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Abstract. A method is presented for controlling cryptographic key usage based 
on control vectors. Each cryptographic key has an associated control vector that 
defines the permitted uses of the key within the cryptographic system. At key 
generation, the control vector is cryptographically coupled to the key by way of a 
special encryption process. Each encrypted key and control vector are stored and 
distributed within the eryptographic system as a single token. Decryption of a key 
requires respecification of the control vector. As part of the decryption process, the 
cryptographie hardware verifies that the requested use of the key is authorized by 
the control vector. This article focuses mainly on the use of control vectors in 
cryptosystems based on the Data Encryption Algorithm. 
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1. Introduction 

Cryptography is a means often used to protect data transmitted through a 
communications network. Data is encrypted at a sending device using a crypto- 
graphic algorithm such as the Data Encryption Algorithm (DEA) [1] and is 
decrypted at a receiving device. The DEA enciphers a 64-bit block of plaintext into 
a 64-bit block of ciphertext under the control of a 64-bit cryptographic key. The 
DEA itself is a nonsecret algorithm whereas the cryptographic keys are kept secret. 
Each 64-bit key consists of 56 independent key bits and 8 bits that may be used for 
error detection. In total there are 256 different cryptographic keys that may be used 
with the DEA. 

Since the DEA itself is not a secret algorithm, the degree of protection provided 
by a DEA-based cryptographic system depends on how well the secrecy of the 
cryptographic keys is maintained. Therefore, an important goal of sound key 
management is to ensure that cryptographic keys never occur in clear form outside 
the cryptographic hardware, except under secure conditions when keys are first 
initialized within the cryptographic device. For  two cryptographic devices to 
communicate, the devices must share a common cryptographic key. In fact, key- 
management schemes commonly use many different keys to control access to the 

1 Date received: April 10, 1990. Date revised: October 23, 1990. 
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data encrypted with those keys. Therefore, the key-management scheme needs an 
efficient and secure means to distribute keys from one cryptographic device to 
another. In practice, this is ordinarily accomplished by first installing a common 
key-encrypting key at each device and thereafter using this key-encrypting key 
to distribute keys from one device to another electronically. Key distribution 
encompasses the processes of key generation, key delivery, and key importation. 
The process of installing the first, or initial, key-encrypting key consists of generating 
the key at one device and transporting it to the other device (for example, using a 
courier) where it is initialized within the cryptographic hardware (for example, using 
manual entry). Thereafter, automated electronic procedures are followed. 

To date, cryptographers and implementers of cryptographic standards and 
products have evolved key-distribution schemes concerned mostly with protocols 
for the exchange of keys and with strategies for encrypting and authenticating keys 
and for ensuring the integrity of the key distribution process itself. However, 
methods for controlling key usage, although not overlooked altogether, have been 
slow to develop, mainly because until now key-management designs have needed 
to handle only a few types and uses of keys. 

Cryptographic systems being developed today must support an increasing variety 
of types and uses of keys to meet the growing needs of an expanded and more 
sophisticated community of cryptographic system users. In fact, it can be said that 
a fundamental element of electronic key distribution is the means by which key 
usage information is conveyed, with integrity, from a generating device where keys 
are created, to one or more receiving devices where keys are used. Without such a 
capability, it may be possible for an adversary to replace keys of one type with those 
of another type, thereby causing a receiving device to import and use the keys 
incorrectly. 

To illustrate the danger of importing a key of one type as a key of another type, 
consider a cryptographic system that supports both data-encrypting keys (type = 
"data-encrypting key") and key-encrypting keys (type = "key-encrypting key"). As 
their names imply, key-encrypting keys encrypt keys; data-encrypting keys encrypt 
data. In like manner, ciphertext decrypted with a key-encrypting key is treated 
as a key; ciphertext decrypted with a data-encrypting key is treated as data. A 
decrypted key is made available only to the cryptographic hardware: the key value 
is kept secret even from the application program that has authorized system use of 
the key. Decrypted data is made directly available to the application program. Thus, 
if it were possible to change a key-encrypting key to a data-encrypting key, then 
clear keys could be recovered outside the cryptographic hardware by treating 
encrypted keys as encrypted data and executing a decipher data instruction. 

In older systems where the number of key types and uses is small, it has been 
common practice to infer key usage from the context of the key-exchange protocol 
(for example, that an encrypted data key is transmitted as the third block of 8 bytes 
in the second message exchanged within the key-distribution protocol). A more 
general, open-ended approach is needed for present and near-term systems, where 
the number of key types and uses is certain to be larger. To accomplish this 
approach, distributed keys should carry with them a record of the key-related 
information that spells out how and under what conditions these keys can be 
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processed by a cryptographic device. This key-related information should be linked 
cryptographically to the key, making it infeasible for an adversary to cause the 
cryptographic hardware to process a key without specifying and using the correct 
key-related information. 

This article describes a method for controlling key usage through the use of a 
data variable called the control Vector. The concept underlying the control vector 
can be applied to key-management designs supporting both symmetric algorithms, 
such as the DEA where the decryption key is the same as the encryption key, and 
asymmetric (public-key) algorithms, where the keys are different. However, the 
discussion focuses mainly on showing how the control vector can be implemented 
within a key-management scheme based on the DEA. 

1.1. How Control Vectors Work 

In a cryptographic system, each key has an associated control vector, as illustrated 
in Fig. 1. The key is composed of a randomly generated string of 0 and 1 bits. The 
control vector is composed of a set of encoded fields representing the authorized or 
permitted uses of the key. During key generation, the key and control vector are 
"locked" or cryptographically coupled, to prevent control-vector information from 
being changed. This process involves encrypting the generated key K with a variant 
key-encrypting key of the form KK ~ C, where KK ~9 C is produced as the 
Exclusive-OR product of key-encrypting key KK and control vector C. Upon 
recovery, the key-encrypting key is again combined with the control vector to 
produce the same variant key KK ~3 C. KK ~)C is then used to decrypt the 
encrypted key. 

