
J. Cryptology (1991) 3: 63-79
Journal of Cryptology
0 1991 International Association for
Cryptologic Research

An Implementation for a Fast Public-Key Cryptosysteml

G. B. Agnew, R. C. Mullin, I. M. Onyszchuk, and S. A. Vanstone
University of Waterloo,

Waterloo, Ontario, Canada

Abstract. In this paper we examine the development of a high-speed implementa-
tion of a system to perform exponentiation in fields of the form GF(2”). For
sufficiently large n, this device has applications in public-key cryptography. The
selection of representation and observations on the structure of multiplication have
led to the development of an architecture which is of low complexity and high
speed. A VLSI implementation has being fabricated with measured throughput
for exponentiation for cryptographic purposes of approximately 300 kilobits per
second.

Key words. Galois field, Normal basis, Multiplication, Exponentiation, Circuit
architecture.

1. Introduction

In 1976 Diffie and Hellman [l] put forth the notion of a public-key (or asymmetric-
key) cryptosystem. In this system two separate and seemingly unrelated keys
perform the encryption/decryption functions. In this way the encryption function
(Ei for user i) can be put in the public domain without compromising the security
of the system. To create such systems, a “trap-door” is planted in what is generally
accepted as a hard mathematical problem, that is, the system is constructed in such
a way that without the trap-door information, an attacker is faced with solving a
hard mathematical problem in order to break the system.

In the years that have followed, many public-key cryptosystems have been
proposed (and many have been broken) [2]. Currently, there are two systems that
are considered viable and have been implemented:

(i) systems based on the difficulty of factoring the product of two large primes
(commonly known as the RSA system after the inventors [3]), and

(ii) systems based on the difficulty of finding logarithms in a finite field (commonly
known as discrete exponentiation [11).

In this study we do not discuss the strength of the two systems other than to observe
that similar operations can be performed in either system and comparable security

i Date received: March 15, 1990. Date revised: October 30, 1990.

63

64 G. B. Agnew, R. C. Mullin, I. M. Onyszehuk, and S. A. Vanstone

can be obtained [4], [5]. Instead, we look at some properties of the discrete-
exponentiation system which, when combined with recent discoveries in the
structure of finite fields used, provide an architecture of low complexity and high
speed.

2. The Systems

2.1. R S A

The security of the RSA system is based on the difficulty of factoring the product
of two large primes. In this system, user i forms ni as the product of two large primes
pi and q~. The user then forms the public portion of his key E~ and the private portion
D~ using the known factorization of n i. The operations of encryption and decryption
involve exponentiation and reduction modulo ni. For example, the encipherment
of a block M under user i's public key is

C = M Et mod n i.

To implement such a system in hardware, a number of problems arise. First, the
modulus n must be on the order of 200 decimal digits (or more than 512 bits). Since
each user selects a separate modulus, the implementation must be large enough to
handle every user's modulus. In the current implementations, this leads to a tradeoff
between speed of computation (throughput) and complexity of the device.

A summary of the current implementations of such devices can be found in [6].
Single-chip implementations exist and operate at speeds of up to 10 kbps [7].

2.2. Discrete Exponentiation

A method of key exchange based on discrete exponentiation was proposed by Diffie
and Hellman [1]. This system involved two users (A and B) exchanging a key over
an open channel. The process is based on exponentiation and reduction modulo p,
a large prime. Here, users agree upon a common modulus p and a common primitive
element ~.

To exchange a key, users A and B choose random elements a and b, respectively,
in the range [1, p - 1]. They can calculate and exchange the values ~a rood p and
~ mod p, respectively. User A, upon receiving the calculation from user B, forms
(~b)a mod p which forms the shared secret (user B performs a similar calculation).
Discrete exponentiation can also be used to perform public-key data exchange and
digital signatures as shown by E1Gamal [8].

We can make the following observations about the above system:

(i) Since the system uses a common modulus p, hardware can be designed to
take advantage of the fixed modulus.

(ii) While we have described the implementation in terms of integers, fields of
the form GF(2") can be used.

