis '''Sip of tO such that for 
some p',  we have si,p = si,,+2 and (si,ps,p,+~)3 = 1. Thus, 

Tw = L,, .. .T,,,,  

= -T,, , . . .  T;,.,, (T~,., T.,.,+, + T...,.,+, T~,., +r~,~ + T.,.,+, + l)r~,.,...., rs,. 

This last expression is a linear combination of Tw, with l(w') < l(w). By induction, we 
have Tw ~ He. Since H is spanned by all Tw, w 6 W, we see that/-) = Hc. 

To show linear independence of the {Tw}~w~, we again proceed by induction on length. 
Clearly, {T1} is a linearly independent set. Assume that {Tw}~o~wc,t(w)<n is a linearly in- 
dependent set. Suppose we have ~-~.w~wc cwTw --- 0 where cw = 0 whenever l(w) > n. 
Then ~-,~wc cwTw(Xl) = )--~-~wc,l(w)=n cwX~ + ~w~Wc,~(w)<n c~Xw = 0. This implies 
that cw = 0 for all w ~Wc, l(w) = n. By the induction hypothesis, we must then have all 
cw = 0. Therefore the {Tw}waw, form a basis of/-) and the proposition follows. 

We prove Lemma 1. 
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We change (Hecke algebra) generators from ~ to r~ = Ts + 1, for s 6 S. These 

new generators satisfy the relations: (1) ~2 = (q + 1)rs, (2) rsrt = rtr.r i f  s t  = t s ,  and 
(3) r.~rtrs - q r s  = rtr~rt - q r t  if  (s t)  3 = 1. (See [7, Section 11.6].) 

The elements (*) are the elements rsr~r~ - qrs.  
Thus, H is a L~[q, q - l ] - a l geb ra  generated by the rs, s 6 S satisfying the relations: 

(1) r,. 2 = (q + 1)rs, (2) ~s~Yt = r t r  s i f  s t  = ts ,  and (3) ~ s r t ~ v  = qrs if (st)  3 = 1. 

Let  P,  denote the following six hypotheses (all w are assumed to be in W~): 

(1) r s (Xw)  is defined for all s E S, l ( w )  < n. 
(2) rr = (q + 1)r, Xw, i f / ( w )  < n - I. 

(3) r s ( r t ( X w ) )  = r t ( r s (Xw) )  whenever s t  = t s ,  and l ( w )  < n - 1. 
(4) rs ( r t ( r~(X~)))  = qr~(Xw) whenever (s t )  3 = 1 and l ( w )  < n - 2. 

(5) Xw = rs,~ ( - . .  (r,,,  (X~)) - .  -) whenever si~st2s, ~ . . .  si, is a reduced expression for w and 
l ( w )  < n + 1. 

(6) For any expression silsi2si~ . . .s t ,n ,  m < n + 1 (not necessarily reduced), r~,~ ( . . -  (rS,m 
(Xl ) )  �9 �9 ") is a linear combination of  Xw, with l ( w ' )  < m. 

If  Pn holds for all n, Lemma 1 follows. To see this, note that for w ~ Wc, it makes 

sense to define r~o = r,,j �9 �9 �9 rs,,, where sil.Yi2si3 " " " S t n  is a reduced expression for w. Then, 
T~ = rw + (l inear combinat ion o f  rw,, l ( w ' )  < l ( w ) ) .  Therefore, by P , ,  parts (5) and (6), 

Lemma 1 follows. 
L e t s ,  t, u ~ S, t r u. Define rs (Xt)  = Xs. Define 

{Xs t  i f s  # t, 
r ~ ( X , ) =  ( q + l ) X t  i f s = t .  

Finally, define 

Xsftl 
] (q + 1)Xtu 

r , .(X/,)  = [ (q + I)X,u 

[ qX~. 

if  l (stu) = 3 and stu ~ W c ,  

i f s  = t ,  
i f s  = u and s t  = ts ,  
if  s = u and ( s t )  3 = 1. 

One can verify that with these definitions, P2 is true. 
Fix n > 2 and assume that Pk is true for 2 < k < n. We shall establish the statement pn. 

Let w ~ W c ,  l ( w )  = n. We wish to define rs (Xw) .  
I f  s w  ~ W~, then define 

[ X,~w if l(sw) > l(w), 
r.~(Xw) = [ (q  + 1)Xw i f l ( sw)  < l (w) .  

