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Abstract. An authentication code consists of a collection of encoding rules asso- 
ciating states of an information source with messages that are to be used to 
communicate the state to a designated receiver. In order for a collection of encoding 
rules to be useful as an authentication code there must also exist one or more 
probability distributions on the rules which, if used by the receiver and transmitter 
(the insiders) to choose secretly the encoding rule they use, will result in the receiver 
being able to (probably) detect fraudulent messages sent by an outsider or modifica- 
tions by him of legitimate messages. 

Authentication codes that permit arbitration are codes that in addition to 
protecting the insiders from deception by outsiders, also protect against some forms 
of insider deception. This is accomplished by making it possible for an arbiter to 
resolve (again in probability) certain disputes between the transmitter and receiver: 
the transmitter disavowing a message that he actually sent or the receiver claiming 
to have received a message that the transmitter did not send. 

An infinite class of authentication codes that permit arbitration is constructed 
and some bounds on the probability of a deception going undetected are proven. 
These codes are shown to be unconditionally secure, i.e., it is shown that the 
probability of a deception either going undetected or else of being unjustly attri- 
buted to an innocent party is independent of the computing capability or invest- 
ment that a would-be cheater is willing to make. 

Key words. Authentication, Authentication codes, Arbitration, Unconditional 
security. 

1. Introduction 

T h e  ob jec t  o f  a u t h e n t i c a t i o n  has  t r a d i t i o n a l l y  been  to  p ro t ec t  aga ins t  t w o  types  o f  

d e c e p t i o n  tha t  can  o c c u r  in a c o m m u n i c a t i o n s  channe l .  I n  this c o n t e x t  a u t h e n t i c a -  

t ion  has  been  res t r i c ted  to  p r o v i d i n g  the  a u t h o r i z e d  receiver(s)  wi th  a capab i l i t y  o f  

de t ec t i ng  u n a u t h e n t i c  messages ,  i.e., e i the r  messages  o r i g ina t ed  by  u n a u t h o r i z e d  

t r ansmi t t e r s ,  o r  else a u t h e n t i c  messages  tha t  h a v e  been  i n t e r c e p t e d  a n d  e i the r  

r e p l a c e d  o r  m o d i f i e d  before  be ing  re l ayed  o n  to  the  receiver .  Br ickel l  [2] ,  D e  Soe te  

[6] ,  M a s s e y  [12] ,  S c h o e b i  [17] ,  S i m m o n s  [ 1 8 ] - [ 2 0 1  a n d  S t in son  [26] ,  [27]  h a v e  

t Date received: May 1, 1987. Date revised: January 15, 1990. This work was performed at the Sandia 
National Laboratories and was supported by the U.S. Department of Energy under Contract No. 
DE-AC04-76DP00789. 
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constructed unconditionally secure authentication codes that realize this limited 
objective, but only subject to the severe constraint that the transmitter and receiver 
have had to be assumed to act with the joint purpose of detecting attempted 
deceptions by outsiders and that neither would attempt to deceive the other. This 
assumption was made necessary by the fact that, prior to the discovery of the 
authentication codes described in this paper, the only unconditionally secure codes 
that had been devised required both the transmitter and receiver to know the same 
secret (from the opponent) information, and hence for them to have interchangeable 
capabilities either to generate or verify authentic messages. The unavoidable con- 
sequence has been that the known codes have all left open the possibility for either 
the transmitter to disavow a message that he actually sent to the receiver or else for 
the receiver to attribute falsely a message of his own devising to the transmitter. Of 
course the party being deceived would realize that he was the victim of a deception 
by the other, but would be unable to prove this to a third party. Ideally, authentica- 
tion should provide a means to protect against deceptions by insiders (the trans- 
mitter or receiver) as well as by outsiders (the opponent). It has been an open 
question until recently [3], [22], [23] of whether it was even possible to devise 
unconditionally secure authentication codes that would permit a fourth party, an 
arbiter, to decide (in probability) whether the transmitter or the receiver was 
cheating in the event of a dispute. We answer this question in the affirmative by first 
constructing an example of an unconditionally secure Cartesian product authen- 
tication code that, while still permitting the receiver to detect outsider deceptions, 
also makes it possible for a predesignated arbiter to corroborate (in probability) 
insider deceptions. The construction in the example code is then generalized to an 
infinite class of Cartesian product codes that also permit arbitration. These codes 
are unconditionally secure in the sense that the probability of a deception going 
undetected is independent of the computing power or time that the party attempting 
a deception may bring to bear. This is in contrast to either computationally secure 
codes where the security depends on a would-be cheater having to carry out some 
computation that in principle is possible but in which all of the known methods of 
execution require an infeasible amount of computation or provably secure codes 
where it can be shown that the security is at least as great as the difficulty of carrying 
out some related (presumed) hard problem, such as factoring suitably chosen large 
composite integers, etc. 2 It should be pointed out, however, that for this particular 
construction of authentication with arbitration codes, the requirement that the 
transmitter and receiver unconditionally trust each other has, unfortunately, only 
been replaced by a requirement that they each unconditionally trust the arbiter. 
Recently Brickell and Stinson [3-1 have extended the notion of authentication codes 
that permit arbitration reported here and devised a protocol which permits arbitra- 
tion with multiple arbiters that avoids the necessity for unconditionally trust- 
worthy arbi ters--a t  the expense of requiring a much larger exchange of private 
keying information to set up the authentication code and a corresponding increase 

2 This distinction between unconditionally secure schemes (not necessarily restricted to authentication 
codes) and provably secure schemes is of relatively recent origin and is made necessary by a growing 
body of results of each type. In 1-24], for example, Simmons classified as provably secure, authentication 
codes that under currently accepted usage of the term would be called unconditionally secure. 
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in the information content of the messages used to communicate the states of the 
source. 

Functionally, there is little difference between computationally secure or prov- 
ably secure and unconditionally secure systems. The difference is in how the func- 
tions are realized. Although this paper is concerned exclusively with unconditionally 
secure codes, we remark briefly on the essential features that underlie both types of 
authentication schemes. Clearly there must be some operation on the information 
conveyed in an authenticated message which is computationally feasible for the 
authorized transmitter to perform, but which is either improbable or else compu- 
tationally infeasible for an opponent to do, and whose correctness of execution can 
be verified by at least the authorized receiver(s), and perhaps by the arbiter(s). 

Since an opponent can always choose a message using whatever strategy he 
wishes and communicate it to the receiver on the chance that it might be accepted 
as an authentic communication from the legitimate transmitter, for authentication 
to be possible at all, it must be true that only a subset out of the collection of all 
possible messages will be acceptable to the receiver as authentic at any given time. 
The essential concept on which authentication is based irrespective of whether the 
scheme is only computationally or provably secure or is unconditionally secure, is 
to organize the sets of acceptable messages in such a way that no matter which set 
the receiver has chosen, the opponent's probability of finding a message in that set 
will be small enough for the resulting security against deception to be acceptable. 
Any message chosen by the opponent, using whatever strategy he elects to use, 
should have some probability of being rejected as unauthentic since it may be one 
of the messages that are unacceptable to the receiver, and which, therefore, would 
not have been sent by the legitimate transmitter. 

