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Abstract. The next bit test as introduced by Blum and Micali was shown by Yao 
to be a universal test for sources of unbiased independent bits. The aim of this 
paper is to provide a rigorous methodology for testing sources whose output 
distributions are not necessarily uniform. We first show that the natural extension 
of the next bit test, even in the simplest case of biased independent bits, is no longer 
universal: we construct a source of biased bits, whose bits are obviously dependent 
and yet none of these bits can be predicted with probability of success greater than 
the bias. To overcome this difficulty, we develop new universal tests for arbitrary 
models of (potentially imperfect) sources of randomness. These new tools contrib- 
ute to the theoretical as well as practical study of sources of randomness. 

Key words. Universal test, Next bit test, Nonuniform distribution, Source of 
randomness, Independent biased source. 

1. Introduction 

Randomness is an essential resource in many scientific areas, and pseudorandom- 
ness is a good substitute in many applications. Blum and Micali [3] were first to 
show that the ability to predict some bit of a given source (the next bit test) can be 
used to characterize pseudorandom generators. In his seminal paper Yao [14] 
formally defines the notion of perfect pseudorandom bits, i.e., bits that are indistin- 
guishable from truly random bits by any probabilistic polynomial-time observer, 
and shows that the next bit test serves as a universal test for randomness: a natural 
or pseudorandom source is perfect iff no probabilistic polynomial-time algorithm 
can, given any prefix of bits, predict the next bit of the source with probability of 
success significantly greater than 1/2. 

Several models of natural sources of randomness have been suggested and investi- 
gated in many works, such as [13], [2], [8], and [5]. In all the models the output 
distribution of natural sources is not uniform: In [13] a natural source outputs 
biased independent bits, in [2] a source is modeled by a Markov chain, and in 1-8] 
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and [5] the outcomes of the source are controlled by a powerful adversary. Non- 
uniform distributions appear also in some applications which require sources of 
randomness with independent yet biased bits (see, for example, [12] and [6]). 
Nevertheless, no rigorous methodology of how to verify the assumed properties of 
a source of randomness with a nonuniform output distribution has been given. The 
aim of our paper is to provide such a formalization. 

Consider, for example, the roulette in your favorite casino, where you are in the 
habit of placing a variety of bets on 17 with a 1/37 probability of winning each time. 
However, after an unfortunate series of losses you begin to suspect that the roulette 
has been tampered with. You can easily check that the overall probability of 17 is 
close to 1/37, but that does not rule out the possibility that the outcomes of the 
roulette are artificially determined in a way that maintains the overall bias but 
inhibits 17 from appearing whenever the bets are high. How can you verify that 
indeed the outcomes of the roulette are independent, and that it is only your bad 
luck that brought you to the edge of bankruptcy? Clearly, the well-known next bit 
test cannot be employed here since you deal with a biased event. 

Using the known notion of polynomial indistinguishability we define the notions 
of perfect independence and in general perfect simulation of a source by a mathemati- 
cal model. We then move to the question of specifying the universal tests for these 
notions, which let only perfect sources pass the universal test. Surprisingly, the 
natural extension of the next bit test fails, even for the simplest case of independent 
biased bits. In other words, the extended next bit test for biased bits, which requires 
that no observer succeeds in predicting the bits of the source with probability greater 
than the bias, is no longer a universal test for independence. We introduce a new 
test of independence, which we call the predict or pass (POP) test and prove its 
universality. We also discuss several alternative tests, and in particular the test we 
call the weighted success rate (WSR) test. 

For general sources of randomness we present a universal test that determines 
whether a certain mathematical model perfectly simulates a given source. This test 
is the comparative version of the next bit test. The standard next bit test as well as 
the POP and WSR tests can be derived from the comparative next bit test as special 
cases. Our proof of the universality of the test is a generalization of Yao's original 
proof: while the original proof techniques cannot be implemented directly, our 
refined techniques apply also to the proof of universality of Yao's next bit test. 

The rigorous treatment of our universal tests has several theoretical as well as 
practical applications. In [9] we present some new results that the new tools make 
possible: An improved definition of the quality of natural bits is given. This in turn 
is used to measure the tradeoff between the quality of bits extracted from a given 
source and their quantity. Another application is in the modeling of natural sources 
of randomness from an external point of view without knowledge of their internal 
structure. It is also possible to apply the universal test of independence to every 
biased predicate and use a hard biased predicate to construct a generator of 
independent biased bits. For constant output length this is a more efficient construc- 
tion of perfect independent biased bits than the obvious construction of rebiasing 
the outputs of perfect pseudorandom (unbiased) generators. Finally, in [10] the 
individual security of every bit of the discrete logarithm modulo a composite is 
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proven. The known definitions of unpredictability cannot be applied to the most 
significant bits, since for moduli which are not powers of 2 these bits are biased 
toward 0 by definition. For these bits it is necessary to use our new definitions in 
order to define andprove  their security. 