Since KK is a secret key, the process of forming KK ~ C from KK and C as well 
as the processes of encrypting and decrypting with KK ~3 C can only be performed 
within the cryptographic hardware. Thus, the process of cryptographically coupling 
the key and control vector is one that cannot be duplicated by a user, or would-be 
adversary. A key typed by its creator remains typed for the life of the key. The method 
for cryptographically coupling keys and control vectors is discussed in Section 3. 

One of the primary differences between the key and control vector is the manner 
in which these variables are created. Figure 2 illustrates both productiori processes. 
Most DEA keys are produced by the cryptographic hardware using a pseudo- 
random number generator. On the other hand, control vectors are produced by 
user-application programs from keywords specified in a control-vector generate 
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function. The process yields a control vector in which the keywords specified in the 
control-vector generate function are encoded in the control vector as separate fields. 

Once created, the key and control vector are used to initialize or customize the 
cryptographic hardware. Figure 3 illustrates this process. The key customizes the 
cryptographic algorithm by selecting one of many possible mapping functions. The 
control vector customizes the hardware cryptographic instruction processor by 
selecting a set of possible instructions, instruction modes, and instruction processing 
operations executable by the cryptographic software. That is, it prescribes the 
authorized uses of a key. Requests for particular uses of a key occur as a result of 
executing particular cryptographic instructions. Instruction execution is permitted 
only if the control vector authorizes the requested use. 

In effect, the control vector facilitates a form of cryptographic access control 
similar, in respects, to software access controls implemented in large-scale com- 
puters. To explain this relationship better, the topic of access control is briefly 
discussed. 

Key Control Vector 

Key Register 

Cryptographic 
Algorithm 

CV Register 

Instruction 
Processor 

Fig. 3. Customization via the key and control vector. 
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Fig. 4. Access matrix. A(i,j) records the rights of subject Si to object Oj. 

1.2. Access Control 

A well-known model for describing protection systems is the access matrix model 
developed by Dennis and VanHorn [21 Graham and D6nning [3], Jones [4], 
Lampson [5], and Harrison et al. [6]. In a given situation, the model permits us to 
determine whether a subject can gain access to a given object. 

The protection system is modeled as a set of subjects {S1, $2 . . . . .  Sm}, a set of 
objects {O 1, 02, . . . ,  On}, and an access matrix A. The objects are the protected 
entities of the system, while the subjects are the active entities that use or make use 
of these objects. For each subject Si and object Oj, the access matrix records the 
rights that subject Si has to object Oj, as illustrated in Fig. 4. For example, if Si is 
an application program and Oj is a data file, then A(i,j) might contain rights r and 
w to read (r) and write (w) the data file. 

In operating systems, objects typically include files, records, processes (that is, 
executions of system programs), and segments of memory. Subjects are typically 
users or user-application programs. When a subject requests use of an object (for 
example, to read a file), the access control mechanism intercepts the request and 
verifies that the requested use is granted by the access matrix. If verification fails, 
the requested use of the object is denied. 

The access-control mechanism is effective only if subjects are properly identified: 
one subject should not be able to pose as another subject and acquire the access 
rights of that other subject. Identification of users is typically performed by way of 
an authentication procedure during login. In addition, access controls are effective 
only if the access rights of each subject are protected from unauthorized modifica- 
tion. This is accomplished by specifying the access matrix as an object protected by 
itself. A special set of rights permit subjects, objects, and rights to be added to and 
deleted from the access matrix. 

Because of their special relationship to the control vector, two other common 
methods for storing protection information are discussed: access lists and capabili- 
ties. An access list, for example, (S 1, R 1), ($2, R 2) . . . . .  (Sin, Rm), is a list of subjects 
who are authorized access to some particular object, say Oj. Each entry (Si, Ri) gives 
the name of a subject, Si, and that subject's rights of access, Ri, for the given object. 
Relating access lists to the access matrix model, each matrix column is an access 
list for a particular object. The concept of a capability derives from Iliffe's codewords 
[7], [8]. A codeword is a descriptor specifying the type of an object and either its 
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value or its length and location. However, it was Dennis and VanHorn who, in 
1966, introduced the term "capability" I-2]. A capability is a pair (O, R) specifying 
the name of an object, O, and a set of access rights, R, for O. A capability may also 
specify an object's type. In operation, a capability acts like a ticket. That is, 
possession of the capability gives the holder R-access rights for object O. Once a 
capability is issued, no further validation is required. 

1.2.1. Comparison with the Control Vector. In its simplest form, where names of 
subjects are not stored in the control vector, the control vector can be likened to a 
capability. If (Kj, Cj) represents a key Kj and associated control vector Cj, then Cj 
specifies a set of rights A(*,j) representing how object Kj may be processed in the 
cryptographic hardware by any subject with access to Kj. The asterisk "*" is a wild 
card notation specifying any subject. However, there are differences. As illustrated 
in Fig. 5, a capability contains the name or identifier (ID) of an object, whereas the 
control vector does not; or, at the very least, need not. First, the control vector is 
coupled cryptographically to the key, via encryption. Thus, an adversary has no 
opportunity to substitute one control vector for another or to modify information 
stored within the control vector. Second, in practice, the control vector is coupled 
logically to the key by storing both the control vector and the encrypted value of 
the key together in a system-maintained key data set. Thereafter, the control vector 
and encrypted key are handled and processed as a single unit. 

In principle, the control vector could contain an entire access list, for example, a 
list of user IDs and the rights of each user to process the given key. A convenient 
alternative is to make use of a separate control vector for each subject, as illustrated 
in Fig. 6. This facilitates short, fixed-length control vectors. In that case, the control 
vector Cj for subject Si contains the subject's identifier, IDi, and the rights A(i,j) 
representing how Kj may be processed in the cryptographic hardware on behalf 
of Si. 