I f s w  (. Wc, we proceed as follows. 
First,  note that l ( s w )  > l (w) .  If  not, we may write w = s w ' ,  with l ( w )  = 1 + l (w ' ) .  

Since w 6 We, we must have w' = s w  ~ We, a contradiction. 
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Denote by supp(w) the set of  generators u ~ S which appear in some (or any) reduced 
expression for w. 

We need the following lemma. 

L e m m a  2 With w and s as above, i.e. w ~ Wc and s w  ~ Wc, there exists a unique 

t ~ S such that every reduced expression o f  w may be parsed  uniquely as fol lows: w = 

w~tw~sw3,  where l (w)  = l(w~) + l(w2) + l (w3) + 2, (st) 3 = 1, and s commutes  with 

every u ~ supp(w)) t_l supp(w~). 

Assuming this lemma, we show how we define r~(Xw). 
Let silsi2sis. . .sin b~ a reduced expresssion for w, and let wl, w2, ws, and t be as 

in the lemma. Thus, for some integers f and g, we have wl = s i l s i 2 s i s . . . s i f _  j and 
113 2 ~ S i f + l S i f + 2 S i / + ,  ~ �9 �9 �9 S i g _ l .  F u r t h e r m o r e ,  s i f  ~ t and sit = s. 

We define Yi = rs,. ( . . .  (rs~.. (%(Xw2ws)))"" '). By the uniqueness of  wl, w2, and w3, 
and the induction hyl~othesis ~~ parts (1) and (6), this is a well-defined construct. Note 
that Yi is a linear combination of  X"  with l (w ' )  < n - 1. (This follows from the induction 
hypothesis Pn-I parts (5) and (6).) Also, note that l (w2ws)  = l(w2) + l (ws) .  

We claim that Yl does not depend on i. Since every reduced expression of w can be 
obtained from any other via a sequence of commutation relations (recall that w ~ W~), 
it suffices to show that Yi = Yi', where i' is obtained from i by switching two adjacent 
coordinates ih, ih+l of i where si~ and si~+t commute. 

' ' and t be associated to i' as in the lemma. Let w' 1 , w 2, w 3, 
If  f < h, then w' 1 = wl and w'gw' 3 = w2ws.  Thus, Yi = Yi, because both are defined by 

the same expression. 
If  h < f - 1, then w~ = wk, but the expressions which define Yi and Yj, differ by the 

switching of  rs,h and rs,~+,. In this case, the induction hypothesis P~-I parts (3) and (6) 
imply Yi = Yi,. 

The remaining two cases, namely h = f - 1 and h = f ,  are similar. We treat the 
case where h = f - 1. In this case, Yi, = rs~ ( . . .  (zs , :_~(z~(X~,:_~w~))) . . . ) .  Using the 
induction hypothesis P~-l parts (3), (5), and (6), this can be seen to be the same as Yi. 

Because Yi is independent of  i, we can define 

r,~(Xw) = qY~ 

for any choice of  reduced expression for w. 
We now prove Lemma 2. 
Let si~ si2si3 �9 "" s~, be a reduced expression for w. Since w ~ Wc, every reduced expression 

for w may be obtained from this one via a sequence of  commutation relations. Therefore 
every reduced expression of  w is of the form si,,)si~2)si~) �9 . .  si,<,) where zr is a permutation 
of  the letters 1 . . . . .  n. 

We remark that if sit does not commute with sit, with k < l, then zr -1 (k) < n "-I (l). 
Let Sio = s. Since sw ~ We, we can apply a sequence of  commutation relations to 

SioS~ si2 �9 �9 �9 s~n and obtain some expression Sia to)S i~ t l  ) Sia(2) " " " Si , , (n) ,  where a is a permutation 
of  the letters 0 . . . . .  n, and there exists some m where si~,) = sioc,+2) an d  (Si, ,(r4)Si~,(m+l)) 3 = 1. 
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We claim that a (m) = 0. First note that by the remark, cr (m + 1) # 0 and a (m + 2) # 0. 
(There are non-commuting generators to the left of these.) If  a (m) # 0, then by the 
remark, we can move Sio back to its original place. That is, if we set z = a - l ( 0 ) ,  then 
S S i ~ f o ) S i . ( l ) S t . ( 2  ) . �9 �9 S i . ( z _ l ) S i a ( z + l ) S i a ( z + 2 ) S i . ( z + 3  ) " �9 " S i a ( n  ) is a reduced expression for s w .  However, 
this yields a reduced expression for w which is plainly not in We, a contradiction. Therefore 
or(m) = 0. 