2. Definitions and Notations 

Our definitions follow the original definitions of Blum and Micali [3] and Yao [14]. 
The notions of a probability distribution, independence, etc., are the standard 
notions from probability theory. All our results are stated in terms of probabilistic 
polynomial-time algorithms but can be restated in terms of polynomial-size 
Boolean circuits. 

Let s~ denote a binary string of length n in {0, 1} ". The ith bit of the string is 
denoted by si. The substring starting with the j th  bit and ending with the kth bit 
(1 < j  < k _< n) is denoted by sf. We use the notation O(v(n)) for any function f(n) 
that vanishes faster than any polynomial, i.e., for every polynomial poly(n) and n 
large enough, f(n) < 1/poly(n). Such functions are called negligible. 

Definition 1 (Source Ensemble). A source ensemble S is a sequence {S~}, where S, 
is a probability distribution on {0, 1} ". 

We denote by Prs(E) the probability of an event E taking place when the 
probability distribution is defined by the source ensemble S. Whenever we refer to 
events that involve a probabilistic algorithm, we explicitly denote only the source 
ensemble S, and implicitly assume the probability of the event to be induced by S 
and by the independent unbiased coin flips of the algorithm. 

Definition 2 (Uniform Source Ensemble). A source ensemble S is uniform if, for 
every n, S~ is the uniform probability distribution, i.e., for every ~ r (0, 1} n, 

Prs(s 7 = ~) = 21 .  

We denote the uniform source ensemble by U. 

Definition 3 (Biased Source Ensemble). A source ensemble S is biased toward 1 
with a fixed bias �89 < b < 1 if, for every i, Prs(si = 1) = b. 

Note that by our restriction on the bias, the output bits of a biasd source have a 
nonzero probability of being both 0 and 1. This ensures that the definitions of 
conditional probabilities, dependencies, etc., remain meaningful. 

Definition 4 (Independent Biased Ensemble). A source ensemble S is independent 
biased if it is a biased source ensemble and all the bits are independent, i.e., for every 
binary string ~t ~ {0, 1 }n, 

Prs(s7 = ~) = bP'(1 - b) "-p, 

where 0 < p < n denotes the number of l's in ~. 
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We denote by B the independent biased source ensemble. 

Definition 5 (Polynomial Indistinguishability). Two source ensembles St and $2 
are polynomially indistinguishable if, for every probabilistic polynomial-time algo- 
rithm (distinguisher) D: {0, 1} n ---, {0, I}, 

IPrs~(D = 1) - Prs,(O = 1)l < O(v(n)). 

Definition 6 (Constant Algorithm). A probabilistic polynomial-time algorithm is 
constant if, for some value v, Pr(algorithm = v) > 1 - O(v(n)) for all inputs. 

3. Universal Tests of Independence 

In this section we deal with universal tests of independence. 

Definition 7 (Perfect Independence). A source S is a perfect independent biased 
source with some fixed bias b if it is polynomially indistinguishable from the 
independent biased source ensemble B with the same bias b. 

We first construct what seems to be the natural extension of the standard next 
bit test. We then show that there exist imperfect sources of randomness that pass 
the extended next bit test, thus disproving its universality. Our proof is based on 
the following intuition: dependencies between the bits of an imperfect source will 
result in 1 having in some cases probability greater than the bias and in other cases 
probability smaller than the bias. It is possible, however, for the biased source to 
be imperfect with 1 remaining always more probable than 0, regardless of the 
preceding bits. Hence, deterministic, ally predicting 1 is the optimal prediction strat- 
egy but its probability of success cannot exceed the bias. 

In the following subsections we assume without loss of generality that all our 
sources are biased toward 1 with some fixed bias b. It is easy to extend our results 
to the case where each bit has a different bias. It is worthwhile emphasizing that 
since we are interested in detecting dependencies among bits that have a particular 
bias, our basic WSR test may fail to detect imperfectness that results simply from 
a different overall bias. Testing the condition that the bits of a source have a certain 
bias can be done easily in polynomial time and with high accuracy using the law of 
large numbers. The POP test has the additional feature that any deviation from the 
a priori known bias is automatically detected. 

3.1. The Extended N e x t  Bit Test 

Trying to extend the definition of the well-known next bit test to biased sources we 
must take into consideration the fact that the bits of an independent biased source 
can be trivially predicted with probability of success b, simply by always predicting 1. 