Storing identifier information in the control vector can be particularly useful 
where identifiers are device identifiers stored within the cryptographic hardware. In 
such a case, key processing is permitted only if the device identifier in the control 
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vector matches the device identifier in the cryptographic hardware. Smid [9] was 
the first to show that sender and receiver identifiers could be integrated into the key 
encryption process to control key distribution effectively--a topic briefly discussed 
in the next section. However, in situations where access to keys by users and 
user-application programs must be controlled, which requires that subjects are 
identified and authenticated before access to the key is granted, other more 
traditional and often more convenient methods of access control may be used. In 
most cryptographic systems, access to cryptographic information is based on a 
strategy of key sharing: a key is first established between each pair of communicators 
who wish to communicate cryptographicaUy. Thereafter, data or keys encrypted 
with a key available to one communicator can be decrypted and recovered only 
with the same key available to the other communicator. In short, possession of a 
key represents the subject's right to receive or use the information encrypted with 
that key. The strength of the key-sharing method, of course, depends on how well 
key secrecy and controlled access to keys can be maintained. For example, if keys 
are held by users and entered into cryptographic devices only when cryptographic 
services are required, the degree of protection will be high. This is also the case for 
keys stored and processed on a "smart" card capable of performing cryptographic 
functions. (A s m a r t  card is similar to a magnetic-stripe card used in banking 
applications to identify users for an Automatic Teller Machine (ATM). The 
difference between a smart card and a magnetic-stripe card is that the smart card 
contains a microprocessor and memory, as well as an optional encryption processor, 
permitting the card to be programmed and, at the programmer's option, to perform 
cryptographic operations.) 

In large computer systems, access to keys can be effectively controlled through 
the use of software access controls. This is accomplished by defining a set of subjects 
consisting of user-application programs and a set of objects consisting of key records 
in a key data set, as illustrated in Fig. 7. Each key record contains one key, and 
access to the key record is based on a key label. (Examples of software access-control 
programs are Computer Associates' CA-ACF2 TM [10] and International Business 
Machines' (IBM's) Resource Access Control Facility [ 11].) 

In theory, the list of rights representing how keys may be processed in the 
cryptographic hardware is limited in kind and number only by the imagination of 
the architect. In practice, these rights are usually specified in the architecture to 

Subjects: 
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optimize several competing objectives such as need or usefulness, size or storage 
impact, performance impact, and cost. By using software access controls to control 
user and user-application program access to keys and then using the control vector 
to specify the rights for keys to be processed in the cryptographic hardware, it is 
evident that each of these methods augments the services provided by the other. 
But is the control vector really needed? Why cannot software access controls 
provide a total solution? If they cannot, then why not? 

1.2.2. Boundary of Protection. When we compare domains of protection, it is 
evident that the control vector provides a viable method for controlling key 
usage, whereas noncryptographic software-based access-control mechanisms do 
not. Figure 8 illustrates the domains of protection achieved with each method. In 
an operating system, a software-based access-control mechanism protects objects 
only directly under its management and control: the protection mechanism extends 
to the boundary of th~ operating system. The access matrix, or comparable 
structure, must be stored within this protected boundary as well. Otherwise, an 
insider adversary with write access to the access matrix could modify access-control 
information, thereby defeating the protection system. In contrast, the control vector 
protects keys at every network device implementing the control-vector architecture: 
the protection mechanism extends to the boundary of the network, and even to 
multiple networks connected by way of one or more interchange nodes. This is so 
because the key and control vector are coupled cryptographically at the time of key 
creation, and this coupling remains in force for the life of the key, regardless of where 
it is transmitted, stored, or processed. Thus, an adversary has no opportunity to 
substitute one control vector for another or to modify the rights of access granted 
by a control vector. 
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The following example further justifies that the domain of interest is larger than 
a system. Not only does the control vector serve to enforce correct key usage 
between communicators, for example, two terminal nodes, but the enforcement 
extends to intermediate nodes as well. During message transmission, control vectors 
permit the employment of encrypted information at an intermediate node for 
specific restricted uses without the information being unrestrictedly available or 
even vulnerable to cryptanalytic attack at the intermediate node. 

In summary, the security requirement of the control vector is to provide a 
networkwide hardware-enforced protection mechanism for controlling key usage. 
It has been argued that a comparable level of protection is not obtained with 
software access controls implemented in the operating systems of today's large-scale 
computers. It has also been argued that the level of protection provided by the 
control vector is needed in current cryptographic systems to control key processing 
securely. In the next section methods are discussed in which prior key-management 
designs have achieved key-usage control. A set of control-vector design criteria is 
then presented and it is shown that none of the prior methods for controlling key 
usage completely satisfies the design criteria. 

2. Background 

In a key-management scheme developed by IBM, outlined in a group of articles in 
the IBM Systems Journal [12]-[14] and implemented in a line of IBM crypto- 
graphic products, keys are separated and controlled cryptographically through the 
use of variants of a master key, called key variants. In the key management, a 64-bit 
master key KMO has two master key variants KM1 and KM2. (A master key is 
sometimes designated KM.) In the cryptographic hardware, KM1 and KM2 are 
produced from KMO by Exclusive-ORing nonsecret mask values v 1 and v2 with 
KMO, that is, KM1 = KMO ~) vl and KM2 = KMO ~) v2, where "0)" denotes the 
Exclusive-OR operation. Keys stored within the cryptographic system are separated 
into three distinct and cryptographically separate classes. The first class is encrypted 
with KMO, the second class is encrypted with K M  1, and the third class is encrypted 
with KM2. Each of these classes has a different assigned key use. The IBM key- 
management scheme has also been extended to handle 128-bit master keys. In that 
case, the master key variants KM1 and KM2 are produced from 128-bit key 
KMO by Exclusive-ORing nonsecret mask values vl and v2 with the leftmost and 
rightmost 64-bit parts of KMO, that is, KM1 = K M O ~ ( v l ,  vl) and KM2 = 
KMO t~ (v2, v2), where "," denotes concatenation. The 64-bit universal constants 
v 1 and v2 are defined by the key management architecture. 