We also have s,o(m+2~ = s and si, o~+, = t for some t ~ S, such that (st) 3 = 1. 
Let f = c r ( m +  1) a n d g  = ~ r ( m + 2 ) .  Notice that, by the remark, f and g are 

uniquely determined by i. Indeed, sig = s is characterized by being the first occurrence of 
s in SilS,2Si3 ' ' ' S i n  (reading from left to right), and si: = t is the only generator occurring 
before sie which does not commute with s. (If more than one such element existed, the 
reduced expression obtained via cr would not be possible.) Now set wl = s,~ s~2si 3 �9 �9 . s , :_ , ,  

11) 2 - ~ -  S i / + j S i : + 2 S i f + 3  " " " S i g _ l  , and w3 = s i g + l s i g + 2 s ~ g . ~  �9 " " s i n .  

All that remains to show is that t is independent of the choice of reduced expression for w. 
Let s, I si6s,,~ �9 . .  s,, be another reduced expression for w. Let t' be the unique generator which 
does not commute with s and which occurs before the first occurrence of s (which must 
necessarily occur) in this reduced expression. From the remark, since t appears before the 
first occurrence ors  in si~ s~2s~ ~ �9 �9 �9 si~, we must have that t appears before the first occurrence 
o f s  in S t ' l S i ~ S i ~  �9 " "St, as well. Therefore, we must have t '  = t. 

The lemma follows. 
By construction, it follows that P~ parts (1), (5), and (6) hold. 
We shall use the following immediate consequence of Lemma 2. 

L e m m a  3 L e t  w ~ Wc,  s ~ S. I f  s w  ~[ Wc, then  w e  m a y  wr i t e  w = w l t s w 2 ,  w h e r e  

l ( w )  = l ( w l )  + l(w2) + 2, s c o m m u t e s w i t h a l l u  E supp(wl), a n d ( s t )  3 = 1. F u r t h e r m o r e ,  

i f  w = wtlttsw~2 & a n o t h e r  such  express ion ,  then  t = t'. 

We now check P,, part (2). 
L e t w ~  Wc, l ( w )  = n - 1 .  

C a s e  1. Supposesw ~ Wc.  I f w  < s w ,  t h e n r s ( r s ( X w ) )  = ( q +  1)Xsw a n d ( q +  I) 
rs(Xw) = (q + 1)Xsw. If w > s w ,  then zs(rs(Xw)) = (q + 1)zXw and (q + 1)r.~(Xw) = 
(q + 1)2Xw. 

C a s e  2. Suppose s w  q[ Wc. Write w = w l t s w 2 ,  as in the lemma. 
We have r.~(r.~(X~o)) = rs(qrwl (rs(Xw2))) = q ( q  + l)rw, (r.~(Xw2)). On the other hand, 

we have (q + 1)r~(Xw) = (q + 1)(qr~o~ (r~(Xw2))). 

Thus, Pn, part (2) is established. 
We now check Pn, part (3). 
Let r, s ~ S commute and pick w ~ Wc, l ( w )  = n - 1. 

C a s e  1. Suppose r s w  ~ We. We have four possibilities depending on whether w is 
shortened or lengthened by r and s. The proof for each case is similar. We consider only 
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the case where r w < w a n d s w  > w. We have rs(zr(X~,)) = z s ( ( q +  1)X~o) = ( q +  1)Xs~. 

On the other hand, zr(r.~(Xto)) = rr(Xsw) = (q + 1)Xsto. 

Case 2. Suppose rw  ~ W~, but sw f[ Wc. Write w = WltSW2, as in the lemma. If  
r w  < w, we have zs(r~(X~)) = rs((q + 1)X~) = q(q + 1 ) r ~ ( r s ( X ~ ) ) .  On the other 
hand, rr(~.~(Xw)) = r~(qzwl(zs(Xw~))) = q(q + 1)zw~(z.,.(Xw2)). Note that if rto < w, 
then rwlsto2 < wlsw2,  since t # r. The case rw > w follows similar lines. 

Case 3. Suppose rw,  sw  f[ Wc. We have two possibilities. Either we can write w = 
wl t r sw2  where t does not commute with r or s but both r and s commute with all u 
supp(w~), or we can write to = toltSW2vrto3, where t does not commute with s, v does 
not commute with r ,  but s commutes with all u r supp(wl)  and r commutes with all 
u ~ supp(wl tsw2). We treat only the latter case. 