Definition 8 (To Pass the Extended Next Bit Test). A biased source S passes the 
extended next bit test if, for every 1 < i < n and for every probabilistic polynomial- 
time algorithm A: {0, l} ~-1 ~ {0, l}, 

Prs(A(si  -1) = st) < b + O(v(n)). 
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Theorem 1. The extended next bit test is not a universal test of  independence. 

Proof. Fix a bias b: �89 + 1In', < b < 1 -  lint" for some constants t~ and t 2. 
We construct a source which is biased toward 1 with bias b. We then show that 
it is imperfect and yet it passes the extended next bit test. The source is the 
following: 

i for l < _ n < _ n - 1 ,  
+ 6  for i = n  and s 2 = 0 1 ,  

Prs(s i = 1 )=  
- 6  for i = n  and s 2 = 1 0 ,  

for i = n  and s 2 = 0 0 o r l l ,  

where l/n q _< 6 < min(b - �89 1 - b) for some constant q > max{t~, t2}. 
Let a polynomial-time distinguisher D be defined by D = 1 iff s~ = 01 and 

s , =  1. Clearly, Prs(D = 1 )=  c.(b + 6), while PrB(D = 1 )=  c.b,  where c = 
b.(1 -b)>_ 1/2n '2. Therefore, Prs(D = 1 ) -  Pra(D = 1)=  c '6  > 1/2n q+t2, and by 
definition the source is imperfect. Nevertheless, the source passes the extended next 
bit test: the nth bit is always biased toward 1, so the best prediction strategy is 
to predict 1 deterministically regardless of the known values of the first two bits. 
It is easy to check that the probability of success of this optimal strategy remains 
b. []  

3.2. The Predict Or Pass Test 

Definition 9 (To Pass the P O P  Test). A biased source S passes the predict 
or pass (POP) test if, for every 1 < i < n, for every fixed l, and every probabilistic 
polynomial-time algorithm A: {0, 1} ~-1 --, {0, 1, .}, if Prs(A(s~ -~) v~ *) >_ 1In ~, 
then 

IPrs(A(s[ -1) = silA(s[ -1) ~ *) - bl < O(v(n)). 

The P O P  test allows a predictor to be successful only on some nonnegligible fraction 
of its inputs. Despite the fact that this formal definition is novel (as far as we know), 
known constructions of pseudorandom bit generators often prove their perfectness 
by showing that they pass what is essentially a P O P  test (i.e., it is impossible to 
predict correctly the output bits of the generator even on a nonnegligible fraction 
of the output strings). In what follows we prove the P O P  test to be a universal test 
of independence. Before formally stating and proving this result we first introduce 
some alternative tests and in particular the WSR test. In fact, we first prove 
the universality of the WSR test and only then derive the universality of all other 
tests. 

3.3. Alternative Versions 

Definition 10 (Weighted Success Rate). Fix 1 < i < n. The weighted success rate 
of any nonconstant probabilistic polynomial-time algorithm A: {0, 1} i-1 -~ {0, 1} 
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in predict ing the i th bit of  a biased source S is 

Prs(A(s~ -1) = silsi = 1) 
ws(A, S, i) = Prs(A(s~ -1) = 1) 
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Prs(A(si -1) = s~lsi = O) 
+ Prs(A(s1-1) = O) 

= ~" Prs(A(sl -t) = s, lA(si-' ) = 1) 

1 
+ ~ - b "  Prs(A(si-') = silA(sl-t) = 0). 

Definition 11 (To Pass the W S R  Test). A biased source S passes the weighted 
success rate test, if for every 1 < i < n and  every noncons tan t  probabil is t ic  
po lynomia l - t ime  a lgor i thm A: {0, 1} ~-~ ~ {0, 1}, 

ws(A, S, i) < 2 + O(v(n)). 

Note. 1. We give two al ternat ive expressions for the weighted success rate. They  
are equivalent  since 

Prs(A = s~ls~ = 1). Prs(s~ = 1) = Prs(A = s~lA = 1) 'P rs (A = 1), 

Prs(A = sils~ = 0). Prs(s i = 0) = Prs(A = sllA = 0)" Prs(A = 0), 

and 
Prs(s i = 1) = b (Prs(si = 0) = 1 - b). 

2. The  above  definitions do not  allow cons tant  predict ion algori thms.  R e m e m b e r  
that  we assume that  indeed all the tested sources of  r andomness  have a bias b. Since 
cons tant  a lgor i thms can only detect that  the overall  bias is o ther  than  b, which is 
not  the case, it is possible wi thout  loss of  generali ty to ignore them. 