(iii) Alternative representations such as normal basis representation can be used.
(iv) Since the same exponent is used during the encryption/decryption process,

it need not be of full Hamming weight. That is, exponentiation requires

An Implementation for a Fast Public-Key Cryptosystem 65

(d - 1) multiplications where d is the Hamming weight of the exponent. If
we limit the Hamming weight, we can improve the throughput of the system
(a similar procedure has been used in implementations of the RSA system
where the encryption exponent E i is chosen to be small and decryption takes
advantage of the known factorization of the modulus I-9]). If this is done,

n) large enough to prevent care must be taken so that d is exhaustive attacks.

3. Normal-Basis Representation

The architecture discussed here is based on a normal-basis representation of GF(2").
An (ordered) basis N of K = GF(2") (viewed as a vector space over GF(2)) is said
to be normal if it is of the form fl, f12, fl22, f12--~ for some element fl of K. The
element fl is said to be a generator of the normal basis N. It is well known (see [10])
that GF(2") contains such a normal basis for every n > 1. It is of interest to point
out that it has been shown [11] that there exists a normal basis in GF(2") with the
additional property that a generator of the normal basis is also a primitive element
of GF(2"), that is, a generator of the multiplicative group of the field.

For a ~ GF(2"), let (ao, al a,_l) be the coordinate vector of a relative to the
normal basis N. Since X 2" = X for every x e GF(2"), it follows that f l 2'~ = fl" Since
the operation of squaring is a linear operator in fields of characteristic 2, then a 2

has coordinate vector (a,-1, ao, al an_2) so that squaring is simply a cyclic shift
of the vector representation of a. In a hardware implementation, squaring an
element takes one clock cycle and so is negligible.

Let
n - 1

A = ~ aifl 2'
i = 0

and

and let

Now

n - 1

B = ~_, bifl 2'
i = 0

n - 1

C = A B = ~, cifl 2'.
i = 0

n - 1 n - 1

c = E E
i=O j = O

Since N is a basis, we can write

n - 1

2J E
k = 0

where ~(k) ~ GF(2). Substituting and solving for Ck yields --ij

n - 1 n - 1

= 2 0 aibj
i = o j = o

(1)

66 G. B. Agnew, R. C. Mullin, I. M. Onyszchuk, and S. A. Vanstone

For convenience, we can write Ck as Ck(A , B). It is easily shown that Ck(h , B) =
co(A 2" ", B 2" k), thus, viewing Ck as a bilinear form in the N-coordinates of A and
B, Ck is obtained from Co by applying a k-fold cyclic shift to the variables involved.
(Note for later reference that after i cyclic shifts, coordinate position j contains

au+t) modulo n')

3.1. Examples of Multiplication in GF(2 s)

Let K = GF(25) be viewed as the splitting field of f (x) = x 5 + x 2 + 1, and suppose
that f(ct) = 0. If we take fl = 0t s, then N = (fl, f12, f14, fla, i l l6) is a normal basis.
Carrying out the above calculations yields

ct = bi+4(at+4 + ai+3 + at+l + at) + bt+a(at+4 + at+2 + ai+l + at)

+ bi+2(at+3 + ai) + bt+l(ai+4 + ai+3) + bi(ai+4 + at+3 + at+2).

In this case, all subscripts are added modulo 5. In expanded form

Co = b4(a4 + a3 + al + ao) +

+ ba(a4 + a3) + bo(a4 +

cl = bo(ao + a4 + a2 + al) +

+ b2(ao + a4) + bl(ao +

c2 = bl(al + ao + a3 + a2) W

q- ba(al + ao) + b2(al -t-

c 3 = b2(a 2 d- a 1 + a 4 + a3) d-

-+- b4(a 2 W al) d- ba(a 2 q-

c4 = bs(a3 + a2 + ao + a4) +

+ bo(a3 + a2) + b,(a3 +

b3(a4 + a2 + al + ao) + b2(a3 + ao)

a3 + a2),

b4(ao + a3 + a2 + al) + b3(a4 + al)

a4 + a3),

bo(al + a4 + a3 + a2) + b4(ao + a2)

ao + a4),

bl(a2 + ao + a4 + a3) + bo(al + a3)

al + ao),

b2(a3 + al + ao + a4) + bl(a2 + a4)

a 2 -I- al).

Thus, the same logic function working on successive rotations of A and B will
produce all of the components of the product vector C. Massey and Omura [12]
point out a structure which takes advantage of the symmetry in calculating the
terms of the product vector C. This architecture combines all of the appropriate
terms of A and B in one step to form the corresponding product term Ck. Each term
of C is successively generated by shifting the A and B vectors. Thus C is calculated
in n clock cycles. While this structure is much simpler than a general multiplier, the
structure of the connections in the logic function is prohibitively large for any n
useful for cryptographic purposes.