We have then, r , ( r r (X~) )  = ~s(qZwttsw2(Tr(Xw3)) ) = q2rw~(r~(r~,2(rr(Xw~)))). To 
arrive at this, we have made extensive use of  induction hypothesis Pn-l. On the other hand, 

"~r('cs(Xto)) = rr(qrw~ (rs(rw2vrw3(Xl)))) = q2zto~ (rs(rto2(zr(Xw3)))). 

This exhausts the possibilities and establishes Pn, part (3). 
The establishment of Pn, part (4) follows similar lines. Let w ~ We, l (w)  = n - 2. Fix  

s, r ~ S such that (sr) 3 = 1. 

Case 1. Suppose l(rsw) < l ( sw)  < l(w).  Note that l(srsw) = l (w)  - 1. We must then 
have w = srw' where l (w)  = l(w')  + 2. We find, rs(z~(r~ (Xw))) = (q + 1)rs(rr(Xsrto,)) = 
q(q + 1)r~(rr (Xw,)). On the other hand, qr.~(Xw) = q(q + 1)(X~) = q (q + 1)rs (Zr (Xw,)), 
as desired. 

Case 2. Suppose l ( sw)  < l(w),  l(rsw) = l(w).  Here, w = sw '  where l (w)  = l(w')  + 1. 

Then, rs(rr(rs(Xw)))  = (q + 1)~s(rr(Xsw,)) = (q + 1)Zs(rr(rs(Xw,))) = q(q + 1)l:s(Xw,), 
by Pn-1 part (4). On the other hand, qrs(Xw) = q(q + 1)(Xto) as desired. 

Case 3. Suppose l ( sw)  > l(to) and both sto, r sw  ~ Wc. Note that necessarily, l(rsw) > 
l (sw) .  We have zs(rr(r.~(X~o))) = zs(Xrsw) = qrs(Xw) as desired. 

Case4. Suppose l ( sw)  > l ( w ) , s w  ~ Wc, andrsw (_ Wc. In th iscase ,  w e s e e t h a t w e m a y  
! ! 

write w = r w l. This follows since by lemma 3, s w = w 1 t r w z. According to Lemma 3, t is 
the unique generator occurring to the left of  r which fails to commute with r ,  but this is just  

s. By the r emarkon  ordering, we see that sto = s w l r w  2 '  ' = srw~w 2 . '  ' We take wl = WlW 2 . '  ' 
We then find r~(rr(~s(X~,))) = rs(q~r(Xw,)) = q ( z~(X~ , ) ) ,  as desired. 

Case 5. Suppose sw  q~ Wc. In this case, write w = toltSW 2 as in the lemma, rs(Xw) = 
qrwt(r.~(Xw2)) = qzs(rw~(Xw2)). Recall that s commutes with all u ~ supp(wl) .  Since 
this last expression is a linear combination of  Xw, with l (w')  < n - 3, we can write 
r.~(rr(qz,~(rwi (Xw2)))) = qZrs(zwt (X~,2)), which is just  qrs(Xw),  as desired. 

Thus, Pn, part (4) is established. 
This completes the proof  of  Proposition 1. 
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3. Classification of finite Wc 

By E ,  we mean the extended E series which is defined for n > 5 and consists of a string 
of  n - 1 nodes which comprise a graph of  type An-l ,  along with an additional node which 
is connected by a single edge to the third node of  the string counting from one end. Note 

that E9 = /~8 .  

Proposition 2 I f  W is o f  type An, Dn, or En, then Wc is finite. Otherwise, Wc is infinite. 

Proof :  Suppose that F has a subgraph of  type :,n for some n > 2. Denote by So, s l ,  
s2 . . . . .  sn the corresponding generators such that si and sj commute unless i - j = 
+1 mod n + 1. Let w = sosls2. . ,  s,.  We see that w t ~ Wc for any t > 0. 

Therefore, if Wc is finite, F has no loops. 
Suppose that P has a subgraph of  type/ )n  for some d > 4. Label the associated generators 

as follows: 

121 b 1 

"-q2 $3 Sn--5 ~ n - - y  

o j  - . . . .  

