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Abstract. In this paper we examine the development of a high-speed implementa- 
tion of a system to perform exponentiation in fields of the form GF(2”). For 
sufficiently large n, this device has applications in public-key cryptography. The 
selection of representation and observations on the structure of multiplication have 
led to the development of an architecture which is of low complexity and high 
speed. A VLSI implementation has being fabricated with measured throughput 
for exponentiation for cryptographic purposes of approximately 300 kilobits per 
second. 
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1. Introduction 

In 1976 Diffie and Hellman [l] put forth the notion of a public-key (or asymmetric- 
key) cryptosystem. In this system two separate and seemingly unrelated keys 
perform the encryption/decryption functions. In this way the encryption function 
(Ei for user i) can be put in the public domain without compromising the security 
of the system. To create such systems, a “trap-door” is planted in what is generally 
accepted as a hard mathematical problem, that is, the system is constructed in such 
a way that without the trap-door information, an attacker is faced with solving a 
hard mathematical problem in order to break the system. 

In the years that have followed, many public-key cryptosystems have been 
proposed (and many have been broken) [2]. Currently, there are two systems that 
are considered viable and have been implemented: 

(i) systems based on the difficulty of factoring the product of two large primes 
(commonly known as the RSA system after the inventors [3]), and 

(ii) systems based on the difficulty of finding logarithms in a finite field (commonly 
known as discrete exponentiation [ 11). 

In this study we do not discuss the strength of the two systems other than to observe 
that similar operations can be performed in either system and comparable security 

i Date received: March 15, 1990. Date revised: October 30, 1990. 
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can be obtained [4], [5]. Instead, we look at some properties of the discrete- 
exponentiation system which, when combined with recent discoveries in the 
structure of finite fields used, provide an architecture of low complexity and high 
speed. 

2. The Systems 

2.1. R S A  

The security of the RSA system is based on the difficulty of factoring the product 
of two large primes. In this system, user i forms ni as the product of two large primes 
pi and q~. The user then forms the public portion of his key E~ and the private portion 
D~ using the known factorization of n i. The operations of encryption and decryption 
involve exponentiation and reduction modulo ni. For example, the encipherment 
of a block M under user i's public key is 

C = M Et mod n i. 

To implement such a system in hardware, a number of problems arise. First, the 
modulus n must be on the order of 200 decimal digits (or more than 512 bits). Since 
each user selects a separate modulus, the implementation must be large enough to 
handle every user's modulus. In the current implementations, this leads to a tradeoff 
between speed of computation (throughput) and complexity of the device. 

A summary of the current implementations of such devices can be found in [6]. 
Single-chip implementations exist and operate at speeds of up to 10 kbps [7]. 

2.2. Discrete Exponentiation 

A method of key exchange based on discrete exponentiation was proposed by Diffie 
and Hellman [1]. This system involved two users (A and B) exchanging a key over 
an open channel. The process is based on exponentiation and reduction modulo p, 
a large prime. Here, users agree upon a common modulus p and a common primitive 
element ~. 

To exchange a key, users A and B choose random elements a and b, respectively, 
in the range [1, p - 1]. They can calculate and exchange the values ~a rood p and 
~ mod p, respectively. User A, upon receiving the calculation from user B, forms 
(~b)a mod p which forms the shared secret (user B performs a similar calculation). 
Discrete exponentiation can also be used to perform public-key data exchange and 
digital signatures as shown by E1Gamal [8]. 

We can make the following observations about the above system: 

(i) Since the system uses a common modulus p, hardware can be designed to 
take advantage of the fixed modulus. 

(ii) While we have described the implementation in terms of integers, fields of 
the form GF(2") can be used. 

(iii) Alternative representations such as normal basis representation can be used. 
(iv) Since the same exponent is used during the encryption/decryption process, 

it need not be of full Hamming weight. That is, exponentiation requires 
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(d - 1) multiplications where d is the Hamming weight of the exponent. If 
we limit the Hamming weight, we can improve the throughput of the system 
(a similar procedure has been used in implementations of the RSA system 
where the encryption exponent E i is chosen to be small and decryption takes 
advantage of the known factorization of the modulus I-9]). If this is done, 

n)  large enough to prevent care must be taken so that d is exhaustive attacks. 