Definition 12 (To Pass the Modified W S R  Test). A biased sources S passes the 
modified WSR test if, for every 1 <: i < n and  every noncons tan t  probabil is t ic  
po lynomia l - t ime  a lgor i thm A: {0, 1} ~-1 ~ {0, 1}, 

fPrs(A(s~ -~) = s~l__s~= 1) Prs(A(s~ -~) = s, ls, = 0)} 
m a x [  Prs(a(s~ -t) = 1) ' ~ - - - i ) = b )  

=max{~Prs(A(s~-~)=s~lA(s~-t)= l) , l  l~_bPrs(A(s~-~)=silA(si-~)=O)} 

<_ 1 + O(v(n)). 

Definition 13 (To Pass the Behavior  Test). A biased source S passes the behavior  
test if, for every 1 _< i < n and every probabil is t ic  po lynomia l - t ime a lgor i thm 
A: {o, t}'-'  --, {o, 1}, 

IPrs(Atsl-') = lls, --- 1) - Prs(a(sl -x) = lls, = 0)1 < O(v(n)). 

Note  that  the WSR test can detect deviat ions f rom the bias since we separately  
co mpu te  the probabil i t ies  of  success in predict ing the 0 and 1 values of  a next bit, 
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and compose the two terms with appropriate weights into a single measure. While 
the preceding three definitions are all closely related, the POP test presents an 
entirely different approach, which stems from the fact that ff a source is imperfect it is 
possible to detect a nonnegligible fraction of the events in which 1 is more probable 
than the given bias, and ignore all other events. 

Theorem 2. The following conditions are equivalent: 

1. A biased source is a perfect independent biased source. 
2. A biased source passes the POP test. 
3. A biased source passes the WSR test. 
4. A biased source passes the modified WS R  test. 
5. A biased source passes the behavior test. 

The above equivalence holds only for biased sources that were a priori tested to 
have a certain bias. Otherwise, the POP test and the behavior test behave differently 
from the other tests. Their definitions allow constant as well as nonconstant predic- 
tion algorithms. More important is the fact that unlike the WSR test, these tests 
succeed in detecting imperfectness that results merely from a different overall bias. 

The proof of the theorem is given in the Appendix. In this proof we present and 
prove the following useful lemma: 

Prediction Lemma. For any biased source and any nonconstant probabilistic 
polynomial-time algorithm A: {0, 1}~-~ ~ {0, 1} there exists a constant k~ such 
that 

1 
Prs(A(si - t )  = s, lA(si - t )  = 1) > b + 

iff there exists a constant k 2 such that 

1 
Prs(A(s~ -1) = stlA(s~ -1) = O) > 1 - b + nk-- ~. 

3.4. Comparison with the Next  Bit Test 

For unbiased (b = �89 independent bits the POP test and its variatons all serve as 
alternative universal tests to the next bit test. We can, however, show an even 
stronger equivalence between the tests, namely that the same algorithm that suc- 
ceeds in the prediction of a certain bit with probability significantly greater than 
1/2 (thus proving the source of the bits to be imperfect by the well-known next bit 
test) has a weighted success rate that is significantly greater than 2 (thus proving 
the source to be imperfect by the WSR test). We can also show that our new 
universal tests are superior to the next bit test in terms of the conditional probability 
of correct predictions (provided that the test does not pass). 

Proposition 3. For any unbiased source (b = �89 and any nonconstant probabilistic 
polynomial-time algorithm A: {0, 1} ~-1 --, {0, 1} there exists a constant kt such that 
Prs(A(s~ -1) = s~) >_ �89 + 1/n k' iff there exists a constant k2 such that ws(A, S, i) >_ 
2 + 1/n ~2. 
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Proof. Let A be any nonconstant probabilistic polynomial-time algorithm: 
A: {0, 1} ' - t  ~ {0, I}. Clearly, 

Prs(A(sl -~) = s,) = Prs(A(sl -x) = 1) .  Prs(A(s1-1) = s i l A ( s 1 - 1 )  = 1) 

+ Prs(A(si  -~) = 0)" Prs(A(si  -~) = s, lA(s1-1) = 0). (1) 

The proposition results from the following two easily proved equivalences. We 
sketch their proofs in parentheses: 

1. Prs(A(si  -1) = s,) > �89 + 1/n ~' i f fPrs(A(s i  - t )  = s i lA(s i  -1) = 1) _> �89 + 1In" and 
Prs(A(si  - t )  = silA(si -1) = O) >_ �89 + 1/n t2 for some constants ! 1 and 12. (If 
Prs(A(si  -~) = s3 >_ �89 + 1/n ~', then by (1) there exists a value a e {0, 1} such 
that Prs(A(si  -t  ) = s,[A(si -1) = ~) > �89 + 1/n kl. This in turn implies the equiva- 
lence according to the Prediction Lemma. The other direction is an immediate 
consequence of (1).) 