Let w = s : 2 s 3 . . ,  sn-4blb2sn-4sn-5sn-6"" "slala2. We see that w t ~ Wc for any t > 0. 
Therefore, if Wc is finite, F can have at most one branch point, and this branch cannot 

have more than three arms. 
Suppose that F has a subgraph of  type/~6. Label the associated generators as follows: 

122 ~21 7"/7, c 1 C 2 

t bl 

b~ 
Let w = ma2a~blmb2blc~mc2qa~. One can check that w t has the property that between 

any two occurrences of  a generator s in wt, there occur two generators which do not commute 
with s. Therefore, w t ~ Wc for any t > 0. 

Therefore, if Wc is finite and F has a branch point, then the three arms cannot all extend 
a distance of  two or more from the branchpoint .  

Suppose that P has a subgraph of  type E7. Label the associated generators as follows: 

a3  a s  a i m c l  c2 c3 

bl 
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Let to = ma2a~ bl ma3a2al cl rob1 c2c~ malc3C2Cl. One can check that w t has the property 
that between any two occurrences of  a generator s in w t, there occur two generators which 
do not commute with s. Therefore, w t ~ Wc for any t > 0. 

Therefore, if Wc is finite and P has a branch point, then no two arms can extend a distance 
of  three or more from the branch point. 

The above considerations eliminate all graphs except those of  type An, Dn, or En. Since 
W itself is finite in case An, Dn, E6, ET, and Es, it suffices to check the case En, n > 8. 

Assume F = En, n > 8. We shall proceed by induction on n. Let L denote the longest 
possible length o f  a reduced expression in Wc for the Coxeter group of  type En-1. Label 
the generators as follows: 

~2 ell 771. C 1 Cn-6  Crt-5 Cn-4 

" " i bl 
We group all generators of  type ak together into one family called u. Similarly, define 

families/5 and y. Note that elements from different families commute. 

Lemma 4 Let w ~ Wc. In any reduced expression for w, we claim that: 
(1) Between any two occurrences of  bl, there must be at least two occurrences of  m. 
(2) Between any two occurrences of  m, there must be generators from at least two of  the 

three families or, 3, and ~. 
(3) For any four consecutive occurrences of m, at least one consecutive pair of  these m's 

must be separated by generators other than al. 

(4) Between any two occurrences of  cn-4, there must be an occurrence of two m's  separated 
by generators of  type ot and ~ only. 

Proof: Note that b) commutes with all other generators except m. Therefore, if there 
are two occurrences of  bl separated by one or fewer occurrences of m, we may perform a 
series of  commutations until either blb~ or blmbl appears. Then either our expression is 
not reduced, or w f[ Wc. This proves (1). 

Suppose we have two occurrences of  m separated by generators from family y only. 
Since m commutes with all but one member of  y,  namely cl, there must be two occurrences 
of  c) between these m's. Two consecutive occurrences of  cl must be separated by at least 
two occurrences of  c2. Of these, we can find two consecutive occurrences of c2. These must 
be separated by at least two occurrences of  c3, etc. We continue this argument until we have 
two consecutive occurrences of  cn-4 which must be separated by at least two occurrences 
of  generators which do not exist, an impossibility. A similar argument applies to the other 
families. This proves (2). 

Suppose we have four consecutive occurrences of m, such that between any two conse- 
cutive m's  there exists an occurrence o fa l .  We may arrange that al is the only generator of 
type o~ between the middle consecutive pair of m's  by commuting a2 as necessary. If  this 
is not possible, it means there is an occurrence of  a2 surrounded by a t ' s  which contradicts 
w ~ We. Since this lone al can be commuted to be adjacent to either of the two middle 
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m's, a2 must be the first generator of family ot which appears reading from the second m 
to the left, and a2 must be the first generator of family ~ which appears reading from the 
third m to the right. In this case, we may commute these a2's so that they lie between the 
two middle m's. But this allows us to form an occurrence ofa2ala2, contradicting w ~ Wc. 
This proves (3). 

For (4), we proceed in a similar way as in the proof of (2). If we have two occurrences 
of c,_4, we can find two consecutive such occurrences. These must be separated by at least 
two occurrences of c~-5, Of these, we pick two consecutive occurrences, and so on, until 
we arrive at two consecutive occurrences of m separated by no member of family V- This 
proves (4). 