3. Normal-Basis Representation 

The architecture discussed here is based on a normal-basis representation of GF(2"). 
An (ordered) basis N of K = GF(2") (viewed as a vector space over GF(2)) is said 
to be normal  if it is of the form fl, f12, fl22, . . . .  f12--~ for some element fl of K. The 
element fl is said to be a generator of the normal basis N. It is well known (see [10]) 
that GF(2") contains such a normal basis for every n > 1. It is of interest to point 
out that it has been shown [11] that there exists a normal basis in GF(2") with the 
additional property that a generator of the normal basis is also a primitive element 
of GF(2"), that is, a generator of the multiplicative group of the field. 

For  a ~ GF(2"), let (ao, al . . . . .  a,_l) be the coordinate vector of a relative to the 
normal basis N. Since X 2"  = X for every x e GF(2"), it follows that f l  2'~ = fl" Since 
the operation of squaring is a linear operator in fields of characteristic 2, then a 2 

has coordinate vector (a,-1, ao, al . . . . .  an_2) so that squaring is simply a cyclic shift 
of the vector representation of a. In a hardware implementation, squaring an 
element takes one clock cycle and so is negligible. 

Let 
n - 1  

A = ~ aifl 2' 
i = 0  

and 

and let 

Now 

n - 1  

B = ~_, bifl 2' 
i = 0  

n - 1  

C =  A B =  ~, cifl 2'. 
i = 0  

n - 1  n - 1  

c = E E 
i=O j = O  

Since N is a basis, we can write 

n - 1  

2J E 
k = 0  

where ~(k) ~ GF(2). Substituting and solving for Ck yields --ij  

n - 1  n - 1  

= 2 0 aibj 
i = o  j = o  

(1) 
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For  convenience, we can write Ck as Ck(A , B). It is easily shown that Ck(h , B ) =  
co(A 2" ", B 2" k), thus, viewing Ck as a bilinear form in the N-coordinates of A and 
B, Ck is obtained from Co by applying a k-fold cyclic shift to the variables involved. 
(Note for later reference that after i cyclic shifts, coordinate position j contains 

au+t) modulo n') 

3.1. Examples of Multiplication in GF(2 s) 

Let K = GF(25) be viewed as the splitting field of f (x)  = x 5 + x 2 + 1, and suppose 
that f(ct) = 0. If we take fl = 0t s, then N = (fl, f12, f14, fla, i l l6) is a normal basis. 
Carrying out the above calculations yields 

ct = bi+4(at+4 + ai+3 + at+l + at) + bt+a(at+4 + at+2 + ai+l + at) 

+ bi+2(at+3 + ai) + bt+l(ai+4 + ai+3) + bi(ai+4 + at+3 + at+2). 

In this case, all subscripts are added modulo 5. In expanded form 

Co = b4(a4 + a3 + al + ao) + 

+ ba(a4 + a3) + bo(a4 + 

cl = bo(ao + a4 + a2 + al) + 

+ b2(ao + a4) + bl(ao + 

c2 = bl(al + ao + a3 + a2) W 

q- ba(al + ao) + b2(al -t- 

c 3 = b2(a 2 d- a 1 + a 4 + a3) d- 

-+- b4(a 2 W al) d- ba(a 2 q- 

c4 = bs(a3 + a2 + ao + a4) + 

+ bo(a3 + a2) + b,(a3 + 

b3(a4 + a2 + al + ao) + b2(a3 + ao) 

a3 + a2), 

b4(ao + a3 + a2 + al) + b3(a4 + al) 

a4 + a3), 

bo(al + a4 + a3 + a2) + b4(ao + a2) 

ao + a4), 

bl(a2 + ao + a4 + a3) + bo(al + a3) 

al + ao), 

b2(a3 + al + ao + a4) + bl(a2 + a4) 

a 2 -I- al). 

Thus, the same logic function working on successive rotations of A and B will 
produce all of the components of the product vector C. Massey and Omura [12] 
point out a structure which takes advantage of the symmetry in calculating the 
terms of the product vector C. This architecture combines all of the appropriate 
terms of A and B in one step to form the corresponding product term Ck. Each term 
of C is successively generated by shifting the A and B vectors. Thus C is calculated 
in n clock cycles. While this structure is much simpler than a general multiplier, the 
structure of the connections in the logic function is prohibitively large for any n 
useful for cryptographic purposes. 

We also note here that the choice of normal basis is important. For  a random 
choice of normal basis, the number of nonzero terms in the bilinear form of Co 
appears to be of the order (n2/2). Let C(N) denote the number of such terms in 
the bilinear form of Co relative to the normal basis N. It is shown in [16] that 
C(N) > 2n -- 1. If equality occurs, the basis N is referred to as an optimal normal 
basis. Not  every field contains an optimal normal basis, but when computing in a 
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field which does, there are advantages to choosing such a basis for the architecture 
discussed here. (The results in 1-16] have been generalized in 1-20].) 