2. ws(A,S,i)  > 2 + l/n k~ iff Prs(A(si  - 1 ) = s , l A ( s i  - 1 ) =  1 ) > � 8 9  zj and 
Prs(A(si  -1) = silA(si -1) = O) > �89 + 1/n t2 for some constants !1 and 12. (A di- 
rect result from the proof of Theorem 2.) []  

Proposition 4. For any unbiased source and any next bit test T there exists a POP 
test A, such that, for  every 1 <_ i < n, 

PrstA(si  -1) = s, lA(si -1) # *) > Prs(T(si  -1) = s,). 

Furthermore, for  some unbiased sources there exists a POP test A such that, for  every 
1 < i < n ,  

Prs(A(s1-1) = silA(s1-1) # *) > Prs(T(s1-1) = si). 

Proof. It is obvious that a P O P  test can always simulate a next bit test (without 
ever outputting .). We now show that inequality is also possible. To do so we 
construct an imperfect source S and demonstrate a P O P  test that does better than 
any next bit test. The source is the following: 

1. The first n - 1 bits are independent unbiased coin flips. 
2. Fix any 0 __ 3 _< �89 

P r s ( s .=  1)=  

+ 6  if s2 = 00, 

- t $  if s2 = 01, 

if s t = l .  

Since the next bit test is a global test, for any next bit test T" 

1 
Prs(T(s~ - 1 ) =  s~) < 1  t 1 1 = _ ~.(~ + 6) + ~.(~ + 6) + (�89 ~ + 2" 

The P O P  test A we use is A = 1 iff s 2 = 00; else A = ,. Clearly, 

Prs(a(s7 -x) = s.lA(s~ -1) # . )  = �89 + c5. [ ]  
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4. Perfectness with Respect to Arbitrary Models 

In this section we consider an arbitrary source $, which we believe to have a certain 
distribution described by a mathematical model ensemble M. As in the previous 
tests of randomness and independence we search for a convenient universal test, 
based on the probability of correct predictions: 

Definition 14 (Perfect Simulation). A model M is a perfect simulation of a source 
S if S and M are polynomially indistinguishable. 

Definition 15 (To Pass the Comparative Next Bit Test). A source $ passes the 
comparative next bit test with respect to a model M if, for every 1 < i _< n and every 
probabilistic polynomial-time algorithm A: {0, 1} H ~ {0, 1}, 

IPrs(A(s~ -1) = si) - PrM(A(s~ -1) = si)l -< O(v(n)). 

Note that the comparative next bit test enables us to avoid performing any a 
priori tests on either source. The test is easiest to implement when the model is 
described in such a way that the exact probability of bit predictions in the model 
can be efficiently computed. Yet we can perform the test even when the model is 
completely unknown and given to us as a black box. In that case the test simply 
involves a comparison between two boxes: one containing the tested source and the 
other containing the model. 

It is instructive to examine simple examples of the comparative next bit test, when 
the model source is explicitly known: 

1. M = U, i.e., the model is the uniform source of unbiased independent bits. In 
that case we know that no matter which algorithm is used Pru(A = si) = �89 and 
we can immediately derive the well-known next bit test. 

2. M = B, i.e., the model is a source of biased independent bits. Here we know 
that for any nonconstant algorithm P r s ( A = s i l A =  l ) = b  and that 
Prn(A = sdA = O) = 1 - b so that the predictions must be evaluated sepa- 
rately according to the value that is being predicted. This gives rise to the P O P  
or WSR test. 

3. M is a source with a one-bit memory, in which the probability of the ith 
bit is determined according to the outcome of the (i - 1)th bit. Let b~(0) = 
PrM(s i = 1 [si-i = O) and bi(1) = Pr~t(si = 1 [si-1 = 1). Then it is easy to see that 
the performance of any algorithm must be evaluated not only according to 
the value of s~ but also according to the value of s~-l. We therefore get that 
M is a perfect simulation of a source S if, for every 1 _< i < n and every 
probabilistic polynomial-time algorithm A: {0, 1} ~-1 --* {0, 1, .} such that 
Prs(A(s~ -1) ~ *[s~-I = O) >_ 1/n l' and Prs(A(slt -1) ~ *[sH = 1) > 1/n 12 for 
some constants l~, 12, 

max{IPrs(A(s~ -1) = s~lA(s~ -1)  ~ *, s~_~ = 0) - b~(0)l, 

IPrs(a(s~ -~) = s~la(s~ -~) # . ,  s,_t = 1) - bi(1)l} < O(v(n)). 
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It is easy to see that similar analysis holds for any M which is a Markov chain 
[2], where predictions must be evaluated according to the output value and 
to the state (which determines the bias). 