In computationally and provably secure authentication schemes, the sets of 
acceptable messages are often determined (virtually constructed) by either append- 
ing a cryptographically related message authentication code (MAC) to the informa- 
tion being authenticated, or else by first appending an unrelated authenticator and 
then cryptographically"sealing" the resulting extended message using either a single 
key or a two-key cryptoalgorithm. Each choice of a key defines one subset of 
acceptable messages. In the case of authentication schemes based on single-key 
cryptography this is unavoidable since the only operation that the insiders (who 
know the key) can do, that outsiders cannot, is to encrypt or decrypt information 
using the secret key. In the case of two-key cryptographic techniques though, or 
especially in the case of a pure authentication channel, this need not be true. This 
is because an authentication channel can differ significantly from a secrecy channel, 
since in the one case it is only necessary that the receiver be able to verify that the 
authentication operation has been correctly carried out in order to establish that 
the communication is authentic, while in the other case he must be able to "invert" 
the operation to recover the information actually concealed in the cipher. A well- 
known example of the latter type, i.e., of using a public-key encryption algorithm 
to define the set of acceptable messages by concealing them in ciphers is the digital 
signature scheme defined by Rivest et al. 1-16]. In this case, the information being 
authenticated is concealed by the authentication operation and revealed as an 
essential part of the process of verifying its authenticity. It is, of course, essential 
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that only a predesignated fraction of the messages will be accepted as authentic: for 
example, those ending in a pre-agreed suffix. On the other hand, the digital signature 
schme of E1 Gamal [7] is essentially an appended authenticator (MAC) to the 
message which need not be, and in fact cannot be, decrypted by the receiver in the 
process of verifying that the message is authentic. Both of these schemes are 
computationally secure as are most of the other digital signature schemes based on 
two-key cryptographic techniques. There are, however, a few provably secure 
authentication (digital signature) schemes [9], [15], [25], [28] based on public-key 
cryptographic algorithms. The digital signature scheme of Goldwasser et al. [9] in 
addition passes a very strong security requirement, namely, it is secure against 
adaptive chosen message attacks. This is an appropriate point to remark that a 
digital signature is more than just a computationally secure or provably secure 
authentication with arbitration scheme. Anyone (having access to entirely public 
information) can verify the authenticity of a signature--not just the predesignated 
arbitor(s). It is an important point and should be clearly stated that the price paid 
to achieve unconditional security (in all presently known realizations) is to restrict 
the ability to authenticate messages to insiders, i.e, to parties possessing some 
information not known to all of the other participants. 

In all cases in which encryption, either single-key or two-key, is used to define 
the set of acceptable messages, the authenticated messages (ciphers) consist of only 
those ciphers that decrypt with the chosen key to either a meaningful message or 
to a message with the proper appended authenticator or else they consist of 
messages in which encryption is used to form an appended authenticator. The 
coincidence of acceptable messages between subsets determined by different keys 
is, in general, computationally infeasible to determine so that only statistical state- 
ments can be made about the opponent's likelihood of being able to deceive the 
receiver. For example, even today after a decade of open community research, no 
plaintext-ciphertext pair is known which is fixed by two or more nonweak Data 
Encryption Standard (DES) keys although such pairs almost certainly exist. 3 In 
other words, we do not know of any nontrivial overlap of plaintext-ciphertext pairs 
between acceptable message sets defined by different DES keys. If a single-key 
cryptoalgorithm is used then the transmitter and receiver must both know the key; 
the transmitter so that he can encrypt (authenticate) information and the receiver 
so that he can decrypt or verify the authenticity of the messages he receives. This is 
true irrespective of whether the information being authenticated is known to, or 
kept secret from, the opponent, i.e., independent of whether the authentication is 
made with or without secrecy [21]. In either case, if a single-key cryptoalgorithm 
is being used, the transmitter and the receiver must both keep the key secret (from 
the opponent) as well as ensuring its integrity (against substitution or modification). 
However, if a two-key (nre public-key) algorithm is used, the receiver need only 
ensure the authenticity, i.e., the integrity, of the key that he uses, not its secrecy. The 
transmitter must, of course, keep secret and protect the integrity of the key he uses 
to encrypt, i.e., to authenticate, messages. Using encryption to define the set of 

a Note added in revision: This comment is no longer true. Quisquater and Delescaille [-14] have 
announced (February 1989) that they have found several nonweak DES collisions. 
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acceptable messages has been the classic way in which communications have been 
authenticated, by military and diplomatic services for example, especially where 
the transmitter and receiver were mutually trusting and trustworthy so that they 
could share a single cryptographic key which each could trust the other to keep 
secret and to not misuse to deceive him. Such a scheme is only as secure as the 
cryptoalgorithm is difficult to cryptanalyze, which is measured by the computa- 
tional difficulty of carrying out the calculations necessary to cryptanalyze the 
system. 

2. The Threat 

Since the function of authentication codes is to protect against deceptions involving 
unauthentic information, we start by describing the three types of deception that 
one or more of the known codes can detect and/or in probability prevent. It should 
be pointed out, though, that there are many other types of deceptions besides those 
considered here. For example, one of the participants in an information-based 
protocol may deliberately reveal information, which, according to the protocol, he 
is supposed to keep secret, thereby impeaching the integrity of the protocol and 
hence of the information itself, or a cabal of the participants may pool their private 
pieces of information in an attempt to cheat one or more of the other participants, 
etc. In the broadest sense, the subject of authentication codes includes providing 
protection against all forms of deceit where the success of the deception depends 
on causing one or more of the participants in an information-based protocol to 
accept unauthentic information and to act as though it were authentic. However, 
for the purposes of this paper, we restrict attention to only three generic types of 
deception, two of which have further natural subdivisions depending on the infor- 
mation the would-be cheater has available to him at the time he tries to cheat. 

The terminology which we use in discussing authentication is well established in 
the literature, but unfortunately suggests a narrower view of the subject than is 
intended. Since the problem of authenticating information first arose in a commu- 
nications context, the convention is to call the authorized originator of the authen- 
ticated information the transmitter, and the authenticated information which he 
originates, a message. This message, devoid of any meaningful physical embodi- 
ment, is communicated to a remotely located receiver over a publicly exposed, 
noiseless, communication channel, which is commonly referred to as the authen- 
tication channel. In the simplest possible authentication scheme, the intended re- 
cipient of the message, the authorized receiver(s), is also the party desiring to verify 
its authenticity; although, as the discussion in the next few paragraphs will make 
clear, there are circumstances in which this is not the case. Authentication, however, 
is much broader than this communications-based terminology would suggest. The 
information to be authenticated may indeed be a message in a communications 
channel, but it could equally well be data in a computer file or resident software; it 
could quite literally be a fingerprint in the application of the authentication channel 
to the verification of the identity of an individual [13], [19] or figuratively a 
"fingerprint" in the verification of the identity of a physical object such as a 
document or a tamper-sensing container [11], etc. In the broadest sense, authen- 
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tication is concerned with establishing the integrity of information purely on the 
basis of the internal structure of the information itself, irrespective of the source of 
the information. 

In the most general model of authentication there are four essential participants, 
the "insiders" are the transmitter (the authorized originator for messages), the 
legitimate receiver(s), and, depending on the particular authentication scheme being 
used, perhaps the arbiter(s). Whether the arbiter is an insider or an outsider depends 
on whether he is in possession of any privileged information, i.e., information not 
available to one or more of the other participants. The fourth participant, the 
opponent, is always an outsider who is assumed to have no privileged information, 
but who is assumed to be knowledgeable of the general authentication scheme being 
used by the transmitter and receiver (an extension of Kerckhoff's criteria in crypt- 
ology to authentication) and to be capable of sophisticated eavesdropping, compu- 
tation, and message alterations. Given this general setting, there are (at least) four 
classes of cheating (attempted deceptions) that can occur: classified by the identity 
of the would-be cheater. 

The opponent can send a fraudulent message to the receiver in hopes of having 
it accepted as an authentic communication from the transmitter. He can do this 
after having eavesdropped on l, l > 0, legitimate messages communicated to the 
receiver by the transmitter. We denote this type of cheating by the notation Io or 
It and Sz, l > 1. The cases I o and It, l > 1, are sufficiently different that we describe 
them separately: 

Io: The opponent, based only on his knowledge of the general authentication 
scheme being used by transmitter and receiver can send a fraudulent message 
to the receiver when in fact no message has yet been sent by the transmitter. 
The probability of his succeeding in deceiving the receiver in this case is 
simply the value of the two-person game whose representation is the inci- 
dence matrix of the authenticating rules--mapping source information into 
messages--in the general authentication scheme [18], 1-20], [21]. This is an 
easy computation to carry out, even for large authentication schemes. I o is 
commonly referred to as (the opponent) impersonating the transmitter. 