4. A Regular Architecture for Normal-Basis Multiplication 

A close examination of the general nature of the above equations is necessary in 
order to produce an alternate architecture which is realizable for large values of n. 
The architecture developed in this section has the advantage that it is regular, that 
is, it can be implemented in VLSI technology as a linear series of more or less 
identical, interconnected cells. 

The equations in the above example suggest that it may be convenient to write 
equation (1) as 

n-- I  n - 1  

c k ~., bj Z qk 'a  = Ai j  i" 
j = O  i = 0  

By the cyclic relation amongst  the equations, this equation can be written as 

n - 1  n - 1  

Ck = ~, bj+k ~., 210'a,+k, 
j = 0  i = 0  

where subscripts are to be reduced modulo n. 
Let 

n--1 

"jFtk) = bj+k ~ ~(o),, 
"~ij ~i+k'~ 

i = 0  

where again, subscripts are reduced modulo n. Note that for fixed j and variable k, 
the functions F are related by the cyclic permutation of subscripts. Also 

n - 1  

Ck = ~_, FJ k), k = O, 1 . . . .  , n - 1 .  
j=o 

The functions F) k) are referred to as terms. Further, for nonnegative integers t, let 

n--1 

F)"(t)  = bj+k+ , 2 2~~ �9 
i = 0  

A set of terms X = {Fro k~ F~ k~ .~(k,-l)~ is said to be a transversal of the above �9 - . ~  "t n - 1  J 

set of bilinear forms if all of the ki are distinct, i = O, 1 . . . . .  n - 1, and if all of the 
residues mj = kj + j modulo n are also distinct. (The latter condition guarantees that 
all of the subscripts of the b's involved are distinct.) 

It is a trivial observation that 

so that 

f~k')(-- ki) = F(~ - j  

n - 1  

c o = ~., Fik ' ( -ki) .  
i = 0  

Let X be a transversal -fg?(kj)/n-1 t ' j  SI=O" Let A1, A 2 . . . .  , A n and B1, B2 . . . . .  Bn be cells 
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of cyclic shift registers A and B, respectively. 2 Define logic cells Ci, i = 0, 1, 2 . . . . .  
n - 1, as follows. 

In cell Ckj let there be a logical circuit which will compute  the expression 
n--1 

Tkj(t) = ~+kj(t) E 210'A--i+kj(t), 
i = 0  

where .4p(t) and/~q(t) are the contents  of  cells Ap and Bq of A and B, respectively, 
at t ime t. This cell also contains a s torage register Rk which can store previously 
calculated results and can add its contents  /~k to the value of Tk calculated 
above. (Here mult ipl icat ion represents the logical opera t ion  " A N D "  and addi t ion 
represents the logical opera t ion  "XOR.")  To  accomplish this physically, cell Ck must  
be connected to the cell  Bj+kj of B and t o  wj cells of A where wj is the number  of  
nonzero  coefficients in [~(o). i = 0, 1, n - 1}. i~--ij . . . .  , 

Since the ki are distinct, a cell Ci has been uniquely defined for i = 0, 2, . . . ,  n - 1. 
Fur ther ,  recall that  the mj are also distinct, where mj = j + kj, so each of the cells of  
B is connected to precisely one of the cells of C = Co, Cx, . . . ,  C,-x. In part icular,  
cell Bm~ is connected to cell Cm~-j. NOW, both  K = (ko, kl ,  . . . ,  k ,_l)  and M = 
(m o, m t . . . . .  m,_l)  are pe rmuta t ions  of(0, 1 . . . . .  n - 1). Inver t  the permuta t ions  K 
and M by defining j(i) to be the subscript  such that  kj( 0 = i and k(i) to be that  
subscript  such that  ink( o = i, i = 0, 1, 2 . . . . .  n -- 1. In  each case, cell B~ is connected 
to cell C,~,,)-k(O. This is i l lustrated in Fig. l(a). (For  the sake of simplicity, the 
connect ions between the cells of A and corresponding cells of  C are omitted.) 

The  ne twork  is considered to opera te  as follows. The system is initialized by 
loading the values ai and bj in the respective cells of  A~ and Bj, respectively, and the 
registers R i of cells C i are loaded with zero for i = 0, 1 . . . . .  n - 1. At t ime t, for 
t = 0, 1 , . . . ,  n - 1, the term Tk(t) is calculated in cell Ck(t ) using the current  contents  
of the A and B registers. The  current  contents  of  R k are X O R ' e d  with Tk(t) and the 
results are stored in register Rk+ 1 modn (see Fig. l(b)). 