This completes the proof of Lemma 4. [] 

Now assume Wc is infinite. We shall expose a contradiction. 
Note that any element in Wc of length p(L + 1), p a positive integer, must involve at 

least p occurrences of cn-4, by definition of L. Removing the vertex corresponding to m 
from I" results in a Coxeter graph of type A1 x A2 x A~-4. The corresponding Coxeter 
group has a longest element, say, of length Lo. Thus, any element in W~ of length p (L0 + 1) 
must involve at least p occurrences of m. 

Since we are assuming that Wc is infinite, there must occur elements in W~ with reduced 
expression of arbitrary length. Let w ~Wc be an element of length greater than 2(L + 1) 
(Lo + 1). Then any reduced expression for w must have 2(L + 1) occurrences of m. 
Between the first and last of these occurrences of m, there must occur at least 2 occurrences 
of cn-4. By Lemma 4, part (4), between these two occurrences of Cn-4 there occurs two 
m's separated by generators from families ot and/3, but not 3/. By construction, there occur 
four consecutive m's of which the middle two m's are precisely the aforementioned m's. 
From now on, we shall refer only to these four m's. 

By Lemma 4, part (1), the first and third consecutive pairs of m's are not separated by 
any occurrence of bl, since bl already occurs between the middle pair of m's. By Lemma 4, 
part (2), we must then have the first and third consecutive pairs of m's separated by gener- 
ators from both families ot and y, and only these families. By Lemma 4, part (3), between 
some consecutive pair of these four m's there cannot occur al. The middle pair must be 
separated by an occurrence of al because these two m's  must be separated by at least two 
of al and bl, and bl cannot occur twice (by Lemma 4, part (1)). Thus, between the first 
or third pair of m's  there cannot occur al. Between the pair which excludes al,  there must 
be two occurrences of Cl. Grouping together the generators of family y between this pair 
yields an element of the Wc associated with a graph of type An_ 4 with two occurrences 
of cl. The argument for Lemma 4, part (2) shows that this is impossible. Proposition 2 
follows. [] 

4. Some explicit formulas 

1 2n In this section, let Cn = ~u the nth Catalan number. We adopt the convention that 

(~) = 0 whenever k ( {0, 1, 2 . . . . .  n}. 
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Proposition 3 For the simply laced Weyl groups, the cardinality of Wc is given by: 

I Cn+j 
| n+3t'-' _ 1 

#1We[ = "~{662 vn 
| 2,670 
[ 10,846 

in type An, 
in type Dn, 
in type E6, 
in type E7, 
in type E8. 

We remark that for type An, the above result is well-known as the number of 321- 
avoiding permutations (permutations rr such that there does not exist a < b < c such that 
rr(a) > rr(b) > rr(c)), see for example [2, Section 2], and also [7, Section 11]. 

Proof: By Proposition 1, Wc parametrizes a basis of/~. When W is a Weyl group, this 
algebra is semi-simple since it is the quotient of a semi-simple algebra. Thus, the cardinality 
of Wc is the sum of the squares of the dimensions of those representations of H which factor 
through to/~. These, in turn, are in one to one correspondence with representations of W 
on which the elements (,) (interpreted as elements of the group algebra of W) act as 0. 
Equivalently, this condition is given by: (ResaW2 X, 1,~2)A2 = 0, where A2 is some (or any) 
parabolic subgroup of W of type A2. We call this restriction property (R). 

Note that any two parabolic subgroups of type A2 are conjugate. Because F is connected, 
this statement follows from the following observation: If {s, t, u} C S generate a subgroup 
of type A3 where su = us, then the parabolic subgroup (s, t) can be conjugated to (t, u) 
using the element sutsut. 

Case I. The representations of An are parametrized by diagrams with n + 1 squares. Let 
h = n + 1. The ones which satisfy the restriction property (R) are precisely those with two 
or fewer columns (where we take the single column diagram to be the sign representation.) 

Using the hook length formula for dimension, we have: 

t~l h!(h - 2k + 1)! 
#1WED = ~ k!(h - 2k - 2)!(h - k + 1)! 

k=O 

(~] ( ( : )  ( h ) ) 2  l ~ ( ( h k  ) ( h ) ) 2  
=k=~o - k - 1  - 2 k = o  - k - I  

= 1 ~1  ( ( : ) 2 +  (k h l ) 2 - 2 ( : ) ( k - h i ) )  
k=0 

= ( 2 h ) _  ~ o  (h h - k ) ( k  h i ) =  ( 2 h ) _  (h2h 1 ) =  (1 h h 1)  (2h)  

= Ch. 