In a key-management scheme developed by Smid [9] of the National Institute 
of Standards and Technology--also incorporated in ANSI (American National 
Standards Institute) Standard X9.17 [15] and ISO (International Organization for 
Standardization) Standard 8732 [16J--keys are separated and controlled crypto- 
graphically through the use of key-manipulation processes called key notarization 
and key offsetting. Essentially, key notarization is a process in which a 
key-encrypting sender key (KKij) or a key-encrypting receiver key (KKji) is derived 
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within the cryptographic hardware from a key-encrypting key (KK) shared between 
two communicating devices i and j. The keys KKij and KKji are functions of KK 
and identifiers i and j. Each pair of devices, i and j, also maintains a pair of 
synchronized incrementing counters: CTRij and CTRji. Essentially, key offsetting 
is a process in which a unique time-variant key (KKij ~ CTRij) or (KKji ~ CTRji) 
is produced within the cryptographic hardware by Exclusive-ORing a key value 
and a counter value. After a counter has been used, it is incremented by 1. At device 
i, the variant key KKij ~ CTRij is used to encrypt keys in the distribution channel 
sent to devicej and KKji ~ CTRji is used to decrypt keys in the distribution channel 
received from device j. In contrast to the method of key-usage control in the IBM 
key-management scheme, where key usage is determined according to the key 
variant under which the key is encrypted, the ANSI X9.17 key-management scheme 
links the usage of a key to the method used to derive the key, per the notarization 
and offset processes. That is, the use of a key is dependent on how the key has been 
derived. 

2.1. Key Tag 

The method of control vectors is similar in many respects to a method based on 
key tags originally proposed by Jones [17]. (See also [18].) In Jones' method, a 
64-bit DEA key consists of 56 independent key bits and an 8-bit key tag. That is, 
the 8 nonkey bits ordinarily used or reserved for error-detection purposes are used 
as a key tag. Although not contiguous, the 8 tag bits (tO, t l  . . . .  , t7) logically 
constitute a single field. The tag bits are defined as follows: Bit tO indicates whether 
the key is a data-encrypting key (KD) or a key-encrypting key (KK) (defined as 
0 = KD, 1 = KK). Bit t 1 indicates whether the key can be used for encipher- 
ment (defined as 0 -- no, 1 = yes). Bit t2 indicates whether the key can be used 
for decipherment (defined as 0 -- no, 1 = yes). Bits t3-t7 are spares. (A similar 
technique is also used to encode key-usage information within the control vector.) 

A function is provided to create keys, which has an input parameter with 
information necessary to construct a key tag. At key creation, bits tO-t2 of the tag 
are encoded to indicate how the key may be processed. For a KK sender key, the 
bits are encoded as B'110,' indicating that the key is a KK key, that it can be used 
to encipher KDs, and that it cannot be used to decipher KDs. For a KK receiver 
key, the bits are encoded as B'101,' indicating that the key is a KK key, that it can 
be used to decipher KDs, and that it cannot be used to encipher KDs. A KD key 
can be encoded as either 

(1) B'011,' indicating that the key can be used to encipher and decipher data, 
(2) B'010,' indicating that the key can be used to encipher but not decipher data, 

or 
(3) B'001,' indicating that the key can be used to decipher but not encipher data. 

Thus, the same key "typed" in one case as "encipherment only" and in the other 
case as "decipherment only" gives a kind of public-key cryptographic system. (A 
public-key cryptographic system is based on a public-key algorithm, where one key 
is used for encipherment and another different key is used for decipherment. Staid 
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[9] has shown that similar public-key properties are obtained with key notarization. 
Meyer and Matyas 1-19] have shown that public-key properties can be obtained 
with key variants.) Furthermore, a KK that is typed at one installation as 
"encipherment only" can be used to encipher keys to be used at another installa- 
tion. The receiving installation holds a copy of the same KK, but it is typed as 
"decipherment only," which can therefore be used to receive keys from the sending 
installation. 

Once created, a key and tag remain together for the life of the key. A tag appears 
in clear form only when the key is decrypted and processed within the cryptographic 
hardware. 

2.2. Need for the Control Vector 

Now that existing methods for achieving key separation and key-usage control have 
been discussed (that is, key variant, key notarization, and key tag), a set of control- 
vector design criteria is discussed. The design criteria evolved as part of an effort to 
develop a cryptographic architecture. It was important, in fact, crucial that the 
control vector have properties ensuring its suitability as a primary building block 
of the cryptographic architecture. The design criteria are based, in part, on the set 
of desirable characteristics of a good architecture put forth by Van de Goor [20]. 

The control-vector design criteria are listed below: 

Extensibility: The control vector should have room for growth. The designer 
should be aware that users will be inventive beyond his imagination and that 
needs may change beyond his ability to predict them. A good architecture will 
have a provision for future developments. 

Orthofonality: The control vector should permit key-processing rights to be 
encoded and processed separately. In a good architecture, conceptually inde- 
pendent functions are kept separate in their specifications. 

Generality: The control vector should be useful in a broad range of applications. 
It should be general purpose. 

Continuity: The key-processing rights encoded in the control vector should 
remain in force for the life of the key. 

Simplicity: The control-vector specification and the encryption function for 
coupling the key and control vector should be simple and straightforward. An 
architecture that is straightforward in use is often called clean. 

The cryptographic architecture satisfies the control-vector design criteria in the 
following ways. Extensibility is met by a provision to handle control vectors of 64, 
128, and greater than 128 bits in length. Orthogonality is met by encoding key- 
processing rights in the control vector as separate fields. Each cryptographic 
instruction processes only those fields appropriate for it. Generality is met by 
externalizing the control vector. This enables the control vector to be processed by 
user-application programs and cryptographic system programs, in addition to 
the cryptographic hardware. Continuity is met by ensuring that the control 
vector remains cryptographically coupled to the key for the life of the key. The 
cryptographic instructions are designed to thwart manipulation attacks aimed at 
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modifying control-vector attributes or substituting one control vector for another'. 
Simplicity is met by designing a single, simple set of low-level encryption and 
decryption functions that cryptographicaUy couple a key and control vector. These 
low-level functions are used by every cryptographic instruction needing to encrypt 
or decrypt keys. Key information and key-processing rights are associated with the 
control vector. That is, the complexity associated with key-manipulation, key- 
handling, and key-management operations is stored as encoded data in the control 
vector. 

2.3. The Control Vector Contrasted With Other Methods 

Differences between the control vector and existing methods for controlling key 
usage primarily are due to differences in their design goals. 

The goal of key notarization is to establish a secure key-distribution channel 
by combining sender and receiver identifier information into the key-encryption 
process. Key notarization does not address the general problem of controlling key 
usage. 