It  is claimed that  at the end of t ime t = n - 1, the register Rk contains Ck, 
k = 0, 1, 2, . . . ,  n ~- 1. First  consider the contents  of  register Ro at  the end of t ime 
n - 1. By the functioning of the network,  this register contains  ~'_--~ T,(t) but  

n - 1  n - 1  

y. T,(t)= y, 
t = 0  t = 0  

since kj(k) = t 
n - 1  n - 1  

= Z /~(,)+kl,t,(t) E 21~ 
t = 0  i = 0  

(and recalling that  at  t ime t, A v and By contain  a~_ t and by-t, respectively) 

n - 1  n - 1  

= E bj(t,+kj,,,-t E 2(0) a i , j(t)  i+kj(t)--t  
t = 0  i = 0  

n - 1  n--1 

Z bj ( , )Z  (o) a. = 2i,jlt) 
t = O  i = 0  

2 An alternative derrivation of the above analysis is presented in Appendix A. 
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(a) Register organization. (h) Cell structure. 

TO 
N EXT 
CELL 

(again since ki(,) = t) 
n-1 n-I 

Air ai  = Co, 
t=O i=0 

Similarly, register R~ contains ~t"=-~ T~+t(t) where s + t is to be reduced modulo  n. 
As above, this reduces to c~. 

For odd n such transversals exist. The set X 1 = {F~-2~ i = O, 1 . . . . .  n - l}  or 
X 2 = (F/t~ i = O, 1 . . . .  , n - 1} where calculations are performed modulo  n, are 
clearly transversals)  For even n, such a transversal does not  exist. However,  the 
above  architecture can be extended to handle the situation n = 2st by partitioning 
the registers A and B into blocks of  size 2 s, and using an extension of the previous 
architecture (see [15]). For cryptographic purposes, the important case is that in 

3 We thank the anonymous reviewer for observing that in a flat linear layout of cells, the transversal 
-j/2, with B and C stepped in the reverse direction, produces an implementation without crossover of 
wires. In practice, layouts use a serpentine structure for implementing long registers and thus this may 
or may not have impact on the final array. 
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which n is odd, and particularly where n is a large prime, since GF(2 ") has no proper 
subfields precisely under the condition that n be prime. For this reason we consider 
only this case in detail. 

Part of the complexity of implementing arises from the interconnection between 
the A register and the register C containing the cells C i. This can be reduced by 
appropriate choice of the basis, using an optimal normal basis when possible (see 
Section 5 on fanout for details). Another way of reducing the complexity is based 
on the observation that the bilinear form for C, is symmetric, that is, the term aibj 
occurs if and only if the term biaj appears, and there is only one self-symmetric term 
(namely as_tbs_l). Thus if the logic of the above architecture is implemented to 
accumulate exactly one of each of the symmetric pairs aibj and bia j (say aibi), then 
by interchanging the initial contents of the registers A and B and rerunning the logic 
in a "second pass" to accumulate the terms b~aj to the current result, the value cs 
will again occur in registers R~, provided care is taken to suppress the term a~-I b~_l 
on one of the passes (i.e., so that it appears only once). By using this two-pass 
method, the number of connecting lines between the A and the C registers is 
essentially halved. 

5. Fanout 

As mentioned briefly in the previous section, a major concern for the design of a 
hardware circuit to implement our regular architecture is the interconnection 
required between registers A, B, and C. In particular, the connections between the 
A and C registers have not yet been addressed. What we show in this section is that 
a normal basis can be selected which requires at most four connections from any A 
register cell to C register ceils. In order to do this we need to describe several 
constructions for optimal normal bases. 

Let N be a normal basis and recall from Section 3 that C(N) is the number of 
nonzero terms in the bilinear form for Ck. If C(N) = 2n -- 1, the basis is called 
optimal. The following theorem is proven in [16]. 

Theorem 5.1. 

(a) I f  2 is a primitive element in GF(n + 1), then GF(2 n) has an optimal normal 
basis. 

(b) I f  2 is a primitive element in GF(2n + 1), then GF(2 n) has an optimal normal 
basis. 

(c) I f  n is odd and 2 generates the quadratic residues in GF(2n + I), then GF(2 ~) 
has an optimal normal basis. 

We describe a construction for an optimal normal basis for each of the cases in the 
theorem. 

