Erratum

Crossa, J.; Taba, S.; Eberhart, S. A.; Bretting, P.; Vencovsky, R. Practical considerations for maintaining germplasm in maize. Theor Appl Genet (1994) 89:89-95

Page 90 column 2

```
line 13:
   s^2(k_f) = 0, s^2(k_m) = 0.
```

line 16: $s^2(k_f) = 0$.

line 18: $Ne_{(v)} = 2N_t/[1+(\bar{k}_m)/\bar{k}].$

line 24: $Ne_{(v)} = 2N_t/[1 + (\bar{k}_m + \bar{k}_f)/\bar{k}].$ line 28-29: (1) $Ne = 8N_mN_f/(N_m + N_f)$ when the number of female and male gametes are controlled.

line 32-33: when $N_m = N_f = N_t$, $Ne = 4N_t$; (2) $Ne = 16N_mN_f/3(N_m+N_f)$ if only the number of female gametes is controlled.

line 33-34: when $N_m = N_f = N_t$, $Ne = 2.67N_t$.

Note: These expressions for separate sexes (Hallauer and Miranda Filho, 1981) are valid when population size is kept constant from one generation to the next.

line 54: $Ne_{(y)} = 2N_t = 1200$ for every set of 600 ker-

nels sampled.

line 59: $Ne_{(y)} = (4/3)N_1 = 800$ for every set of 600 kernels sampled.

line 61: $Ne_{(y)} = N_t = 600$ for every set of 600 kernels sampled.

line 65: $s^2(k) > \bar{k}$.

line 66: $Ne(v) < (4/3)N_1$.

Page 91 column 1

line 11-13: For this procedure, the actual size of the breeding population is N = 300 in each block but Ne = 1200 for both blocks jointly.