Case 2. L e t n > 4 .  
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The irreducible representations of W of type D,, arise from certain pairs of diagrams. 
For details of this correspondence, we refer the reader to [8, Sections 4.5, 4.6]. Briefly, let 
r + f = n, r > ~ > 0. Let Xl (resp. X2) be the character of an irreducible representation 
E1 (resp. E2) of the symmetric group Sr (resp. S~). There are two natural ways in which 
W is a subgroup of W~, the Weyl group of type B,, though the choice of the imbedding is 
immaterial for our purposes, so we fix one. The symmetric group Sn is naturally a quotient 
of IV,'. Thus, El | E2, a representation of Sr x S~, can be lifted to a representation E1,2 
of W r' x W~. Inducing this latter representation to W~' and then restricting to W gives us a 
representation E, with character X, of W. If E1 and E2 are not given by the same diagram, 
then E is irreducible. Otherwise, E is a direct sum of two irreducible representations of the 
same dimension. 

We have the following formulae: 

X(1) = (~)XI(1)X2(1) 

X(S) = X(t) = X(s t s )  = 2 X1(s)xz(1) + Xl(1)X2(S) 

X(St)=X(ts)=(72~)X,(st)x2(1)+(n-~)X,(1)X2(St) �9 

Condition (R) requires: 

0 = X(1)+  3X(S) + 2X(st) 

n - I n  - 3~ 1 1 
+ 3 ( r  ~ ) X z ( 1 ) ( X ' ( 1 ) + X ' ( S ) ) + 3 ~ 7 _ 2 ) X ' ( ) ( X 2 ( ) + X z ( S ) )  
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If 7 >__ 2, this last expression can be 0 if and only if Xl(s) = -Xl(1)  and X2(s) = 
-X2(1). Because any normal subgroup of the symmetric group which contains all simple 
transpositions must be the whole group, we see that this is possible if and only if E1 and 
E2 are the respective sign representations of Sr and Sr 

If ~ = 1, we must have X~ (s) = -Xl  (1). Therefore, El is the sign representation and 
E2 is the trivial representation. 

If? = 0, wemusthave Xl(1) + 3Xl(s) + 2Xl(st) = 0, which means that E1 is parametrized 
by a diagram with two or fewer columns. 

Note that if El and E2 are given by the same diagram, that is, if r = ~ and El and 
E2 are both sign representations, then the two irreducible summands of E both satisfy the 
restriction condition (R) because if one did not, neither could E. 

We compute 

# l W c l = C n + ~ - ~  + c~ \ " 2 - , / 2  n/2 
r = l  

= C , -  1 + ~ r=0 

n + 3  
= 2 C, - 1. 

By inspection, this formula is valid also when n = 2 and n = 3. 

Case 3. For E6, ET, and E8 we consulted [1] to determine which representations contain 
an A2 fixed vector. We shall follow the notation in [8] for the irreducible representations. 

For E6, the representations are lp, 6~, 15'q, and 20~. 
For E7, the representations are 1~, 7a, 15a, 21b, 27~, and 35~. 
For Es, the representations are 1~, 8' z, 35~, 50' x, and 84~. 

This completes the proof of Proposition 3. [] 

5. Application of an exponential formula of Lusztig 

In this section, we assume that (W, S) is the Weyl group of a reductive algebraic group G 
defined over ~. Let g be the Lie algebra of G. We continue to assume g is simple of type 
A, D, or E. Fix a Cartan subalgebra 1} and a root decomposition of g. Let R be the set 
of roots. Choose a set of simple roots I-I = {oti}i~l. Let ht(4~), c~ ~ R denote the sum of 
the coefficients of ~b when written as a linear combination of simple roots. Here, si ~ S 
corresponds to the reflection in the root ~,. Let Woe W be the unique element for which 
21(w0) = card(R). For each i ~ I, fix some E, ~ ~,~,, Ei ~ O. Let u + be the nilpotent 
subalgebra of ~1 generated by the E, and let U + ----- exp(u+). 

The following exponential formula was conjectured by Lusztig [9, Section 11.4] and 
proven in [4], 
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Proposition 4 Choose ( i l  . . . . .  iN) 6 I N so that silsi2si~ �9 �9 "SiN is a reduced expression 
for Wo. Let hk = h t (si~ si2si3 "" . si,_j (otik ) ). For each i ~ I, let n i = ~-~ik=, hk. Then 

exp(htEi~)exp(hzEi~). ".exp(hNE~N) = exp ( Z niEi ) �9 
\ t~l / 

For any w ~ W, we denote by J(w) the set of i for which s~ls,2si, . . . s i ,  is a reduced 
expression for w. 