(a) Let fl be a primitive (n + 1)th root of unity in GF(2n). Then 

N =  {fl2':O <_ i <_ n--  1} 

can be shown [12] to be an optimal normal basis. 
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(b), (c) Let  fl be a primit ive (2n + 1)th roo t  of unity in GF(22n). Let  ), = fl + fl-1. 
Then  

N = {),2,: 0 <  i < n -  1} 

is an op t imal  no rma l  basis in GF(2").  
An op t imal  no rma l  basis given by (a) is called a type I basis and one given by 

either (b) or  (c) is called a type I I  basis. 
Recall f rom Section 4 that  

tz~k) = bj+k ~ ~o) a 
~ j "~ i j  i + k "  

Define 
,~(k) : {ai+k: 0 < i < n -- 1, 2!9) 1}. 

Fo r  each ai, 0 _< i _< n - 1, let 

n, = I{kj: ai ~ S) kj), 0 < j < n - 1}1. 

Define the fanout for the t ransversal  X to be 

f ( X )  = max{ni: 0 < i < n - 1}. 

The  fanout  for a t ransversal  X gives us an upper  bound  on the number  of  connec- 
tions between any  cell of  the A register and the C register. Since power  consumpt ion  
for a VLSI  device is related to the n u m b e r  of  connect ions ("fanout") of any cell, it 
is impor t an t  to select t ransversals  which minimize this value. The  purpose  of this 
section is to prove  that  a t ransversal  can be selected for type I and I I  bases which 
has a fanout  of at  mos t  four. We only prove  this result for the bases given in (b) 
above.  Any op t imal  no rma l  basis has at mos t  two a 's  in any  grouping of terms. T o  
determine the biaj terms in the bil inear form for Co in the basis (b) above,  it can be 
shown that,  for 0 < i, j < n - 1, 

2to~ = 1 iff i andj  satisfy one of the four con#ruences 2 i + 2 j = + 1 (mod 2n + 1) i j  _ _ 

(see [16"1). 
As an example,  we can determine c o for G F ( 2  5) to be 

Co = boa1 + blao + bla3 + b2aa + b2a4 + b3al + baa2 + b4a2 + b4a4. 

In order  to simplify notat ion,  we only consider subscripts. To  this end let 

W = {(i,j): bia i is a term of Co}. 

Clearly, i f( i , j )  e W, then (j, i) e W. Also, (0, 1) a lways belongs to W. It  is convenient  
to par t i t ion W into sets W~ and W2 such that  if (i,j) e I4'1, then (j, i) e I412 for i # j  
and (n - 1, n - 1) e I411. Let  

W1 = {(Xo, xl): Xo = 0} to {(xi, Xi+l): 1 < i < n - 2, xi+l # x . }  

to {(x._ D x.-1):  x .-1 = n - 1 # x._2}. 

We first p rove  tha t  

{ x i : 0 < i < n - -  1 } = { i : 0 < i < n - - 1 } .  (2) 

Since 2 is a genera tor  in GF(2n  + 1) then for an a e GF(2n  + 1), a ~ 0, there exists 
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x, 0 < x < 2n -- 1, such that  ct = 2 x. We use the nota t ion 

x ---- log 2 ~. 

For  our  purposes it is impor tant  to observe that 

log2 ~t = log 2 ( -  ~) (mod n). 

In order  to prove (2), we must  first prove that  

x i =- log 2 (i + i) (mod n), 0 < i < n - 2. 

Clearly, Xo - log2 1 (mod n) and xl  - log2 2 (mod n). Assume that  

x i  - log2 (i + l) (mod n) 

for i _< k. Consider  Xk+l.  Recall that  x i, xi+ 1 satisfy one of 

(mod 2n + 1) 2 x' _ 2 xi+l ~ + 1 

and that  xi+l r x~-i (mod n). 
N o w  

xk = log2 (k + 1) + In, 

and 
2 xk§ -- _+ 1 - 2tn(1 + k) (mod 2n + 1) 

- + 1 - ( - 1 ) t ( 1 + k )  ( m o d 2 n + l ) .  

Hence 

I f / =  0, then 

where l = 0 o r l  

Xk+l = log2 (__ 1 -- (--  1)'(1 + k)). 

Xk+l = l o g 2 ( _  1 - 1 - k) 

implying Xk+ 1 ~ log 2 (k + 2) (mod n) for otherwise Xk+ 1 ~ Xk_ 1 (mod n). If l = 1, 
then 

Xk+ 1 = log 2 (_+ 1 + 1 + k) 

= l o g  2 ( k + 2 )  (modn)  

for otherwise Xk+ 1 --  XR_ 1 (mod n). 
We conclude that  

x i - log 2 (i + 1) (mod n) for 0 _< i _< n - 2. 