The goal of the key tag is to illustrate general concepts. It illustrates how 
key processing can be facilitated with orthogonal key type and key-processing 
information encoded in the tag. It also illustrates how the IBM key-management 
scheme, based on three master-key variants, can be implemented using three tag 
bits. The tag with only eight available tag bits is limited. It has too few bits to handle 
a modestly complex key-management design and only a limited provision for future 
growth. 

Because key variants are arbitrarily assigned, variant values cannot be checked 
in the cryptographic hardware using an algorithmic checking procedure. To enforce 
correct variant usage, a list of key-variant values must be stored within the 
cryptographic hardware. This may be impractical or uneconomical when the 
number of key variants becomes only moderately large (for example, 30 or more). 
To complicate matters, the variant has no provision for encoding key-processing 
attributes as separate fields. Thus, if n key-processing rights are needed, the 
theoretical number of variants needed to attain maximum granularity in separation 
and usage control is on the order of 2 n. Thus, a linear growth in the number of 
key-processing rights gives rise, in the worst case, to an exponential growth in the 
number of key variants. 

Now that the security and architectural requirements for the control vector have 
been set forth, a particular control-vector design is discussed. 

3. Control Vector 

The control vector is a nonsecret cryptographic variable used by a key-management 
scheme to control cryptographic key usage. In principle, the control vector can be 
used to control the usage of any cryptographic variable, although for convenience 
the discussion is limited to keys. 

In a cryptographic system, each key, K, has an associated control vector, C, where 
K and C constitute a logical 2-tuple (K, C). Each cryptographic device is designed 
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so that key processing can be performed only if the requested use of the key is 
authorized by the control vector. In effect, C grants processing rights to K. The 
granularity of control that can be achieved with the control vector, although 
somewhat dependent on the ingenuity of the designer, depends on the breadth 
and sophistication of the key-management scheme and the number and kind of 
processing options available within the cryptographic instruction set. For a limited 
instruction set, the degree of control exercised by way of the control vector is likely 
to be very simple; for a comprehensive instruction set supporting a wide range of 
cryptographic processing options, the degree of control may indeed be highly 
refined. 

3.1. Cryptographic Coupling of K and C 

Implementation of the control-vector concept requires that the key and control 
vector (K, C) be coupled cryptographically. Otherwise, the key-usage attributes 
granted to each key could be changed by merely replacing one control vector with 
another. Basically, there are two approaches for cryptographically coupling K and 
C. The first approach is based on integrating C into the functions used to encrypt 
and decrypt keys. The second approach makes use of a special Authentication Code 
(AC) calculated directly or indirectly on K and C. 

The first approach has the characteristic that K is recovered correctly at a using 
device only if the correct control vector is specified. Conversely, specification of an 
incorrect control vector does not prevent the decryption and recovery of a key, but 
the recovered key K' is for all intents and purposes a spurious value bearing no 
known relationship to the real key K. It is the task of a good architecture or design 
to ensure that recovered spurious values of K' are of no cryptographic use to a 
would-be adversary. The main advantage of the approach is that for a short C, 
where the length of C is no greater than the length of the key-encrypting key, KK, 
used to encrypt K, efficient encryption and decryption functions can be devised. 
The additional processing introduced by the control vector is negligible. 

The second approach has the characteristic that both K and C are authenticated 
before K is processed by the cryptographic device. But some additional processing 
overhead is needed to calculate AC. For instance, if AC is defined as a 32-bit 
Message Authentication Code (MAC), per ANSI Standard X9.9 [21], then one DEA 
encryption step is needed to process each 64 bits of input. 

Because the first approach of integrating C into the key-encryption and key- 
decryption functions has more favorable performance characteristics, the approach 
is discussed in greater detail in the next section. 

3.2. Control-Vector Encryption/Decryption Algorithms 

The Control-Vector Encryption (CVE) and Control-Vector Decryption (CVD) 
algorithms used to encrypt and decrypt a key, respectively, are illustrated in Fig. 9. 
In the CVE algorithm in Fig. 9, C is an input control vector whose length is a 
multiple of 8 bytes; KK is a 128-bit key-encrypting key consisting of a leftmost 
64-bit part KKL and a rightmost 64-bit part KKR, that is, KK = (KKL, KKR); K 
is a 64-bit key or the leftmost or rightmost 64-bit part of a 128-bit key. The inputs 
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are processed as follows. C is operated on by hashing function h to produce 
the 128-bit output H. H is Exclusive-ORed with KK to produce 128-bit output 
KK ~ H. Finally, K is encrypted with KK t~ H to produce output e~r.u(K ), where 
e* indicates encryption with 128-bit key KK ~ H using an encryption-decryption- 
encryption (e-d-e) algorithm as defined in ANSI Standard X9.17-1985 [ 15-1 and I SO 
Standard 8732 [16]. 

An encrypted key of the form e~r~n(K) is decrypted with the CVD algorithm 
as depicted in Fig. 9. The first portion of the CVD algorithm repeats the first 
portion of the CVE algorithm; that is, C is operated on by hashing function h to 
produce the 128-bit output H and H is Exclusive-ORed with KK to produce 128-bit 
output K K  ~ H. Then, e'Ken(K) is decrypted with KK ~ H using a decryption- 
encryption-decryption (d-e-d) algorithm to produce output K. The d-e-d algorithm 
is just the inverse of the e-d-e encryption algorithm. 

Although the CVE and CVD algorithms in Fig. 9 are described using key- 
encrypting key KK, K K  could be replaced by a different key, such as a master key, 
KM. Since the CVE and CVD algorithms are implemented within the cryptographic 
hardware, specification of KK is entirely under the control of the key management. 

3.3. Hashing Function h 

The hashing function h implemented in the CVE and CVD algorithms is illustrated 
in Fig. 10. Hashing function h operates on input control vector C (whose length is 
a multiple of 64 bits) to produce a 128-bit output H. 

If C is 64 bits, h(C) is set equal to (C, C), where "," denotes concatenation, and 
the extension field (bits 45, 46) in h(C) is set equal to B'00.' That is, h acts like a 
concatenation function. If C is 128 bits, h(C) is set equal to C and the extension field 
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in h(C) is set equal to B'01.' That is, h acts like an identify function. If C is greater 
than 128 bits, h(C) is set equal to a 128-bit Modification Detection Code (MDC) 
calculated by the MDC-2 algorithm shown later in Fig. 11 and the extension field 
in h(C) is set equal to B'10.' 