I~ and St: The opponent can wait to observe I - 1 legitimate messages from the 
transmitter which he allows to pass to the receiver without tampering with 
them. When he intercepts the lth message there are two courses of action 
available to him: he can either substitute some other message of his own 
devising in its stead or he can forward it without modification to the receiver, 
He could then, based on what he has learned from the I observations he has 
made of legitimate messages, send a message of his own choosing to the 
receiver, i.e., he can attempt to impersonate the legitimate transmitter. The 
first type of deception is an/ th-order  substitution attack, St, where S 1 is 
commonly referred to as simply substitution, while the second type of 
deception is an/ th-order  impersonation. The opponent's strategy in this 
case, l _>_ 1, is defined by conditional probabilities, i.e., his decision of which 
message to substitute will be affected by the legitimate messages he has 
observed (and also by whether he knows or does not know the information 
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being conveyed by the observed messages [18], [20], [21]). Already for the 
case of St this problem is computationally difficult (even for modest-sized 
authentication schemes) unless very stringent conditions are imposed on the 
regularity and symmetry of the associated designs. 

Simmons has restricted attention in his earlier work on authentication codes [18], 
[20]-[23] and in this paper to deceits I o and Sl, i.e., transmitter impersonation 
and/or message substitution. The reason for this is that, for opponent deceits with 
l > 1, an ad hoc rule must be introduced to prevent the opponent from simply 
substituting a legitimate message already observed prior to the lth communication 
and hence known to be acceptable to the receiver, for the lth message--if they are 
different. Various other authors [6], [ 12], [17], [27] have considered authentication 
codes for the cases l > 1. In all cases, the opponent wins if the receiver accepts the 
fraudulent message as being an authentic communication from the transmitter and, 
if I > 0, ends up being misinformed as to the transmitter's communicated informa- 
tion in consequence. 

Insider cheating involves a participant who knows some piece of information 
about the authentication scheme not known to all of the other participants: the 
transmitter, receiver, or in some instances as noted earlier, the arbiter(s). We do not 
consider the case of insider-arbiter cheating since the authentication codes to be 
described here provide no protection against this type of deceit. In the most general 
setting, though, arbiter cheating is a fourth type of deception that needs to be 
protected against in addition to the three considered here. Protection against 
transmitter or receiver cheating presupposes that there is an arbiter who will 
arbitrate disputes between them, i.e., who will assign liability to the party most likely 
to be responsible. This arbiter, for the scheme described in this paper to work, must 
be assumed to be unconditionally trustworthy. In other words, we assume that 
the arbiter will not misuse his privileged position to deceive either the transmitter 
or receiver. 

-The receiver can cheat if he can successfully attribute a message of his own 
devising to the transmitter, i.e., a message not sent by the transmitter. "Successfully" 
means that when the transmitter later claims (correctly) that he did not send the 
message in question, that the arbiter will rule against him. The receiver can wait to 
attribute a fraudulent message to the transmitter until after he has received l, I > 0, 
legitimate messages. We denote this second form of cheating by the notation R z, 
I > 0 .  

Rt: The receiver, using both the public knowledge of the general authentication 
scheme and his privileged information, claims to have received from the 
transmitter, in an authentic message, fraudulent information of his own 
devising. He is successful if and only if the arbiter later certifies the fraudulent 
message as being one that the transmitter could have sent under the existing 
protocol. If he attempts to cheat before any legitimate message has been 
sent, this is an Ro deception. If he waits until after he has received I legiti- 
mate messages, l > 1, from the transmitter, and then--using this additional 
information--attempts to cheat in the same way as before, this is said to be 
an R~ deception. 
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The category R~, l > 1, will not be considered here for the same reason that 
the categories I z and S~, l > 1, were excluded from consideration for opponent 
deceptions. 

T: The transmitter can attempt to cheat the receiver by sending a message which 
the receiver may accept and then claiming that he did not send it, i.e., by 
disavowing a legitimate message. He will be successful in this deceit if and 
only if when the receiver later claims to have been cheated the arbiter rules 
that the message is not one that the transmitter would have sent under the 
existing protocol and, in consequence, the receiver is held liable. 

An arbiter can attempt to deceive the receiver in precisely the same ways that an 
opponent can, using his privileged position and information, if any. In the scheme 
to be described here, the arbiter would be certain of success. However, in the general 
case, or perhaps even for other arbitration protocols, an arbiter would not neces- 
sarily be certain of either having a fraudulent message of his choosing accepted by 
the receiver or, if it was, of having it attributed in the arbitration protocol to the 
transmitter. The arbiter's options are (like the opponent's) either to impersonate the 
transmitter after observing l > 0 legitimate messages, or else to substitute a frau- 
dulent message for a legitimate one on the /th round, l > 1. If the arbiter is in 
possession of some privileged information, i.e., is an insider, so that he can be 
distinguished from the opponent who was defined to be an outsider, then we would 
propose using the notation. 

I? and S? 

to indicate the various types of arbiter deceptions. No further mention or use of 
arbiter deceptions will be made in this paper. 

It is perhaps useful in understanding insider deceits to think of the receiver as a 
stockbroker and the transmitter as one of the broker's customers. In this setting it 
is easy to believe that a customer might wish to disavow an order that he actually 
issued if it later turns out that the decision was a bad one that cost him money. 
Similarly, the broker, who is managing the customer's account, might very well wish 
to execute an order of his own devising when he had received no such instructions 
from the customer, or even to execute orders contrary to the customer's instructions, 
to generate commissions for himself or in his judgment to make better investments. 
In either case, the function of authentication would be, in the event of a dispute 
between the broker and the customer as to whether the broker had faithfully carried 
out the customer's instructions, to make it possible for an impartial third party to 
decide who was, in all probability, liable. 

3. A Partial Solution: Unconditionally Secure A-Codes 

Pedagogically the easiest way to approach authentication with arbitration, A 2- 
codes, is to do so in two steps: first, discussing very briefly the essential features of 
the conceptually simpler authentication codes that do not permit arbitration, A- 
codes, and then extending these to codes that make arbitration possible. A-codes 
provide protection only against opponent deceits and, as already remarked, for the 
purposes of this paper, only against deceptions of types I o and $1. 
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In the case of unconditionally secure authentication codes, A-codes, the code 
consists of the explicit specification of the collection of encoding rules (mapping 
source information into acceptable messages) which the transmitter and receiver 
can choose from and the associated protocol that the transmitter and receiver will 
jointly (and secretly) select one of these rules to specify the subset of messages which 
the transmitter will use and which the receiver will accept (as authentic). Given such 
an explicit construction, Simmons has shown [18], [20], [21] that it is possible to 
compute the precise value for the probability that an opponent will be able to 
deceive the receiver, even if he is assumed to have unlimited computing power and 
time. In practice this computation is often infeasible to carry out even for quite 
modest-sized codes unless very strong constraints are imposed on the incidence 
structure of the sets of acceptable messages [2], [201 [21], [24], [26]. 

In the most general model for unconditionally secure authentication codes there 
is a source re whose state, s, is the information that the transmitter wishes to convey 
to the (legitimate) receiver(s). There is also a probability distribution S on the states 
of re which we assume cannot be influenced by any of the participants. The number 
of states of S~, each of which is assumed to have a nonzero probability of occurrence, 
is or; I~1 = a. There is also a noiseless, but insecure, communications channel which 
can communicate any message, mi, out of a set ~ [.it'[ = v. The transmitter/receiver 
choose Jg as a part of their design of an authentication code. The probability 
distribution, M, of the usage (by the transmitter) of messages from ~ '  to communi- 
cate states of the source to the intended receiver is a complex function of the 
authentication code, as well as of the actions of the various participants. There 

�9 are practical considerations, such as the most efficient use of the channel in which 
~ '  occurs and even more importantly of the most efficient use of the (costly) 
secure channel needed to set up the authentication channel, which dominate the 
transmitter/receiver's choice of an authentication code. We ignore these consider- 
ations here, and simply analyze one class of authentication codes, assuming that 
they have been chosen using whatever criteria are relevant. 