Suppose x~ = x j  for some i, j, 0 < i, j < n - 2. Then 

log2 (i + 1) - log2 ( j  + l) - 0 (mod n) 

or  

which implies 

i +  1"] 
log2 \ j ~ , / -  0 (mod n) 

(i+l  (i+1  
j ~ / /  = 1 or  \ j ~  ] = - -  1. 
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In the former case i = j and in the latter i + j = 2n - 1, which is impossible given 
the range o f / a n d j .  Similarly, it can be shown that  x~ ~ x,-1 for any i, 0 < i < n - 2. 
Finally, note that  2n = - 1 (mod 2n + 1) and so log 2 n = n - 1. Therefore, x i = 
log2 (i + 1), 0 < i < n - 1, and the p roof  is complete. 

We claim that  the transversal 

x = {FJX~:O <_j < n - 1 }  

has a fanout  of  at most  four. To prove this let 

Yi = xi + xi+~, 0 < i < n -  2, 
and 

Yn-1 = 2Xn-1, 

where for the time being we do not  reduce modulo  n. N o w  

Yi = X'i + Xi+l 

= l o g  2 ( i + l ) + l o g  2 ( i + 2 )  ( m o d 2 n + l )  

- log2 (i + 1)(i + 2). 

For  what  values of  i and j does the relation 

y i = y j ,  O < i < n - 2 ,  

hold? If 
log2 (i + 1)(i + 2) - log2 ( j  + 1)(j + 2) 

then 

implying that  

(mod n), 

(i + 1)(i + 2) - ( j  + 1)(j + 2) (mod 2n + 1) 

(i - j ) ( i  + j  + 3) -= 0 (mod 2n + 1) 

o r  

then 
log2(i + 1)(i + 2) = 2(n - 1) (mod n) 

(i + 1)(i + 2) - 22t"-1)(-- 1)' (mod 2n + 1) 

for some 1 ~ {0, 1}. If  I = 0, then we have 

4i 2 +  1 2 / + 9 = 0  ( m o d 2 n +  1), 

implying i = n - 1 which is again impossible. Therefore no integer in the range 
[0, n - 1] can occur  more  than twice as yi values, 0 _< i < n - 1. 

and hence 
i = j  or i + j = 2 n - 2 .  

Because of  the range of  i a n d j  we conclude that  the yi's are distinct modulo  2n + 1. 
If  we reduce modulo  n, then no integer in the range I-0, n - 1] can occur  more  than 
twice as Yi values, 0 < i < n - 2. 

Finally, if 
Yi = Y,-x for some i, < i < n - 2, 
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Since W 2 has no repeated values, it gives rise to y[s where no integer in the range 
[0, n - 1] occurs more than twice. It now follows that the fanout for x is at most 
four. 

6. Limited Hamming Weight Exponents 

On average, an exponentiation will require n/2 multiplications for a randomly 
chosen exponent. To increase the speed of the system and to upper bound the time 
taken for exponentiation, a method of limiting the Hamming  weight (d) of the 
exponent was developed. 

Let 
y=~K 

represent the exponentiation process. We can represent the exponent K in its binary 
form as 

K = ko 2~ + k121k323 + .-- + kn_12 n-l, k i e  {0, 1}. 

The Hamming  weight of K represents the number of coefficients k i = 1. 
Consider a p-bit register which will be used as a vector to map its contents into 

an exponent of the desired weight. This is done by dividing the register's contents 
into segments of size l = [log2 n]. The l bits are used as an index to indicate that 
the corresponding coefficient, ky(x) is 1 in the binary representation of the actual 
exponent (let f ( , )  be the integer corresponding to the bit pattern). If d such segments 
are used, an exponent of Hamming  weight ofd is realized. 4 (For example, ifn = 593, 
we divide the exponent register into I = 9 bit segments, each segment pointing to a 
1 in the actual exponent.) Thus 

K = a(K'), 

where K'  represents the contents of the exponent register and g(K') represents the 
mapping of those contents into the actual exponent as mentioned above. 

As an example, consider the case of a 20 MHz  clock, n = 1000 bits and d = 150 
bits in the exponent. This would require about 6.5 ms for an exponentiation or 
would be able to support  a throughput of 150 kbps. 