In each of the three cases, the eighth bit of each byte in h(C) is adjusted such that 
each byte has even parity. This adjustment ensures that when h(C) is Exdusive- 
ORed with KK, the variant key KK ~ h(C) has the same parity as KK (that is, if 
KK has odd parity, then KK ~ h(C) also has odd parity). Adjusting bits 7, 15, 23, 
.... etc. (that is, the parity bits) and setting bits in the extension field in h(C) have 
the following implications. For 64- and 128-bit control vectors, it means that these 
control vector bit positions must be reserved for use by hashing function h. For 
control vectors greater than 128 bits, it means that 110 bits in h(C) are set from the 
calculated MDC so that h(C) remains a cryptographically strong fingerprint of C. 

The extension field in h(C) serves to ensure, for a fixed KK, that the set of keys 
of the form KK O) h(C) consists of three disjoint subsets S1, $2, and $3, where S1 
denotes the keys resulting from all 64-bit C, $2 denotes the keys resulting from all 
128-bit C, and $3 denotes the keys resulting from all greater than 128-bit C. This 
prevents a form of cheating wherein the CVD algorithm is tricked into decrypting 
an encrypted key e~r~(c)(K ) by using a false control vector. To illustrate this, ignore 
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the extension field, and let C 1 represent a control vector greater than 128 bits and 
e*r~htCl~(K) an encrypted key produced from KK, K, and C 1. Instead of presenting 
e*r~htcl~(K) and C1 to the CVD algorithm, errehtclj(K) and h(C1) are presented. 
That is, we cheat by claiming that h(C1) is a 128-bit control vector. Since, in that 
case, h[h(C 1)] is just equal to h(C 1), the CVD algorithm decrypts e*r~htc~(K) with 
the key KK ~ h(C1) to recover K. 

Hashing function h accomplishes two important design objectives. First, it 
handles both short and long control vectors, thus ensuring that a key-management 
scheme based on the control vector concept is open-ended. Second, the processing 
overhead to handle short control vectors (64 and 128 bits) is minimized so as to 
have minimal impact on the key management. A 128-bit control vector is probably 
more than sufficient to handle the key-usage control requirements of most current 
key-management systems. 

3.4. Modification Detection Code 

Modification Detection Codes (MDCs) and Message Authentication Codes (MACs) 
are nonsecret cryptographic variables of fixed, relatively short, length used to 
authenticate messages or plaintext of arbitrary, much longer, length. However, 
unlike the MAC which is calculated with a secret key, the MDC is calculated with 
a public one-way function. Thus, MDCs can be used advantageously in places where 
it is impractical to share a secret key. More efficient digital-signature procedures 
can be realized by signing MDCs calculated on messages rather than signing the 
messages themselves. The process of loading and executing programs within a 
secure memory can be improved by storing a list of authorized MDCs within the 
secure boundary of the cryptographic hardware. When a program is loaded, an 
MDC is calculated on the program and compared for equality against a specified 
entry in the MDC list. When applied to control vectors, MDCs permit long control 
vectors to be implemented with a cryptographic algorithm having relatively short 
fixed-length keys. 

A function for calculating 128-bit MDC values, called the MDC-2 algorithm [22], 
is illustrated in Fig. 11. (MDCs are also discussed by Meyer and Schilling [23].) 
The MDC-2 algorithm is so-named because two DEA encryptions are performed 
for each 64-bit block of input plaintext processed by the algorithm. In Fig. 11 K 1 
and L1 are two 64-bit nonsecret constant keys. They are used only to process the 
first 64-bit block of plaintext, Y1. Thereafter, input values K2, K3 . . . .  , Kn are 
derived from output values (A1, D1), (A2, D2) . . . . .  ( A n -  1, D n -  1), and input 
values L2, L3 . . . . .  Ln are derived from output values (C1, B1), (C2, B2) . . . . .  
(Cn - 1, Bn - 1). That is, the outputs of each iteration are fed back, modified 
slightly, and used as the keys at the next iteration. The 32-bit swapping function 
merely replaces Bi with Di and Di with Bi. 

The MDC-2 algorithm processes data in multiples of 64 bits, with a 128-bit 
minimum. No padding is performed by the algorithm, although such padding could 
be performed as a service by either hardware or software. When padding is required, 
a padding algorithm f should be used that is guaranteed not to produce synonyms. 
That is, if Y and Y' are two different data inputs, the padded value of Y must not 
equal the padded value of Y', or mathematically speaking, Y :~ Y' guarantees that 



Key Processing with Control Vectors 

Ki 

Yi 

iP 

Yi 

Li P ~  

Ci Di I 

32-8it Swapping Function 

Input Y consists of 64-bit blocks YI, 
Y2, . . . ,  Yn, where n must be �9 1. 

Output MDC := concatenation of An, Dn, Cn, 
and Bn. 

For i = 1, K1 and L1 are defined: 
KI := X'5252525252525252' 
LI := X'2525252525252525' 

For i = 
Ki := 

Li := 

2 , . . . ,n ,  Ki and Li are defined: 
concatenation of Ai-1 and Di-1 
except bits I and 2 are set equal 
to B'IO'. 
concatenation of Ci-1 and Bi-1 
except bits I and 2 are set equal 
to B'01'. 

Bits are numbered O, 1, . . . ,  etc. from 
most significant to least significant. 

Yi, Ki, and Li are 64-bit quantities. 
Ai, Bi, Ci and Di are 32-bit quantities. 

129 

Fig. 11. MDC-2 algorithm. 

f(Y) ~ f(Y'). A padding algorithm satisfying this requirement is given below. The 
method that requires the input to consist of a whole number of bytes is based on a 
padding rule described in ANSI X9.23 [24]. (For convenience, the rule is described 
in terms of bytes not bits.) If the data length is less than 8 bytes, pad bytes are added 
to make the data length 16. If the data length is 8 or more bytes, pad bytes are added 
to make the data length a multiple of 8 bytes. Padding is done even if the current 
data length is a multiple of 8,bytes. All pad bytes except the last pad byte contain 
a value of X'FF.' The last pad byte is a pad count (in hexadecimal) of the total 
number of pad bytes, including the pad byte containing the pad count. 