Theorem 5. A model M is a perfect simulation of  a source S iff S passes the 
comparative next bit test with respect to M. 

Proof. It is easy to see that if a source S fails the comparative next bit test it is 
distinguishable from the model source M. Assume now that we are given that S and 
M are distinguishable and need to prove that S fails the comparative next bit test 
with respect to M. We cannot implement the proof techniques used for proving 
Theorem 2 since they inherently assume independence in concatenating a random 
prefix of bits taken out of the tested source with a random suffix of bits generated 
according to the model distribution. We overcome the problem by using an addi- 
tional truly random source for the concatenation. The following can therefore be 
considered a generalization of the proof of universality of the next bit test as given 
for example in [4]. 

Let D: {0, 1}" -~ {0, 1} be a distinguisher between $ and M for which 

IPrs(D(s'l) = 1) - Pru(D(s~) = 1)l > 1/n" for some constant k. 

Let p S (pff) denote the probability that D outputs 1 when the first i bits of its input 
are taken out of S (M) and the rest are independent unbiased coin flips. Let 
d, = p S _  pM. Note that pS = Prs(D(s~ ) = I), pff = Pru(D(sT)= I), and po s = 
po u = Prv(D(sT) = I). Since do = 0 and Id, l = Ip s - p.Ul > I/n k, by the pigeonhole 
principle there exists an i for which pS and pff significantly differ, i.e., ldi - di-tl > 
I/n ~+I. We can assume without loss of generality that d i > 0. The comparative next 
bit test A submits to D the string s~ i-t~n s~-1 = s~ ~,  where ~ S or M and sJ' e U. If 
D(s~) = I, then A(s~ -I) outputs sl, else A(s~ -I)  outputs 1 - si. 

Let s~ denote a sequence of bits taken out of S or M. Let qS (qU) denote the 
probability that D outputs 1 when the first i - 1 bits of its input equal those taken 
out of S (M), the ith bit of its input is 1 - s~ and the rest are independent unbiased 
coin flips. It is easy to see that 

pLx - pS + qS 

2 ' 

2 

Therefore, 

While 

Hence, 

Prs(A(si- ' )  = s,) = �89 + �89 - qS) = �89 + pS _ p.S..t. 

Pru(Ats~ -1) = si) = �89 + �89 - qU) = �89 + pff _ p~t .  

1 
Prs(A(s~ - t )  = si) - Pru(A(s1-1) = si) >-- nk+X. [] 
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Appendix. Proof of Theorem 2 

We prove the theorem by first proving the WSR test to be a universal test of 
independence (Proposi t ion 2.1). We then use this p roof  to show the universality of 
the other  tests (Proposi t ions  2.2-2.4). 

Proposition 2.1. A biased source is a perfect  independent  biased source i f f  it passes  
the W S R  test. 

ProoL Given that  a source fails the weighted success rate test, it is easy to construct  
a distinguisher between the source S and the independent  biased source B by 
examining the predictions of the test. Formal ly  assume that  we are given a non-  
constant  probabilistic polynomial- t ime algori thm A: {0, 1} i-1 -~ {0, 1} for the ith 
bit of  a source S such that  ws(A,  S, i) > 2 + 1/n ~ for some constant  k. We use A to 
construct  two possible distinguishers and show that  for one of them IPrs(D = 1) - 
Prs(D - 1)[ > l /n  k" for some constant  k'. Given s~, bo th  D's submit  s~ -1 to A and 
examine A's output .  Dx(sT) = 1 iff A(s~ -1) = si -- 1. D2(sT) -- 1 iff A(s~ -1) -- 1. If 
the overall behavior  of  A is the same for S and for B, i.e., [Prs(A(s~ -~) = 1 ) -  
PrB(A(s~ -1) = 1)] < O(v(n)), then DI distinguishes between S and B. Otherwise D 2 
distinguishes. Hence S is imperfect. 

To  prove the other  direction, we show how to construct  a weighted success rate 
test using any distinguisher D for an imperfect source. Let  p~ denote  the probabil i ty  
that  D(sT) = 1 when the first i input bits are taken out  of  S and the rest are 
independent  biased coin flips (taken from B). No te  that  Pn = Prs(D(sT) = 1), while 
Po = PrB(D(s~) = 1). Since D distinguishes between S and B, [Po - P n [  > 1/n ~ for 
some k. By the pigeonhole principle there exists a bit i for which IP~ - P~-ll > 1/n~+L 
We assume without  loss of generality that  p~ - P~-I > 0. Explicitly, 

Pi = ~ Pr(D(sT) = 1). Prs(S~) 'Prs(s ' /+t)  
s7 

[Pr(D(s~ -~ ls['+~) -- 1). Prs(s~-~) .Prs(s i  = 11s~-~)- PrB(s~'+t) 

+ Pr(D(s~ -l  0s~'+l) = 1). Prs(s~-l) �9 Prs(S~ = 01s~-l) �9 PrB(s~'+l)l, 

P H  = ~ Pr(D(s~) = 1). Prs(S~-l) �9 PrB(s~') 
s7 

= ~ [Pr(D(s~ -lls~'+~) = 1).Prs(s~-l).pr~(s~ = l).Prs(s~'+l ) 

+ Pr(D(s~-lOsr+l) = 1). Prs(s~- l ) 'Prm(s i  = 0)" PrB(s['+l)l. 