7. A Conventional Cryptographic System Based on 
Discrete Exponentiation 

Once a key has been exchanged using public-key techniques, little is gained by 
continued use of the public-key system. In fact, a penalty is paid in terms of 
transmission bandwidth since 2n bits are required to pass n bits of information using 
the E1Gamal scheme. To avoid this, an initial key K o can be passed using the 
public-key technique, then the message can be encrypted in the following way. 
Assume the message ~ '  is divided into n-bit blocks to form {M1, M2 . . . . .  Mm}. To 

4 The Hamming weight is upper bounded by d. Collisions of the binary vectors can occur and reduce 
the actual Hamming weight of the exponent but, for typical values of d, this probability is not high. 
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encrypt message block M~, the corresponding ciphertext is 

C~ = o:r,. Mi, 
where 

and 
K ,  = g(K',) 

K'~ = v(K~_I), 

where v( , )  represents the result of a one position permutation of the contents of 
the exponent register. In our implementation, the various cells of the exponent 
register are connected using a primitive connection polynomial to form a Maximal 
Length Linear Feedback Shift Register (MLLFSR). In this way, a new exponent K i 
is created for each block in the message. 

To decrypt a block, we form 

M i = (a-1)r,. C i, 

where again, K~ = g(K'i). This requires the initial calculation of ~-1 which can then 
be preprogrammed into the device (see [13] for details). A number of advantages 
are inherent in this system: first, encryption and decryption are symmetric in terms 
of the number of operations (time) and thus it can be used for encryption of real-time 
information (note, this is not true in most public-key cryptosystems). Secondly, 
repeated blocks will be enciphered under different exponents thus eliminating the 
weakness inherent in Electronic Codebook (ECB) mode of ciphers. In addition, the 
individual blocks (M~) of the message are linked by the sequence of K'~ and any 
addition, deletion, or reordering of blocks will be detectable. 5 

7.1. A Technique for  Generating Message Authentication Codes 

Many communication applications require authentication without secrecy. To 
ensure the integrity of data transmitted across a network, some means of detecting 
changes (either intentional or due to noise) must be included in the message. The 
codes used to perform this operation are Message Authentication Codes (MAC). 
For cryptographic purposes, the algorithm used to generate the MAC must have 
the following properties: 

(i) The MAC-generation algorithm should be independent of the message 
length. 

(ii) Any change such as additions, deletions, or modifications of as little as one 
message bit should produce an unpredictable change in about 50% of the 
MAC bits. 

(iii) It should be computationally infeasible to generate deterministically two 
messages with the same MAC. 

The properties listed above are satisfied by a one-way hashing function, that is, a 
function that forms a condensed, fixed-sized image of the message and is easy to 

s The price paid for this is the requirement to include a method for re-establishing cryptographic 
synchronization in the event of loss. A protocol to handle this situation is described in [18]. 
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calculate in the forward direction but computationally infeasible to invert. For  
sufficiently large fields, discrete exponentiation is a one-way function. 

With this as our base, we now proceed to describe the functions which are used 
to combine the components of the message. As before, let K'  be the vector form of 
the exponent (for our implementation, the exponent register will be 256 bits in 
length) and let K = g(K') be the mapping of K'  into the actual exponent (this will 
be 593 bits in our implementation of GF(2593)). 

Again, let f ( . )  be the integer corresponding to the bit pattern .. Also, let J / b e  
the message to be authenticated and let Mi be the ith 593-bit block of the message. 
In this form 

= { M , ,  Ms . . . . .  M,,,}, 

where { �9 } represents the concatenation of components.  Now, K'  is initially set to 
a fixed (secret) value (Initialization Vector-- IV) ,  K'~. The first block of ~ is 
processed as 

C1 = M~ (r'). 

This block is then cyclically added to K'  using the circuit shown in Fig. 2. 6 The 
result is that the qth bit of the next exponent Kii+l ) is calculated using the algorithm: 

carryin = 0 
for q from 0 to 592 

if q < 256 
K(~)' = (KI q)' C~ q) carryin) mod 2 i+1 �9 + + 

Set or Clear carryin 
end if 
if q > 256 

j = q mod 256 
Ku), ~k'(J)' + C~q) carryin) mod 2 i+1  ~ ~.J~i+l  q-  

Set of Clear carryin 
end if 

LI E~dPONENT 
REGISTER 

I IZ F:'56 b i t s  

P~ODIJCT 

REGISTER: 

5S3 bits 

1-E 

SUM 

Fig. 2. MAC generation structure. 

6 The 593-bit result C a is added to the 256-bit exponent K'~ in such a way that the bits of K' overlap 
in the calculation. 
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7.2. Security of MAC-Generation Algorithm 

How well does the algorithm described in the previous section meet the require- 
ments for an MAC generator? Two forms of operations are used in the algorithm 
described: discrete exponentiation and integer arithmetic. 