To illustrate the problem of synonyms, suppose that the above padding rule is 
followed, except that padding is not performed when the data length is already a 
multiple of 8 bytes. Thus, an input Y equal to X ' F F F F F F F F F F F F F F F F F F F F  
FFFFFFFFFF01 '  is not padded, since its length is already a multiple of 8 bytes. 
But an input Y' equal to X ' F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F '  is 
padded with X'01' to produce a value X ' F F F F F F F F F F F F F F F F F F F F F F F F F  
FFFFF01' equal to Y. Thus, inputs Y and Y' produce the same MDC. 

An MDC-4 algorithm requiring four DEA encryptions per 64-bit block of input 
has also been designed [22], but its details are not discussed here. 

3.5. Security of the CVE and CVD Algorithms 

The method of encryption and decryption with derived keys of the form KK ~ H 
provides an effective means to couple K and C, since given e*K.H(K) and C, where 
h(C) = H, there is no apparent computationally efficient means to find alternative 
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values of e*r~u(K) and C', where h(C') = H', that give rise to the same recovered 
value of K. There is also a precedent for using derived keys for key-management 
purposes. The IBM and ANSI key-management schemes mentioned in the back- 
ground section of this article each make use of derived keys produced as the 
Exclusive-OR product of a secret key and a nonsecret cryptographic variable. In 
the IBM key-management scheme, the required nonsecret cryptographic variable 
is formed from a 64-bit variant mask v. In the ANSI key-management scheme, the 
key-offset process makes use of a nonsecret cryptographic variable formed from a 
56-bit counter CTR. 

It is noteworthy that the CVE and CVD algorithms are such that the leftmost 64 
bits ofKK ~ H may accidently equal the rightmost 64 bits ofKK ~ H, even though 
the leftmost 64 bits of KK do not equal the rightmost 64 bits of KK. However, the 
probability of such a random event is about equal to 1/256 (that is, no better than 
guessing K). It does not appear that an adversary can gain a practical advantage 
from such a property, even using a direct-search or trial-and-error method by 
holding KK constant and varying C to produce different KK ~ H. Methods of 
exhaustive search do not appear to be improved, nor does it appear that we can 
detect when the leftmost 64 bits of KK O) H equal the rightmost 64 bits of KK ~9 H, 
since K remains encrypted and has no distinguishing feature or property that would 
signal an adversary that such a state has been reached. To prevent the leftmost 64 
bits of KK O) H from ever equaling the rightmost 64 bits, the CVE and CVD 
algorithms could set a bit, say bit i, in the leftmost 64 bits of KK ~) H to B'0' and 
could set the same bit i in the rightmost 64 bits to B'I.' In that case, bit i in the 64-bit 
control vector and bits i and i + 64 in the 128-bit control vector would be specified 
in the architecture as reserved bits (that is, unused for key management). However, 
the extra computation necessary to avoid this situation does not seem to be justified. 

The CVD algorithm is such that a would-be adversary can cause a spurious key, 
K', to be recovered within the cryptographic hardware. This recovery is done by 
replacing input e*K~H(K) with an arbitrary value, designated X, not equal to 
e*K~n(K), that is, by specifying inputs C, KK, and X to the CVD algorithm instead 
of inputs C, KK, and eTcx~x(K). However, a good key-management design will 
ensure that such spurious keys are of no beneficial use to a would-be adversary. 
More is said about spurious keys in Section 5. 

4. Key Generation and Distribution 

To make effective use of the control vector, the key-management scheme must 
provide a generating function G for the generation of keys, as illustrated in Fig. 12. 

+ * Generating function G produces outputs ekeyl~nl(K) and ekey2,H2(K) from an 
internally generated random key K and from input values C 1, C2, key 1, and key2. 
C1 and C2 are control vectors, and keyl and key2 are 128-bit keys specified by the 
key management. In an actual implementation, keyl and key2 might represent 
master keys of the generating device i, key-encrypting keys shared between the 
generating device i and designated receiving device j, key-encrypting keys shared 
between two designated receiving devicesj and k, or some combination thereof. The 
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values H 1 and H2, in the expressions e*erl ell1 (K) and eker2~lt2(K), a r e  hash values 
calculated within function G from the input control vectors C 1 and C2, respectively. 

The first output ekerleH~(K) is produced by operating on inputs keyl, K, and 
, C1 with encryption algorithm CVE. Likewise, the second output ek,r2en2(K) is 

produced by operating on inputs key2, K, and C2 with encryption algorithm CVE. 
Generating function G also validates (C 1, C2) to ensure that both control vectors 
are consistent with and conform to the architectural specification (that is, C1 
and C2 represent a valid pair permitted by the key management). This valida- 
tion is called control-vector enforcement or control-vector checking. The outputs 
e*erlet~l(K) and eker2en2(K) are produced only after (C1, C2) has been validated; 
otherwise execution of generating function G is aborted. The valid control vector 
pairs (C 1, C2) are just those arrived at during the key-management design process. 

The key usage attributes in C1 and C2 might be equal or different. For example, 
C 1 could grant K the right to generate MACs, whereas C2 could grant K only the 
right to verify MACs. Thus, one using device can generate MACs, whereas a second 
using device can only verify MACs. 

Generating function G, illustrated in Fig. 12, can be used to distribute keys 
in a variety of key-distribution environments. In a peer-to-peer environment, key 
distribution from one device to another, for example, device i to device j, is handled 
by specifying inputs (KMi, C1) and (KKij, C2) to function G. That is, master 
key KMi of device i is specified in place of key 1 and key-encrypting key KKij 
(installed at devices i and j) is specified in place of key2. The encrypted key 
outputs are therefore e~M~eH~(K) and * eKroen2(K), which are stored as key tokens 
(e~M~enl(K), C1) and (e~Kuen2(K), C2), respectively. Key token (e*Mi.ul(K), C1) 

, is stored at device i and key token (erKueu2(K), C2) is transmitted in a key- 
distribution channel to device j. 