We also note here that the choice of normal basis is important. For a random
choice of normal basis, the number of nonzero terms in the bilinear form of Co
appears to be of the order (n2/2). Let C(N) denote the number of such terms in
the bilinear form of Co relative to the normal basis N. It is shown in [16] that
C(N) > 2n -- 1. If equality occurs, the basis N is referred to as an optimal normal
basis. Not every field contains an optimal normal basis, but when computing in a

An Implementation for a Fast Public-Key Cryptosystem 67

field which does, there are advantages to choosing such a basis for the architecture
discussed here. (The results in 1-16] have been generalized in 1-20].)

4. A Regular Architecture for Normal-Basis Multiplication

A close examination of the general nature of the above equations is necessary in
order to produce an alternate architecture which is realizable for large values of n.
The architecture developed in this section has the advantage that it is regular, that
is, it can be implemented in VLSI technology as a linear series of more or less
identical, interconnected cells.

The equations in the above example suggest that it may be convenient to write
equation (1) as

n-- I n - 1

c k ~., bj Z qk 'a = Ai j i"
j = O i = 0

By the cyclic relation amongst the equations, this equation can be written as

n - 1 n - 1

Ck = ~, bj+k ~., 210'a,+k,
j = 0 i = 0

where subscripts are to be reduced modulo n.
Let

n--1

"jFtk) = bj+k ~ ~(o),,
"~ij ~i+k'~

i = 0

where again, subscripts are reduced modulo n. Note that for fixed j and variable k,
the functions F are related by the cyclic permutation of subscripts. Also

n - 1

Ck = ~_, FJ k), k = O, 1 , n - 1 .
j=o

The functions F) k) are referred to as terms. Further, for nonnegative integers t, let

n--1

F)"(t) = bj+k+ , 2 2~~ �9
i = 0

A set of terms X = {Fro k~ F~ k~ .~(k,-l)~ is said to be a transversal of the above �9 - . ~ "t n - 1 J

set of bilinear forms if all of the ki are distinct, i = O, 1 n - 1, and if all of the
residues mj = kj + j modulo n are also distinct. (The latter condition guarantees that
all of the subscripts of the b's involved are distinct.)

It is a trivial observation that

so that

f~k')(-- ki) = F(~ - j

n - 1

c o = ~., Fik ' (-ki) .
i = 0

Let X be a transversal -fg?(kj)/n-1 t ' j SI=O" Let A1, A 2 , A n and B1, B2 Bn be cells

68 G. B. Agnew, R. C. Mullin, I. M. Onyszchuk, and S. A. Vanstone

of cyclic shift registers A and B, respectively. 2 Define logic cells Ci, i = 0, 1, 2
n - 1, as follows.

In cell Ckj let there be a logical circuit which will compute the expression
n--1

Tkj(t) = ~+kj(t) E 210'A--i+kj(t),
i = 0

where .4p(t) and/~q(t) are the contents of cells Ap and Bq of A and B, respectively,
at t ime t. This cell also contains a s torage register Rk which can store previously
calculated results and can add its contents /~k to the value of Tk calculated
above. (Here mult ipl icat ion represents the logical opera t ion " A N D " and addi t ion
represents the logical opera t ion "XOR.") To accomplish this physically, cell Ck must
be connected to the cell Bj+kj of B and t o wj cells of A where wj is the number of
nonzero coefficients in [~(o). i = 0, 1, n - 1}. i~--ij ,

Since the ki are distinct, a cell Ci has been uniquely defined for i = 0, 2, . . . , n - 1.
Fur ther , recall that the mj are also distinct, where mj = j + kj, so each of the cells of
B is connected to precisely one of the cells of C = Co, Cx, . . . , C,-x. In part icular,
cell Bm~ is connected to cell Cm~-j. NOW, both K = (ko, kl , . . . , k ,_l) and M =
(m o, m t m,_l) are pe rmuta t ions of(0, 1 n - 1). Inver t the permuta t ions K
and M by defining j(i) to be the subscript such that kj(0 = i and k(i) to be that
subscript such that ink(o = i, i = 0, 1, 2 n -- 1. In each case, cell B~ is connected
to cell C,~,,)-k(O. This is i l lustrated in Fig. l(a). (For the sake of simplicity, the
connect ions between the cells of A and corresponding cells of C are omitted.)