7.2.1. Property 1--Discrete Exponentiation. The model we use is that discrete 
exponentiation (i.e., Y = M x) produces a random mapping from M to Y in GF(2") 
for nonzero M, X and M, X # 1. Let M* be a message block which differs in exactly 
one bit position from M. Let Y* = (M*) x. Define HW[Y* - Y] to be the Hamming 
Weight of the difference between Y and Y*. For  our model HW[Y* - Y] is a 
random variable with mean n/2. Observations have shown that this model is 
appropriate for our system. Thus, any change in the message block will have the 
desired effect on the MAC generated within that block. 

7.2.2. Property 1A--Changing Exponents. Let x* be an exponent which differs in 
exactly one bit position from x. Using the previous model 

Y = M x, 

y*  = M x*. 

Our experience suggests that HW(Y - Y*) will again be a random variable with 
mean n/2. We note that in using the vector form of the exponent as described in 
Section 6, a single bit change in the exponent representation K'  will have the effect 
of changing two bits in the actual exponent K = g(K') except in the case where this 
single bit change produces g(K') = g(K'*). 7 

7.2.3. Property 2--Integer Addition. In this case we examine the effect of the 
integer addition of the result Ci and the current exponent Ki. Integer addition was 
chosen to allow carries to propagate through the exponent. From our observations, 
the distribution of carries and their propagation appears to be a random process. 
Thus the linkage of the exponent used for one message block to the next will have 
some randomness associated with it. a 

7.3. Security Summary of MAC-Generation Algorithm 

It is clear that the MAC-generation algorithm has the property of linking message 
blocks, that is, the MAC is dependent on all blocks of the message. From the 
properties of the elementary operations used, a single bit change in a message block 
will change the resultant block in about 50% of its bit places. This result will then 
be added to the current exponent K' i, and the carries introduced in the addition will 
randomly propagate through K'i+ 1 . 

Can an attacker deterministically generate a message Jr'* which produces the 
same MAC? 

7 This can only occur when a collision occurs in the vectors and the bit change maps into another 
collision. For the implementation discussed here, the probability of this occurring is extremely small. 

s A similar technique is presented in 1-19] by Rueppel. 
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7.3.1. Case 1--Substitution of a Single Block. To substitute a single block, the 
attacker must find M* such that 

(M*)O~r~) = (Mi)gr 

This seems at least as difficult as taking logarithms in GF(2"). 

7.3.2. Case 2--Substitution of Two or More Blocks. If the attacker could change 
or add two blocks (as in a meet-in-the-middle attack) such that, given K'i-1 and 
K'i+l, (M*) g~xp followed by 

(M*+I)o{K~:,) ~ K'i+ 2. 

Again, it appears that the attacker must have the ability to take logarithms over 
GF(2"). 

In the above section we have shown that the MAC-generation algorithm proposed 
achieves the desired properties for such a system. It is observed that the MAC- 
generation algorithm as implemented is also computationally efficient when imple- 
mented using the architecture for the VLSI device in normal bases. 

7.4. Past and Future Development 

In 1986 a prototype of the above system was created at the University of Waterloo 
using custom gate arrays to implement the multiplier architecture. The device was 
built for n = 593 bits on an 11 x 17 in. board. This bit size was chosen to be 
realizable using gate-array technology and still provide an acceptable level of 
security [4]. The measured throughput of the device was approximately 300 kbps 
using a 15 MHz clock rate and exponents with an average Hamming weight of 150. 
Development continued and in 1988 a VLSI implementation was designed using 
2# technology. This device requires less than 90,000 transistors which is far less 
complex than other implementations of public-key devices of this bit size. As more 
knowledge is gained in the structure of these systems, further development of even 
faster, more secure public-key cryptosystems will continue. 
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Appendix A 

The following derivation of the multiplier structure was suggested by one of the 
anonymous reviewers. Let k~, 0 < i < n, be some arbitrary constants. 

u.v= X bj+, X -,+,/- 
t=o \ j = o  i=o 
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As in the case described 
kj,/3 tX".-1 )(oL~ x j+kj~/_~i=O (i i+kjl" 

S b j+, E I 
j=O L t=O i 

"-I Fn~I b f n - l  ~ tO)a  ~ 2 k j - t  1 

r. 
j=o  L,=o . , j  a i + ~ j _ , j  ~. _] . 

in the body of the paper, we compute, for all j at position 
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