At device j, an import function I is executed to re-encipher errqen2(K ) to the 
form * eKMjen2(K), as illustrated in Fig. 13, where KMj is the master key of device 
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Fig. 13. Key import with import function I. 

j. Import function I consists of two steps: 

(1) execution of the CVD algorithm to decrypt e~xu.n2(K) with KKij and C2 to 
recover K and 

(2) execution of the CVE algorithm to encrypt K with KMj and C2 to produce 
e*Mj~H2(K). 

The key token (e*Mj~2(K), C2) is stored at devicej. 
The key tokens (e*M~HI(K), C1) and (e*Mj~H2(K), C2) are now of a form to be 

processed by the cryptographic hardware at devices i and j, respectively. 
Of course, the processes of key generation and key import are a bit more 

complicated than represented here, since key-encrypting keys are encrypted under 
the master key and stored in a key data set. The only key stored in clear form in 
the cryptographic hardware is the master key. Thus, before KKij can be processed 
by import function I or by generating function G, it must be decrypted. This extra 
level of detail is omitted from the present discussion. 

The description of key generation and key distribution illustrates several proper- 
ties of key handling using the control vector. The usage of a key is determined by 
its creator, where one encrypted copy of the key may have one usage and another 
encrypted copy of the key may have another usage. During key distribution, keys 
and control vectors may be translated from encryption with one key to encryption 
with another key, for example, from KKij and KMj using import function I. But 
the process is such that keys and control vectors remain linked or coupled together 
so that we cannot replace the control vector of one key with that of another. 

To control key usage effectively, we must link the usage of a key to usage 
information encoded in the control vector. A method for accomplishing this link is 
discussed in the following section. 

5. Controlling Key Usage 

The main features of key-usage control can be conveniently illustrated with a 
toy, or example, system. Consider a cryptographic system implementing a set of 
cryptographic instructions I1, 12, I3, and 14, where I1 and 12 each have one 
encrypted key input and 13 and I4 each have two encrypted key inputs. For 
convenience, the six encrypted key inputs are designated P 1, P2 . . . . .  P6. The re- 
lationship among the instructions and the encrypted key inputs is shown in Fig. 14. 

Within the toy system, every generated key can be used or processed in up to six 
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Fig. 14. Instructions and encrypted key inputs. 

ways, that is, as P1 in I1, as P2 in 12, as P3 or P4 in 13, and as P5 or P6 in 14. To 
control key processing adequately, six key-usage fields U 1-U6 are specified within 
the control vector, as shown in Fig. 15. 

Each Uj (forj = 1 . . . . .  6) is defined as follows: 

Uj = 1: the key associated with this control vector can be processed as input 
parameter Pj. 

Uj = 0: the key associated with this control vector cannot be processed as input 
parameter Pj. 

Thus, the natural one-to-one correspondence between the key parameters and the 
key-usage fields designed within the control vector enables the key management 
conveniently to control how a key is used on the basis of where the key is used. 

As a notational convenience, let (ul ,  u2, u3, u4, uS, u6) represent the encoding 
of the usage fields U1-U6. The remainder of the bits of the toy system in C are 
spares, and thus are ignored by the cryptographic hardware. For example, the 
encoding (100000) permits K to be processed as input key parameter P1 in 
cryptographic instruction I 1. The encoding (110000> permits K to be processed 
either as input key parameter P 1 in cryptographic instruction 11 or as input key 
parameter P2 in instruction 12. 

When an instruction has two or more execution modes controlled by an input 
mode parameter, the assignment of input key parameters can be made on the basis 
of individual instruction modes. Thus, better granularity in key-usage control is 
achieved. 

When encrypted keys and control vectors are specified as inputs to a crypto- 
graphic instruction, each control vector is checked to ensure that the requested use 
of the key is permitted, as illustrated in Fig. 16. That is, control-vector checking 
ensures that the key usage implied by the specification of a key as a particular input 
parameter Pj in a particular instruction or instruction mode Ik, is permitted by 
the control vector. If checking succeeds, the key-recovery process is enabled and 
processing continues; otherwise instruction processing is aborted. The key-recovery 
process decrypts the input encrypted keys. Where necessary, the master key, KM, 
is input to the process, thus permitting keys encrypted under KM to be decrypted 

10'1021031 ~ 05)001 I 
Fig. 15. Control vector layout. 
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using the CVD algorithm previously described in Fig. 9. Thereafter, the decrypted 
keys as well as additional input information are processed by the cryptographic 
instruction to produce one or more outputs. 

If we cheat by specifying e*uecl(K ) and C2 instead of e*u~cl(K) and C 1 (that 
is, a false control vector C2 is specified instead of C 1), one of two things will happen. 
If control-vector checking fails, the instruction is aborted. If control-vector checking 
succeeds, the key-recovery process will recover a spurious key K' ~ K. As men- 
tioned several times previously, it is the task of the key-management scheme to 
ensure that such spurious keys are of no beneficial use to a would-be adversary. In 
practice, it is rather easy to ensure, since cryptographic applications generally 
involve two communicating parties who must each possess the same cryptographic 
key. Thus, for practical purposes, one communicating party cannot cheat on the 
other, since the keys recovered within the cryptographic hardware in that case are 
K and K' (that is, the first device has K and the second device has K', or vice versa). 

Instead of a control-vector specification like the one shown at the beginning of 
this section, where a single control vector contains the usage attributes for all 
instructions, there may be multiple control vectors. A more intuitive control-vector 
specification is achieved if separate control vectors are included in the architecture 
for each broad category or type of key, such as data keys, key-handling keys, and 
PIN-handling keys. For example, I 1 and 12 might be data instructions and 13 and 
14 might be key-handling instructions, in which case it may be advantageous to 
group I1 and 12 to form a first set called Type 1 and to group 13 and 14 to form a 
second set called Type 2, as illustrated in Fig. 17. Control-vector checking is similar 
except for the additional type field that must be checked. 

The reader will appreciate that a full discussion of the principles of control-vector 
design is beyond the scope of this introductory paper. However, broader and more 
detailed control-vector designs are possible, and have been developed. A key- 
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Fig. 17. Type 1 and Type 2 control-vector layouts. 

management based on one such control-vector design has been implemented within 
IBM's new Transaction Security System. 
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