Since pi - P~-I > 1/n~+~, one of  the following two equat ions hold: 

I-Pr(D(s~ -~ ls~'+~) = 1). Prs(s~-l) �9 Prs(s~ = l[s~-~) �9 PrB(s~'+~) 
�9 ,~-, ~,§ 

1 
- Pr(D(s~ -1 lsr+~) = 1)- Prs(s~-X) �9 Prs(si = 1). Prs(s['+l)] > 2n~+----T, (A.1) 

[Pr(D(s~-~Os~+x) = 1)-Prs(S~-~)'Prs(S~ = 0[s~-~). Pr~(s['+l) 

1 
- Pr(D(s~-XOs~+l) = 1). Prs(s~-l) �9 PrB(s~ = 0). Pr~(s~'+l)] _> 2n~+---- T. (A.2) 
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By testing D on suitably generated inputs it is possible to decide which of the two 
holds and construct a WSR test A i accordingly. Also the value of i for which the 
pigeonhole principle holds can be determined by sampling. 

AI submits as input to D the string s7 = s1-1 ls~'+t, where sl -~ e S is the input to 
A1 and s~'+l ~ B are drawn by A1. IfD(s~) = 1, then Al(S1-1) = 1; else Ax(sl - t )  = 0. 
Similarly, A2 submits as input to D the string sl-t0sr+t, where s1-1 ~ S and s~'+l E B. 
If D(sT) = 1, then A2(s~ -1) = 0; else A2(s1-1) = 1. We now analyze separately the 
two terms of ws(Ax, S, i) and ws(A2, S, i). To make the analysis simple we use the 
second alternative in the definition of the weighted success rate, which compares 
the probabilities of successful predictions to b and 1 - b: 

Prs(At(si -1) = s, lAt(si -t)  = 1) 

_ ~,,,-,.~,,+, Prs(s, = 11si-X) �9 Pr(D(sl -t lSr+l) = 1). Prs(si-a) �9 PrB(s~'+x) 

~s,~-,.,,~+, Pr(O(s1-1 lsr+l) = 1). Prs(sl-t)  �9 Prn(sr+t) 

(assuming (A. 1)) 

> ~,,,-1 ,~+, Prs(s / = 1)-Pr(D(sl -t ls~'+l ) = 1). Prs(si-1).Prn(s.~+l) + 1/2n ~+1 

= b +  

~,F1.,,% Pr(D(sl - t  ls~'+l) = 1)" Prs(si-1)'Prn(sr+t) 

(Pre(si = 1) = b) 

1/2n ~+1 

~,~,-,,~?+, Pr(D(sl - t  lsr+t) = 1)" Prs(si-X)'pre(sr+l) 

(the denominator  < 1) 

1 
> _ b + - -  

2nk+t" 

Similarly for A2: 

Prs(A2(si -1) = silA2(si -1) = O) 

= ~,F'.sT+, Prs(s, = 0lsi-1) �9 Pr(D(s1-10s~'+x) = 1). Prs(sl-t)  �9 PrB(sr+l) 

~.4-1..,% Pr(D(s1-10Sr+l) = 1)" Prs(sl - t ) .  PrB(sr+t) 

1 
> l - b + - -  2nk+l �9 

To complete the proof  we show that  for one of ws(A 1, S, i) and ws(A2, S, i) (accord- 
ing to whether (A. 1) or (A.2) holds) the remaining term (that dos not  appear above) 
is also significantly greater than 1. [ ]  

Prediction Lemma.  For any biased source and any nonconstant probabilistic 
polynomial-time algorithm A: {0, 1}~-1 ~ {0, 1} there exists a constant k I such 
that 

1 
Prs(A(s~ -x) = silA(s~ -1) = 1) > b + - -  

- -  n k ~  
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iff there exists a constant k 2 such that 

1 
Prs(A(s~ -1) = silA(s~ -1) = O) > 1 - b + - -  

- -  n k 2  �9 

Proof.  Assume that  Prs(A(si -1) = silA(si - l )  = 1) > b + 81, where ~t = 1/nk'. 
Note  tha t  Prs(A(si -1) = sllA(si -1) = 1) = Prs(st = llA(s1-1) = 1). Since the overall  
bias of  the source is known  to be b, 