Clearly, since the whole object is for the transmitter to be able to inform the 
receiver of the state of the source, there must be at least as many messages as there 
are source states 

v = I~1-> 1~1 = a. (1) 

Equally clearly, strict inequality must hold in (1), otherwise all messages would have 
to be usable (by the transmitter) and hence be acceptable (to the receiver), and the 
opponent could impersonate the transmitter with certainty of success using any 
message whatsoever. With no loss of generality, this says that in any particular 
instance, a proper subset, .//i c Jr', of the messages will be used, i.e., available for 
the transmitter to use and acceptable to the receiver. Again, since there must be at 
least one message available to convey each state of the source [dr > tr. The 
transmitter and receiver must have a common understanding of the relationship 
between messages and states of the source; the transmitter so that he can choose a 
message, m, communicating the observed state, s, (encoding) and the receiver so that 
he can interpret ra to infer that s occurred. This says that in addition to the choice 
of a proper subset, ~r ~ ~g, I ~ l  > a, a mapping of 6e onto -/4/must also be 
specified by the transmitter/receiver. Each state of the source must be mapped onto 



86 G.J. Simmons 

at least one message in d-/~ and perhaps more than one. Since we assume, in accor- 
dance with Kerckhoff's criteria in cryptography, that the opponent is fully knowledge- 
able of the authentication code, i.e., that he knows the family of subsets, ~t'~, and the 
associated mappings of 5e onto them that the transmitter/receiver can choose among. 
The coincidence of messages between these subsets must satisfy a number of con- 
ditions for authentication to be possible. For  example, it should be obvious that no 
message can occur in all of the subsets, otherwise the opponent could impersonate 
the transmitter using that message with certainty of success and every message must 
occur in some subset, otherwise that message could be deleted from .At' without 
affecting the performance of the code. In the least restricted formulation of A-codes, 
any given message may be used in different encoding rules to communicate different 
states of the source. An encoding rule can be thought of as a labeling of a proper 
subset of the messages with the states of the source in which each state must be used 
to label at least one message. However, if each message always conveys the same 
source state (in all of the encoding rules in which it is used) the code is said to be 
Cartesian since the labeling in the individual rules is that induced by a labeling with 
the a states of the source of the parts in a partition of ~t' into a nonempty parts. 

In general, what is done to make it feasible to solve for the probability of the 
receiver being deceived (into accepting an unauthentic message as authentic) is to 
insist that all encoding rules use the same number of messages, that each message 
occur in the same number of encoding rules, and - - i f  secrecy is not required-- that  
the code be Cartesian. 

To simplify the description of the authentication codes to be discussed here, we 
define a matrix product | reminiscent of a Cartesian product for sets and which 
we therefore refer to as a Cartesian product (of matrices). For  matrices M1 and M2 
with rt(r2) rows and c1(c2) columns, respectively, we define A = M1 | M2 to be the 
matrix with rlr2 rows and c~ + cz columns such that, for 1 <_ i < rl and 1 < j < r2, 
the (r2(i - 1) + j ) th  row of A is the concatenation of the ith row of M1 with the j th  
row ofM2. The extension to the product of more than two factor matrices is obvious. 
We often use the notation 

A = A | 1 7 4 1 7 4  ~ 

to denote an A-code for a 15el = a state source in which the messages in the ith 
factor are all labeled with source state at. We refer to an A-code constructed in this 
way as a Cartesian product code. 

The smallest possible example of a Cartesian product A-code which can be used 
to communicate one bit of information about the state of the source (two equally 
likely states, say H and T) and provide one bit of authentication has e = m -- 4: 

r 1 

s 

s 

m l  m 2  m 3 m 4  

H - T m 

H - - T .  
- H T - 

- H - T 

(2) 

Only a moment's reflection is needed to see that the authentication scheme in (2) 
does indeed provide one bit of authentication protection against both I o- and 
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Sl-type deceptions. It is worth pointing out why this true, since these same principles 
are also the basis for the construction of authentication codes that permit authen- 
tication. First the Cartesian product construction ensures an independence be- 
tween the probability of a successful deception and the probability distribution on 
the source states. To see this, assume that the source is strongly biased so that 
P(H) >> P(T), i.e., so that ml or m2 are correspondingly much more likely to be seen 
as messages than m3 or m4. This clearly has no effect on the opponent's probability 
of success in an Io deceit. In an Sl deception, if the opponent observes m~ or 
m2--which is l ikely--he is still forced with a choice between m3 or m4 as the 
substitute message, either of which is equally likely to be acceptable (or unaccept- 
able) to the receiver. The same argument holds if he observes m3 or m,~. Thus as a 
consequence of the Cartesian product construction his probability of deceiving the 
receiver will be 1/2, i.e., one-bit of uncertainty for either an Io- or an S~-type 
deception irrespective of the probability distribution on the source states. 

The fact that A can be represented in this example as a Cartesian product of two 
2 • 2 labeled matrices and that it is also a Cartesian authentication scheme may 
mislead the reader into believing that the two properties are synonymous. What is 
true is that while a Cartesian product code is always Cartesian (due to the one-to- 
one association of the factors in the product with states of the source) the converse 
does not hold in general. The authentication code 

m l  

a 1 H 

A = a2 H 
a 3 H 

a 4 - 

m 2  m 3 m4 

- T - 

- -  - -  T 

H T - 
H - T 

is Cartesian but A is clearly not representable as a Cartesian product of factor 
matrices. 

4. A Smal l  E x a m p l e  o f  an Uncondit ional ly  Secure A2-Code 

The smallest possible example of an A2-code which provides one bit of protection 
against all five types of deception, while communicating one bit of information 
about the source, say the outcome of a fair coin toss, is an extension of the one-bit 
source Cartesian product construction of an A-code described above. 

The essential notion to constructing A2-codes is that each potential cheater must 
be uncertain as to the choice of messages that he can successfully cheat with, which 
means that if the code is to provide one-bit of protection against all forms of 
deception, then each participant must be faced with a choice between two messages 
each of which is equally likely to succeed (or fail) in the intended deception no matter 
what he does. From the standpoint of the opponent this is no different than the 
design criteria for A-codes. However, for the insiders, this means that the transmitter 
must be uncertain as to which messages the receiver will accept, but at the same 
time he must know at least one acceptable message that can be used to communicate 
each possible state of the source. The inescapable conclusion is that it must be the 
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case that the receiver will accept more messages (as authentic) than those that the 
transmitter knows to be acceptable. Conversely, the receiver must be uncertain of 
which messages the transmitter knows to be acceptable and hence will use, otherwise 
he could, with certainty of success, attribute a message to the transmitter when none 
had been sent. The receiver must, therefore, be uncertain about  the subset of 
messages that the transmitter will legitimately use, out of the set of messages that 
he (the receiver) will accept, even after learning one message from that set through 
a legitimate communication from the transmitter. 

In analogy to A-codes where we specified both the set of encoding rules and the 
protocol for their use, A2-codes also consist of both the specification of a set of 
authentication/encoding rules and of a protocol for their use. Even though we often 
refer to the matrix representation of the set of rules as the A2-code, the reader should 
keep in mind that a protocol for their usage is also a part  of the code. To construct 
the one-bit example of an A2-code, the twofold Cartesian product in (2) of factors 

o f t h e f o r m ( ~  s,/-~' where s' is ~ ~ tw~ p~ states f~ the s~ is replaced 

by the twofold product 

i! H H I!T i]T 
A = H - | T - (3) 

H T 

o r  

ml m 2 ma m4 ms m6 m7 ms 

a 1 H H - - T T - - 
a 2 H H - - T - T - 

A = : : : (4) 

a15 I - - H H - T - T 
a16 I - H H - - T T 

A, which is the authentication scheme, is assumed to be known to everyone: 
the transmitter, the receiver, the opponent,  and the arbiter in an extension of 
Kerckhoff 's  criteria in cryptography to authentication theory. 

The authentication with arbitration protocol, in this example of an A2-code, calls 
for the receiver to choose one out of the 16 authenticating rules, ai, that make up 
A. For  example, al says that the receiver will accept messages ml and m 2 as authentic 
and will interpret either message to mean that the outcome of the coin toss was 
heads (H). Similarly, messages m 5 or m 6 would be accepted and interpreted to mean 
that the outcome of the coin toss was tails (T), while messages m 3, m4, mT, and m 8 
would be rejected by the receiver as unauthentic. The important  point to note is 
that in each of the authenticating rules there are exactly two acceptable (to the 
receiver) messages available to communicate each state of the source. The receiver 
informs the arbiter in secret (from the transmitter and the opponent(s)) of his choice 
of an authenticating rule. According to the protocol, the receiver commits himself 
to accept as authentic precisely those four messages corresponding to the source 
states appearing in the authenticating rule he chose and to reject the remaining four 
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as unauthentic.  There is no conceivable reason for the receiver to violate his 
agreement  and to accept or  claim to have received a message not  used in the 
authenticat ing rule he selected, since it could not  communica te  a state of  the source 
and would assuredly not  be certified by the aribiter in any event. 