For each z 6 W, we shall define a map fz : W w-> fit. 
Fix w 6 W and pick somej  6 J(w). 
For each 1 < k < l(w), lethk = ht(sjl...sj~_~(otjk)). Letn = l(z). 
Now define 

f d ( j )  = ~ h p ,  h p 2  " " h p  . 

I < Pl < < Pn < I(VJ) 
(Jt, j ..... jp .  )~J(z)  

We claim that this definition is independent of the choice ofj .  The proof can be achieved 
using the theorem of Iwahori and Tits referred to in the introduction. We omit the proof. 
We remark that in the case where w ~ We, this will follow from Proposition 5. 

We define 

L ( w )  = fz'(J) 

for any choice o f j  6 J(w). 
Note that for w ~Wc,  the number of times a given generator occurs in a reduced ex- 

pression is independent of the reduced expression. Therefore, it makes sense to define 
cz - ~ f z ( w o ) , z  ~ Wc, i 6 J(z). Here, the ni are as defined in the statement of 

ntl " "nqfz) 

Proposition 4. 

Proposition 5 Proposition 4 is equivalent to the set of  equations: 

card(J(z)) 
C z ~ 

l(z)! 

where z ~ Wc. 

Proof: Let U + be the universal enveloping algebra o fu  +. Define 

U + 9 + = 
~ i~ ,  U+E~ U+" 

Let/~, denote the image of Ei in 0 +. The Serre relation 2E, Ei Ei = E~E2 + E2E~ implies 
that E,L'j/~, = 0 in 0 + w h e n e v e r  ( s i s j )  3 = 1.  
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We now return to the a lgebra/~.  Let e~ = qzs. We see that H is the algebra generated 
2 by the es, s ~ S with the following relations: (1) e s = q(q + 1)es, (2) e.~et = etes, if 

st = ts, and (3) esetes = q3e.~, if (st) 3 = 1. L e t / ~ C q l  be the ~[q]-subalgebra  o f / - )  

generated by the e.~. As a L~[q]-module, this is free with basis ew = qt~)zw, w ~ W~. Let 
1to = tTl~tql | tqj ~ where q acts as 0 on the ~/[q]-module ~. This is the the specialization 

of/']~[q] to q = 0 with base field extended to ft. 

By construction, we have an algebra isomorphism 1/i : /~o ~ 0 + where ~P(es,) = El. 
For any i = (i~ . . . . .  i~) E I ", denote b y / ~  the monomial/~i~ " '"/~i, .  By convention, 

when n = 0 we set/~i = 1. For each z ~ Wc, choose i(z) ~ J(z) .  [] 

L e m m a  5 The set of  monomials {/~i(z) I z ~ Wc} form a basis for the algebra 0 +. 

Proof:  Via the isomorphism ~/, this is equivalent to showing that {ew}_w~w,. is a basis of 
/40. Since HL~tq ] is free over Ll[q], we see that d im~(H0) = dimL~[q]HL~[q ]. The lemma 
follows. [] 

Lemma 6 There exists a unique injective group homomorphism t " U + ~ (0+)  * such 
that exp(aEi)  ~ 1 + aEi where a ~ ~. 

Proof:  Because U § is unipotent, exp : u + ~-~ U + is a bijection. Observe that 0 + = 
~) rad(0+) .  Therefore exp : rad(0  +) ~ 1 + rad(0  +) C (0+)  * is an injection into 0 +. 
By the Poincare-Birkoff-Witt theorem, the natural map- :  u + ~-~ 0 + is injective because 

0 + is obtained from U + by reducing modulo elements of homogeneity 2. 
Using functoriality of  the exponential map between nilpotent Lie algebras and unipotent 

groups, we get the desired map t. One can check that t (exp(a El)) = 1 + a Ei and the lemma 
follows. [] 

By Lemma  6, Proposition 4 holds if and only if the formula holds in 0 + via the homo- 
morphism t. 

Direct computation reveals that the formula becomes 

card(J(z))/~, z 

z~W,. z~W~ 

when interpreted as a formula in I3 +. 
By L e m m a  5, this equality can occur if and only if the various coefficients are equal, 

whence the proposition. 
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