Prs(si = l lA(s~ -1) = 1). Prs(A(si -1) = 1) 

+ Prs(s, = l lA(sl - t )  = 0). Prs(A(si - t )  = O) = b. 
Therefore,  

Prs(si = l lA(s~ - t )  = O) 

Simple manipu la t ions  give 

b - (b + e t )Prs(A = 1) 

Prs(A = O) 

Prs(A(s~ -1) = s, lA(s~ - t )  = 0) = Prs(si = 01A(s~ -1) - 0) 

-- 1 - Prs(si --- llA(s~ -1) = 0) 

Prs(a(s~ -1) = 1) 
> 1 - b + 8x" Prs(A(s~_l) = 0)' 

which is significantly greater  than  1 -  b for noncons tan t  a lgor i thms (where 
Prs(A(s~ -1) = 1) _> 1/n k3 for some cons tant  k3). 

Similarly, when Prs(A(s~ -1) = si lA(s~ -1)  = O) >_ 1 - b + 82, where e2 = 1/n ~2, we 
get, using the same manipula t ions ,  that  

Prs(A(s~ -~) = O) 
Prs(A(s~ -1) = silA(s~ -1) = 1) > b + 82"Prs(A(s~_l) = 1)" [ ]  

Proposi t ion 2.2. A biased source is a perfect independent biased source iff it passes 
the modified W S R  test. 

Proof.  If  a biased source fails the modified W S R  test it is easy to construct  a 
dist inguisher between the source and  the independent  biased source ensemble  in a 
similar way to the const ruct ion in Propos i t ion  2.1. 

If  a biased source is imperfect,  then by the p roof  of  Propos i t ion  2.1 there exists 
a noncons tan t  probabil is t ic  po lynomia l - t ime a lgor i thm A: {0, 1} i-1 ~ {0, 1} such 
tha t  Pr(A(s~ - t )  = s, lA(s~ -1) = !) > b + l /n k' and Pr(A(s~ -1) = s, lA(s~ -1) = O) > 
1 - b  + 1In k2 for some constants  k 1 and  k 2. By definition this source fails the 
modif ied W S R  test. [ ]  

Proposition 2.3. A biased source is a perfect independent biased source iff it passes 
the behavior test. 

Proof.  F o r  no ta t iona l  simplicity let Pt denote  Pr(A(s[  -1) = I i s  t = 1) and  let Po 
denote  Pr(A(sl  - t )  = I Is~ = 0). We prove  tha t  a biased source passes the behav ior  
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test iff it passes the WSR test. This follows from the close relation between the two 
measures: For any biased source and any nonconstant probabilistic polynomial- 
time algorithm A: {0, 1} ~-1 --, {0, 1}, 

P1 1-Po 
ws(A, S, i) = b. P1 + (1 - b)'Po + b.(1 - P~) + (1 - b).(1 - Po)" 

Clearly, if S passes the behavior test, then it also passes the WSR test. If S fails the 
behavior test, then, for some nonnegligible e, IPI - Po[ > e. Assume without loss of 
generality that Px > Po- Using the relation between the tests we then get 

ws(A, S, i) > 2 + ~" P1 ---e ' i l  - b) + 1 - P1 + e.(1 - b) " 

Finally note that t . b  <_ P1 - 8-(1 - b) < 1 - ~'(1 - b), so that the term that is 
added to 2 is indeed nonnegligible. [] 

Proposition 2.4. A source is a perfect independent biased source iff it passes the P O P  
test. 

Proof. Given that a source fails the POP test, it is easy to construct a distinguisher 
between the source and the independent biased source ensemble by examining the 
predictions of the test, as is done in the proof of Proposition 2.1. 

To prove the other direction, assume that S is imperfect and there exists a 
distinguisher D between S and the independent biased ensemble B. Then by the 
proof of Proposition 2.1 there exists a nonconstant probabilistic polynomial-time 
prediction algorithm T: {0, 1} i-1 --,{0, 1} for the ith bit of S such that 
Prs(T(s~ - l )  = sil T(s~ -1) = 1) > b + 1/n ~ for some constant k. From T we construct 
the following POP test A: {0, 1} i-1 --, {0, 1, ,}: A(s~ -1) = 1 iff T(s~ -1) = 1 and 
A(s~ -1) = .  iff T(s~ -1) = 0. Since T is nonconstant, then Prs(T(s~ -1) = 1)= 
Prs(A(s~ -1) ~ , )  >_ 1/n t for some constant i. We then get that by definition S fails 
the POP test A. [] 
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