The protocol  calls for the arbiter to construct  an encoding rule for the transmitter  
to use by selecting a subset of  the messages appearing in a such that  there is at least 
one message which can be used to communica te  each state of  the source. For  this 
small example, the arbiter has only one option, namely to choose one out  of  each 
pair  of  messages that  the receiver agreed to accept as conveying each of  the source 
states. Since the receiver knows that  this is what  the arbiter will do, the arbiter must  
choose between the messages in each pair with a uniform probabil i ty distribution 
in order  to keep the receiver one bit uncertain as to which message the transmitter  
will be told he can legitimately use. One  mechanism the arbiter can use to do this, 
which generalizes in a nice way for this part icular class of Cartesian produc t  
constructions,  is to choose one of  the four vectors defined by the produc t  

again with a uniform probabil i ty distribution, and form the Schur product* of  the 
vector he chooses with the encoding rule selected by the receiver. The net result is 
that  one out  of the 16 possible encoding rules 

m l  m2 m3 m,  ms m6 m7 ms 

a I H - - - T - - - 
a 2 H . . . .  T - - 

E = : : : (6) 
a ls  - - - H - - T - 
al6 - - -  - H - - - T 

will be selected as a result of  the concatenated choices of  the receiver and arbiter. 
There are other  ways to achieve the same end result but, as we shall see later, it is 
easy to explain why this procedure succeeds. According to the protocol ,  the arbiter 
is commit ted  to certify as messages that  could have been used by the transmitter  
(under the protocol)  only those that  correspond to source states appearing in the 
encoding rule (Schur product)  he has constructed. The arbiter communicates,  in 
secret (from the receiver and the opponent(s)),  this encoding rule to the transmitter.  
The transmitter  is supposed to use this rule to encode an observed state of  the source 
into the message he will t ransmit  to the receiver. Assume, for example, that  the 
receiver chose authenticat ing rule, a l ,  and that  the arbiter chose the vector 

- 1 1 - 1 1 ,  

then the resulting encoding rule would be 

m~ m 2 m 3 m,  m s m e m 7 

e [ -  H - - T - - 

p 

m 8 

- .  (7) 

* Given vectors A = (al) and B = (bl), the Schur product, C = A (D B, is the vector C = (a~b3. 
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Using this encoding rule, the transmitter would communicate source state H by 
sending message m 2 while T would be communicated by sending message m 5. 
According to the protocol, messages m2 and m5 would not only be accepted as 
"authentic" by the receiver, but would also, in the event of a later dispute between 
the transmitter and the receiver as to the authenticity of a message, be certified by 
the arbiter as messages the transmitter could have sent. Of course, the receiver would 
also accept ml and m 6 as authentic, however, the transmitter does not know this 
and the arbiter would not certify either of these messages as ones the transmitter 
would have sent under the established protocol. 

The protection afforded by this authentication scheme against each of the five 
types of cheating described earlier, holds the cheater to a probability of success of 
1/2, i.e., one bit of protection irrespective of which type of deception is considered. 
The easiest to analyze are the Io and $1 deceptions since that is a game be- 
tween only the opponent and the receiver. The opponent knows the authentication 
scheme, i.e., he knows A and the authentication protocol but does not know the 
receiver's or arbiter's choices. It should be clear that the receiver can limit the 
opponent's chances of success in either an Io or an S~ deception to 1/2 by choosing 
an authenticating rule from A using a uniform probability distribution on the rows. 
If the receiver's only concern was to protect himself against deception by the 
opponent, he could choose rows from among four different subsets of the rows of 
A each containing only four rows--each a redundant representation (in messages) 
of the A-code constructed in (2): 

o r  

o r  

o r  

His optimal strategy in either of these four cases (against the opponent) would be 
to choose one of four rows with a uniform probability distribution which would 
limit the opponent to a probability of success of 1/2 in either an I o- or Sl-type 
deception. The transmitter, however, would be certain of success in a T deception 
since in all of the four-row subarrays, the identification of a message (to the 
transmitter by the arbiter) that is to be used to communicate a state of the source, 
unambiguously identifies the other message that the receiver would accept as 
communicating that same state. Consequently, the only scheme available to the 
receiver that will limit the probability of his being deceived by the opponent to 1//2 
and not allow the transmitter to disavow messages with a certainty of success is A, 
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and an optimal strategy for the receiver in this case is the uniform probability 
distribution on the rows of A. If the opponent attempts an Oo deception and sends 
a message when none has yet been sent by the authorized transmitter, his probability 
of choosing one of the four (out of eight) messages that the receiver has agreed to 
accept is 1/2, since, for each encoding rule, there are four equally likely messages 
that will be accepted as authentic and four that will be rejected as unauthentic. On 
the other hand, if he waits to observe a message his uncertainty about the encoding 
rule chosen by the receiver drops from one out of 16 equally likely candidates to 
one out of four; however, irrespective of the message he observes, the four encoding 
rules including that message will leave him with four equally likely possibilities for 
the message that the transmitter would use to communicate the other state of the 
source. More importantly, he is also faced with four equally likely pairings of 
messages that the receiver would accept as communicating the other state of the 
source, with each message occurring in precisely two of the pairs. The net result is 
that the opponent's probability of success in an O1 deception is also 1/2. 

Consider next the case of the transmitter attempting to disavow a message that 
he actually sent, i.e., a T deception. In order for him to succeed, he must choose a 
message that is used in the authenticating rule that the receiver chose from among 
the rows of A, but not the one used in the encoding rule constructed by the arbiter. 
Continuing with the example given above, the transmitter can infer, from the 
encoding rule communicated to him by the arbiter, 

- H T - - - ,  

that the receiver must have chosen one of the four authenticating rules in which m2 

m l  m2 m 3 m4 m5 m6 m7 ms 

H H - - T T - - 
H H - - T - T - 

- H - H T T - - 

- H - H T - T - 

and m5 appear: 

(8) 

Since messages m 3 and ms do not appear in any of these rules, the transmitter can 
be certain that they would be rejected by the receiver as unauthentic, and hence he 
will certainly not use either of these. Each of the remaining four messages, ml, m4, 
m6, and mT, appears in two out of the four equally likely authenticating rules. 
Therefore, he cannot do better than to randomly choose one out of these four 
messages with a uniform probability distribution. Irrespective of which of the four 
he chooses, the probability that it will be accepted by the receiver is 1/2. If it is 
accepted, the transmitter can cheat and disavow having sent it, since he knows that 
the arbiter will not certify it as a message that he would have used under the 
established protocol. Precisely the same situation would hold for any other pair of 
choices by the receiver and arbiter, i.e., for all choices of an encoding rule. 

Finally, we consider the two types of cheating available to the receiver, R o and 
R1 deceptions. Of the four messages that the receiver has agreed to accept as 
authentic, two (one for each state of the source) will be certified by the arbiter as 
being messages that could have been used by the transmitter under the established 
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protocol since they appear in the encoding rule and two will not be certified. The 
receiver will succeed in cheating, i.e., fraudulently attributing a message to the 
transmitter, only if he chooses one out of the two that the arbiter will certify and 
will fail otherwise. It should be clear that his probability of success is 1/2 since the 
arbiter's procedure for generating an encoding rule chose among the acceptable (to 
the receiver) messages with a uniform probability distribution. If the receiver waits 
until he receives a message from the transmitter, say m2, he can reduce his uncer- 
tainty about the vector that the arbiter used in constructing the encoding rule from 
one out of four equally likely cases to one out of two: 

- 1 1 - 1 

o r  

- 1 1 1 1 - 

i n  the example, but his uncertainty about the message chosen by the arbiter to 
convey the other state of the source is still one out of two equally likely cases, m 5 
and m6. Hence his probability of successfully substituting a message conveying a 
different state of the source than was communicated in the message sent by the 
transmitter (an Rt deception) is also 1/2. By successful, we mean that the substitute 
message will be certified by the arbiter to be one that the transmitter could have 
sent since it appears in the encoding rule constructed by the arbiter. 

This example illustrates all of the essential features of unconditionally secure 
authentication codes that permit arbitration: A2-codes. Three bits of information 
must be transmitted to specify one of eight equally likely messages. This provides 
one bit of information (to the receiver) about the source state, one bit of protection 
(to the transmitter and receiver) against I o and St deception by outsiders, and one 
bit of protection (to either the transmitter or else to the receiver) against cheating 
by insiders, i.e., Ro and R1 on T deceptions. Since the probability of success for the 
"cheater" in all cases is the same as the probability that a randomly chosen message 
from the set of possible (according to what he knows of the scheme) messages would 
be successful in achieving the objectives of the cheater, it seems reasonable to 
describe the code described here as perfect in direct analogy to the usage of the term 
in connection with A-codes. 

5.  A C a r t e s i a n  P r o d u c t  C o n s t r u c t i o n  f or  U n c o n d i t i o n a l l y  S e c u r e  A 2 - c o d e s  

In generalizing the example of an A2-code constructed in the previous section, there 
is an obvious question as to which properties in the example are essential to such 
codes, and which are merely artifacts of that example. We do not attempt to answer 
this question, but instead simply point out the properties that we have chosen to 
preserve in the A2-codes that we construct, whether essential to A2-codes in general 
or not. 

First, the protocol will be the same in the general case as for the example. The 
receiver will choose an authenticating rule, a, from among the rows of an array A 
representable as a Cartesian product of identical factor arrays A and then com- 
municate a in secret (from the transmitter and opponent(s)) to the arbiter. The 
receiver is committed to accept as authentic only those messages appearing in a. As 



A Cartesian Product Construction for Unconditionally Secure Authentication Codes 93 

mentioned earlier, there is no conceivable motive (to the receiver) to violate this 
commitment. The arbiter constructs an encoding rule, e, which is a submapping 
from a of S into M, i.e., only messages used in a can appear in e, and each state of 
the source must appear at least once in e. The arbiter then communicates e in secret 
(from the receiver and opponent(s)) to the transmitter. The arbiter is essentially 
"playing" against the receiver at this point since the receiver is free to choose any 
row of A as the authenticating rule a from among whose elements the arbiter must 
construct an encoding rule e. We assume therefore that the arbiter's strategy will 
be to construct e so as to minimize the receiver's probability of deception. This must 
leave available to the receiver a strategy (for choosing the a) that will minimize both 
the probability of the transmitter and the opponent being able to deceive him: Px 
and Po. In general (for arbitrary A), these may be inconsistent goals, but for the 
construction of Cartesian codes to be described here they are consistent. The 
transmitter is supposed to use e to encode an observed state of the source into a 
message for communication to the receiver. The arbiter's primary function is to 
certify later whether a disputed message, m, is one that appeared in the encoding 
rule e which he constructed, i.e., whether m is a message that the transmitter could 
conceivably have sent when acting in accordance with the established protocol. This 
basic protocol would be the same for all A2-codes, irrespective of what their 
structure might be. 

We want it to be the case that an optimal strategy for the receiver to use in 
selecting an authenticating rule will be to choose a row from A with a uniform 
probability distribution. We also want it to be true that an optimal strategy for the 
arbiter to use in constructing the encoding rule, e, will be to choose a fixed number 

> 1 of elements from among the k elements appearing in each factor of A, again 
with a uniform probability distribution over the k elements. We say that an authen- 
tication code is uniform if the uniform probability distribution on the possibilities 
is an optimal strategy for both of the parties who must make a choice. In the case of 
A-codes where only the receiver/transmitter make a choice--which can best be 
thought of as the receiver making a choice of an encoding rule which he then secretly 
communicates to the t ransmit ter-- there are infinitely many such uniform codes 
[2], I-8], [181, [201, [211, [26] as well as infinitely many nonuniform codes [11, [201, 
[21], [26]. In this section we construct one infinite class of uniform A2-codes and 
conjecture that there are also infinitely may more codes, both uniform and non- 
uniform, although no example of the latter category has been constructed to date. 

In order to simplify the calculation of the level of authentication provided by an 
AZ-code we restrict attention to a class of Cartesian product constructions that 
generalize the example of the preceding section. 

A two-level pairwise balanced design (PBD) with parameters 

PBD(v, b, k, r, {t, 0}) 

is a design with v elements and b blocks, each block contains k elements and each 
element occurs in r blocks and each pair either occurring in 2 blocks or in no blocks 
at all [10]. In the example above A was a 

PBD(4, 4, 2, 2, {1, 0}), 

but in general we will let the factor A be any PBD(v, b, k, r, {2, 0}) design. 
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We define an A2-code to be equitable if the probability of success for all types of 
deception are the same, i.e., if 

Poo = Po, = PRo = PR1 = PT- (9) 

Theorem 1. Given a factor array A defined by a two-level pairwise balanced design 

PBD(v, b, k, r, {2, 0}) 

the A Z-code defined on the a-fold Cartesian product 

A = A | 1 7 4 1 7 4  

with ~ = 1, i.e., in which the arbiter chooses a unique message from each factor for the 
transmitter to use in communicating the corresponding state of the source, has the 
following properties: 

1. The protection provided by the code against all types of deception is independent 
of  the probability distribution on the source states. 

2. The probability of attempted deceptions being successful will be 

r k 
P I o = P s l = P O - b -  v, 

1 
PRo = PRI = PR = ~, (10) 

2 
P w  ~ --" 

r 

3. The code is uniform 
4. If, in addition, v = k 2 and 2 = r/k, then the code is equitable and PD = 1/k for 

all deceptions D. 

Proof. Two properties of the A2-codes constructed here follow directly from the 
Cartesian product construction of A. First we point out that the observation of a 
message communicating an arbitrary source state cannot help in a deception 
involving a different source state. In particular, this says that, for the opponent, 
P~o = Psi = Po and that, for the receiver, PRo = PR1 = PR. The second property is 
that the probability of any type of deception (I o, Sl, Ro, R1, or T) being successful 
is independent of the probability distribution on the source states, S. To see this, 
let D be an arbitrary deception and let PD(si) be the probability that D will be 
successful given that si is the source state. Clearly, 

eD(Si)  = PD(Sj) = PD 

for all i and j by the symmetry of the Cartesian product construction. Hence the 
value to a would-be cheater of attempting deceit D will be 

P(S = si)PD(Si) = Pp. 

It should be noted that this property (of the security being independent of the source 
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state distribution) is a consequence of the Cartesian product construction of A and 
does not hold for authentication codes in general. 

We analyze the probability of a successful deception separately for each of the 
three potential cheaters. 

The presence of the arbiter, and even the fact that the code is an A2-code and not 
simply an A-code, has nothing to do with the opponent's strategy or with his chances 
of deceiving the receiver. From his viewpoint, he is merely playing an impersonation 
game against the receiver (since observing a message occurring in one of the factors 
leaves him with the problem of impersonating the transmitter in one of the other 
factors in an St deception). We have proven earlier 5 (Theorem 1 of [20]) that the 
probability of a successful impersonation P~ is bounded by 

k 
P~ >_ - (11) /) 

for an arbitrary authentication code. The receiver can ensure that the opponent can 
do no better than (11) by using a uniform probability distribution in choosing the 
row of A that specifies the messages he will accept as authentic. One optimal strategy 
for the opponent in this case, i.e., ensuring that equality holds in (11), would be to 
choose a message with a uniform probability distribution: from among all try 
messages for an I o deception, or from among the (a - 1)v messages occurring in 
factors other than the one in which the observed message occurs in an St deception. 
In either case 

k r 
P~o = Psi = Po . . . .  (12) 

v b" 

The receiver can also be viewed as playing purely a substitution game against the 
a rb i te r - -but  on a different authentication code. The remarks made earlier about 
the independence of the factors in the Cartesian product apply in this case as well, 
so that we can restrict attention to a single factor. Although there are v messages 
appearing in each factor, the receiver has identified (to the arbiter) k of those that 
he will accept as authentic, one of which the arbiter has chosen to be the one the 
transmitter is to use. The receiver and arbiter are therefore playing an impersonation 
game on an A-code with a k x k array having a single entry in each row and column. 
The theorem cited above says that the receiver's probability of a successful deception 
in this case is bounded by 

1 
Pa _ ~. (13) 

The same arguments used to analyze the opponent's case apply here as well. 
Consequently, the arbiter can ensure, by using a uniform probability distribution 
to choose one out of the k acceptable messages, that the receiver can do no better 
than the bound of 1/k while the receiver can ensure that he achieves this value by 
impersonating with a uniform probability distribution on the possible messages. 

s What is proven there is that PIo > min, lail/l~l, but in the present case min. lall = lad : ak for all 
i and I~t'l = r so that PIo > k/v. 
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Therefore, 
1 

PRo = P ~  = PR = ~. (14) 

The transmitter 's chances of success can also be calculated as the value of a game 
between him and the receiver/arbiter. As before, the factors of A are independent 
and can be treated independently. The joint result of the receiver's and the arbiter's 
actions is to reveal to the transmitter a message appearing in the encoding rule 
chosen by the receiver. The transmitter can cheat if and only if he can choose another 
message appearing in that same rule, in which case the receiver will accept the 
message as authentic but the arbiter will not certify it as a message the transmitter 
would have used. This is simply a substitution game on A- -wi thou t  splitting. In 
other words, any message other than the one (for each source state) that the 
transmitter is supposed to use that the receiver will accept (as authentic) will be a 
win for the transmitter. 

The transmitter, upon being told that he is to use a particular message to encode 
a given state of the source, will know that the authenticating rule chosen by the 
receiver was one out of the set of r rules in which the specified message occurs. In 
each of these there are k - 1 other messages that would also be acceptable to the 
receiver. The receiver's strategy for selecting authenticating rules will have deter- 
mined the probability of any given set of k - 1 of the messages being acceptable. 
Let X be the set of all messages that occur in some authenticating rule with a 
particular message too. Since mo occurs in r rows of A, each row of which contains 
k entries, there are r(k - 1) occurrences of other messages paired with mo over all 
of the rows of A. Since A was chosen to be a two-level pairwise balanced design 
with pairs occurring either 2 times or else not at all, any message that occurs with 
mo in some row of A will also occur the same number of times, 2, as any other 
message that occurs with too. The number  of distinct messages that occur with mo 
is therefore 

r ( k -  1) 
I x l -  ~ , 

k - 1 of which occur with m o in the row of A that the receiver chose and communi- 
cated to the arbiter. Clearly, if the transmitter picks one out of these I x l  messages 
with the uniform probability distribution, the probability that it will be acceptable 
to the receiver (i.e., that the transmitter will succeed in deceiving the receiver) is 2/r, 
independent of the choice of the arbiter. Therefore, 

P, > - .  (15) 
1. 

Conversely, if the arbiter and the receiver both make choices with the uniform 
probability distribution, then, for each m ~ X, the probability that the arbiter will 
certify m is also 2/r. Therefore, 

2 
P, = - (16) 

?. 

in this case. 
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We have shown that if the receiver and arbiter both use the uniform probability 
distribution in making their choices, then the probability of success for all types of 
deception are as small as is possible. Consequently, the Cartesian product A2-codes 
described here are uniform. 

The last result of the theorem is an immediate consequence of replacing o by k 2 
and 2 by r/k in (12), (14), and (16) to get 

1 
Po = PI~ = PT -- k '  (17) 

which shows that the code is equitable in this case. [] 

In the small (one-bit source) example we used the 4 x 4 array A: 

~2 

al 1 

a 4 - 

a 2 1 

a 3 - 

- 1 - 

1 - 1 

1 

1 1 - 

(,) 

where r = 2, g = 1, and k = 2, with the rows rearranged for reasons that will 
be apparent  in a moment.  We have not labeled the columns with the messages 
associated with them as we did earlier for the A-codes since each factor in- 
volves v dedicated messages for the communication of a single state of the source. 
From (17) we know that v must be a square for the code to be equitable, there- 
fore the next smallest array must have k = 3 and v = 9. One such array is the 
following: 

a l  

~1 a2 

a3 

a4 
7g 2 a5 

a6  

a7 

~3 a8  

a9  

1 1 1 

1 1 1 - 
1 1 1 

1 1 1 

- 1 1 - 1 - 

1 1 - 1 

1 1 1 

- 1 - 1 1 

1 - 1 1 - 

(**) 

where r = 3, 2 = 1, and k = 3. 
The reader may have recognized that the two incidence arrays (.) and (**) for 

k = 2 and 3 and 2 = 1 are examples of what Bruck [4], [5] has defined to be a finite 
net. A finite net (/-net), N, is a set of v = k elements (points) and ik k-subsets of 
points (lines) which can be grouped into i parallel classes of k lines each, such that 
distinct lines of the same parallel class have no points in common, while any two 
lines from different classes have exactly one point in common. Finite nets are closely 
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related to finite affine planes. A finite net can sometimes be embedded in an affine 
plane, however, every subset of i spreads of parallel lines from an affine plane is 
necessarily an/-net.  It is this result that we use to construct an infinite family of 
A2-codes. The arrays (,) and (**) were in fact constructed in just this way by deleting 
an arbitrary spread of lines from a resolution of the affine planes with v = 2 and 
v = 3. The general means of constructing perfect authentication codes that permit 
arbitration can now be stated: 

T h e o r e m  2. Uniform, equitable Cartesian A2-codes exist for all k = pP, p a prime, 
with the parameters 

v = b = k  2, 

and 

r = k ,  

2 = 1 ,  

1 
PD = i" 

Proof. Start with a finite affine plane with v = k 2 points (whose existence is 
assured for all k = pa, p a prime) and form a k-net by choosing any subset of k 
parallel spreads of lines out of the k + 1 spreads in all. Identify lines of the resulting 
k-net with authenticating rules to form the factor array A. Then A defines a 
PBD(k 2, k 2, k, k, {1, 0}). The result follows from Theorem 1. [] 

It is worth noting that other factor arrays, A, can be formed from a particular 
affine plane by choosing i, i ~ k, of the parallel spreads. For example in the affine 
plane EG(2, 2) corresponding to the case k = 2, there are three parallel spreads (or 
parallel resolutions of the associated design) 

nl (12)(34) 
n2 (13)(24) 
n 3 (14)(23) 

and three nonisomorphic A arrays corresponding to choosing one, two, or all three 
of these spreads: 

7~ 1 
1 1 

1 1 

1 
7[ 1 

1 
7~ 2 

I i 
o r  7[ 2 

- 1 - 

1 - 1 

7~ 3 

1 1 
1 1 

1 --  1 m 

- 1 - 1 

1 1 
- 1 1 - 

i = 1 ,  i = 2 ,  i = 3 .  
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Clearly, by arguments given earlier, 

1 
eo = Pk = ~ (18) 

in all three cases. However, PT is dependent on i in these constructions for the factor 
array A. For i = 1, given any acceptable message the transmitter will be certain of 
the other message the receiver will accept, i.e., once he is informed of which message 
he is to use in the encoding rule constructed by the arbiter he knows the other 
message that the receiver will accept, since there is only one authenticating rule 
containing any given message. Consequently, he could send a message which the 
receiver would accept as authentic and which he could disavow with certainty that 
the arbiter would not hold him liable. Similarly, he knows that one of three possible 
messages must be the other acceptable message when i = 3, however, they occur 
uniquely in three equally likely authenticating rules, so that his probability of 
guessing which one the receiver will accept would be only 1/3 when i = 3. In the 
general case in which A is an/-net derived from an affine plane by choosing i spreads, 
the transmitter's probability of success will be 

(k - 1) 1 
PT - i ( k ~ )  - i" (19) 

Since we want the code to be equitable, it must be the case that i = k as is seen by 
equating the right-hand terms in (18) and (19). A necessary, but unfortunately not 
sufficient, condition for a code to be perfect is that it be equitable. We exhibit an 
example later which shows that being equitable does not imply perfection. 

It is now easy to see why the procedure prescribed for the arbiter to use in the 
example of the previous section worked, The arbiter randomly chose a row from 
the Cartesian product of the lines in the missing spread for each of the factors, where 
each factor is itself a reduced affine plane. But a line from any spread intersects a 
line from any other in precisely one point, hence the net result of the arbiter's choice 
of a vector to use in forming the Shur product was to choose, with a uniform 
probability distribution, one message out of the k = pa messages used in each factor 
of each ai. The construction based on affine planes simply made it easy to accom- 
plish this desired result. 

The following example demonstrates that there do exist equitable A2-codes for 
which ~ > 1 and 2 > 1. The existence of these codes is at present only of interest 
for the sake of completeness, however, it appears that they may be useful in 
extending AS-codes to provide protection (to the transmitter and receiver) against 
the arbiter cheating. To construct one such factor array, A, we start with the 
balanced incomplete block design (BIBD) derived from EG(3,  2), where the blocks 
are identified with the 14 planes in the geometry and the elements are identified with 
the points. A similar AS-code can be constructed starting with an arbitrary EG(3, pa) 
using the incidence properties of its planes. The parameters of this particular design 
a r e  

BIBD(v, b, r, k, 2) = (8, 14, 7, 4, 3). 
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From the geometry of EG(3, 2) we know that each plane (2-flat) has a parallel 
translate and that together each such pair covers the points of EG(3, 2), i.e., the 
design is resolvable, and that furthermore any two planes that are not parallel 
intersect in a line (two-points) so that the design is also affine. The complete design, 
written in a form to show the resulutions, is 

nl (0 1 2 3) (4 5 6 7) 
~r2 (0 1 4 5) (2 3 6 7) 
7z 3 (0 2 4 6) (1 3 5 7) 
re, (0 1 6 7 ) ( 2  3 4 5) 
z~ 5 (0 2 5 7 ) ( 1  3 4 6) 
~6 (0 4 3 7) (1 2 3 5) 
rc 8 (0 3 5 6) (1 2 4 7) 

where the 3-tuple representations of the points in EG(3, 2) have been replaced with 
the numerical value of the 3-tuples considered as binary numbers to give a more 
concise notation. To construct A we choose a subset of the parallel classes of the 
BIBD in such a way that four pairs of symbols (points) do not occur at all, and all 
others occur uniformly twice, i.e., so that 2 = 2. To do this, select any pair and delete 
the three resolutions in which it occurs, i.e., choose any line in EG(3, 2) and delete 
the three parallel classes on that line. For  example, choosing the pair (0, 7) we delete 
classes 7c4, 7z5, and 7~ 6 to get the array 

7z 2 

7[ 3 

1"c 3 

a 1 

a 2  

a 3  

a 4  

a s 1 
0 6 - 

a 7 1 

a 8 - 

1 1 1 1 

1 1 1 1 

1 1 1 1 

1 1 1 1 

- 1 - 1 - 1 - 

1 - 1 - 1 - 1 

1 - 1 1 - 

1 1 - 1 1 

where k = 4 and 2 = 2. The pairs (0, 7), (1, 6), (2, 5), and (3, 4) do not occur at all in 
this array and all other pairs occur (uniformly) twice. Using this factor array as A, 
an opponent's probability of deceiving the receiver, where A = A" is the set of 
authenticating rules, is 1/2 for either impersonation and substitution. If the arbiter 
chooses only a single message from each factor in the authenticating rule chosen 
by the receiver to communicate each source state (using a uniform distribution), i.e., 
if0t = 1, the receiver's probability of being able to attribute successfully a fraudulent 
message to the transmitter will be 

PR=  1/4 

for both R 0 and R 1 deceptions. It is possible, however, to force PR also to be 1/2 in 
this case. Let ~ --- 2 so that the arbiter is constrained to choose, again with a uniform 
probability distribution, one of the six possible pairs from among the four messages 
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in each factor ai that the receiver selects. In this case, clearly, 

Pa = 2 / 4 =  1/2. 

Consider now the case of the transmitter disavowing a message. If ~ = 1, then, 
for any choice (by the arbiter) of a message from a row Hi, there will be a set of four 
other rows containing that message, any one of which could have been the one 
chosen by the receiver, and a total of six messages that could be paired with it. Only 
three of these messages occur in the authenticating rule chosen by the receiver. 
Hence, 

PT = 3/6 = 1/2. 

For  ~ --- 2, though, there will be only two rows containing the chosen pair, and, 
hence, only four possibly acceptable messages. Only two of these messages occur in 
the rule selected by the receiver. Therefore, in this case 

PT = 2/4 = 1/2 

and the code is equitable. Consequently, for this choice of the factor array A, the 
resulting AZ-code is equitable 0nly for the case ~ = 2. The design is not efficient in 
its use of the channel, however, since we already know that the bound of PD = 1/2 
can be satisfied with only four messages and four authenticating rules in the factor 
A, instead of eight of each as required in the array just shown. The point of this 
example was to show that there are arrays with ~ > 1 and 2 > 1 that satisfy (9), 
although we know of no maximally efficient designs for which this is the case. 

This construction shows that being equitable does not imply perfection since in 
this case one more bit per factor is communicated than is used either to convey the 
state of the source or to confound one of the cheaters. 

6. Postscript 

The protocol described here to realize an A2-code from a Cartesian product array, 
A = A ", in which the receiver chooses a row a of A that he secretly communicates 
to the arbiter, following which the arbiter chooses an encoding rule e from a which 
he in turn secretly communicates to the transmitter, is how we first conceived of 
A2-codes. There is another protocol--equivalent  in the sense that the resulting code 
is the same and in which each of the participants ends up knowing precisely the 
same privileged pieces of informat ion-- that  is logically more attractive. In this 
alternative protocol, the arbiter chooses from A the authentication code, i.e., set of 
acceptable messages, a, which he secretly communicates to the receiver. He also 
chooses the encoding rule e from a exactly as in the existing protocol and secretly 
communicates e to the transmitter, etc. Nothing else is changed. The point is that 
in this protocol the only choices to be made in setting up the A2-code are made by 
the arbiter alone. 

In the proof of Theorem 1 we made extensive use of the reduction of the 
authentication with arbitration scheme to simple authentication games: the oppo- 
nent versus the receiver for I 0 and S 1 deceits, the receiver versus the arbiter for R t 
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deceits, and the transmitter versus the receiver and the arbiter in the case o fT  deceits. 
The complication in the latter case was due to the encoding rule, e, being a joint 
result of a decision made by the receiver (the choice of a) and a choice (of e given 
a) by the arbiter. This is reflected in the definition of a successful T deceit, i.e., the 
transmitter is successful (in a T deceit) if and only if the message is accepted as 
authentic by the receiver but is not certified by the arbiter to be one that the 
transmitter would have used. The alternative formulation of A2-codes makes all of 
the choices involved in setting up the A2-code (i.e., strategies) be the responsibility 
of the arbiter, and consequently makes the arbiter the protagonist in all three games: 
the opponent versus the arbiter for I0 and Sl deceits, the receiver versus the arbiter 
for R l deceits, and the transmitter versus the arbiter for T deceits. This is a logically 
neater and more symmetric protocol. 

For  either protocol there is a natural question of why--given ~, k, and v - - the  
authenticating rule, a, is not chosen with a uniform probability distribution from 

amo  a, oft e(;) setsan t   e c osons m.ar, yfromamon  
the ( : )  e-sets. Clearly, this would result in an A2-code having all of the properties 

of the codes described here. The answer is that the secret communications from the 
arbiter to the transmitter and to the receiver, or from the receiver to the arbiter 
depending on which one of the protocols is being used, must be made over secure 
and hence presumably expensive channels so that a premium is placed on minimiz- 
ing the amount of information contained in these communications: this is the 

key distribution problem for the authentication channel. If all of the ( ~ )  k-sets 

appeared in A and if the arbiter could use any one of the ( : )  e-sets in forming e, 

then a log ( ~ ) b i t s  would have to be exchanged securely between the arbiter and 

the receiver, which compares very unfavorably with the a log(v) bits that need to 
be exchanged in the scheme proposed here. For  ~ = 1, the number of bits that need 
to be exchanged securely between the arbiter and the transmitter would be the same. 
This is only true for �9 = 1, however; for ~ > 1, the comparison is just as unfavorable 
as for the arbiter-receiver communication. 
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