The ne twork is considered to opera te as follows. The system is initialized by
loading the values ai and bj in the respective cells of A~ and Bj, respectively, and the
registers R i of cells C i are loaded with zero for i = 0, 1 n - 1. At t ime t, for
t = 0, 1 , . . . , n - 1, the term Tk(t) is calculated in cell Ck(t) using the current contents
of the A and B registers. The current contents of R k are X O R ' e d with Tk(t) and the
results are stored in register Rk+ 1 modn (see Fig. l(b)).

It is claimed that at the end of t ime t = n - 1, the register Rk contains Ck,
k = 0, 1, 2, . . . , n ~- 1. First consider the contents of register Ro at the end of t ime
n - 1. By the functioning of the network, this register contains ~'_--~ T,(t) but

n - 1 n - 1

y. T,(t)= y,
t = 0 t = 0

since kj(k) = t
n - 1 n - 1

= Z /~(,)+kl,t,(t) E 21~
t = 0 i = 0

(and recalling that at t ime t, A v and By contain a~_ t and by-t, respectively)

n - 1 n - 1

= E bj(t,+kj,,,-t E 2(0) a i , j(t) i+kj(t)--t
t = 0 i = 0

n - 1 n--1

Z bj (,)Z (o) a. = 2i,jlt)
t = O i = 0

2 An alternative derrivation of the above analysis is presented in Appendix A.

An Implementation for a Fast Public-Key Cryptosystem

~ t ~ o2 l o3 oq

1 C;:,]

I i

(a)

69

FROM
PREVIOUS

CELL

Fig. 1.

a i , , a i

. i

ACCUMULATION CELL

(b)

(a) Register organization. (h) Cell structure.

TO
N EXT
CELL

(again since ki(,) = t)
n-1 n-I

Air ai = Co,
t=O i=0

Similarly, register R~ contains ~t"=-~ T~+t(t) where s + t is to be reduced modulo n.
As above, this reduces to c~.

For odd n such transversals exist. The set X 1 = {F~-2~ i = O, 1 n - l} or
X 2 = (F/t~ i = O, 1 , n - 1} where calculations are performed modulo n, are
clearly transversals) For even n, such a transversal does not exist. However, the
above architecture can be extended to handle the situation n = 2st by partitioning
the registers A and B into blocks of size 2 s, and using an extension of the previous
architecture (see [15]). For cryptographic purposes, the important case is that in

3 We thank the anonymous reviewer for observing that in a flat linear layout of cells, the transversal
-j/2, with B and C stepped in the reverse direction, produces an implementation without crossover of
wires. In practice, layouts use a serpentine structure for implementing long registers and thus this may
or may not have impact on the final array.

70 G. B. Agnew, R. C. MuUin, I. M. Onyszchuk, and S. A. Vanstone

which n is odd, and particularly where n is a large prime, since GF(2 ") has no proper
subfields precisely under the condition that n be prime. For this reason we consider
only this case in detail.

Part of the complexity of implementing arises from the interconnection between
the A register and the register C containing the cells C i. This can be reduced by
appropriate choice of the basis, using an optimal normal basis when possible (see
Section 5 on fanout for details). Another way of reducing the complexity is based
on the observation that the bilinear form for C, is symmetric, that is, the term aibj
occurs if and only if the term biaj appears, and there is only one self-symmetric term
(namely as_tbs_l). Thus if the logic of the above architecture is implemented to
accumulate exactly one of each of the symmetric pairs aibj and bia j (say aibi), then
by interchanging the initial contents of the registers A and B and rerunning the logic
in a "second pass" to accumulate the terms b~aj to the current result, the value cs
will again occur in registers R~, provided care is taken to suppress the term a~-I b~_l
on one of the passes (i.e., so that it appears only once). By using this two-pass
method, the number of connecting lines between the A and the C registers is
essentially halved.

5. Fanout

As mentioned briefly in the previous section, a major concern for the design of a
hardware circuit to implement our regular architecture is the interconnection
required between registers A, B, and C. In particular, the connections between the
A and C registers have not yet been addressed. What we show in this section is that
a normal basis can be selected which requires at most four connections from any A
register cell to C register ceils. In order to do this we need to describe several
constructions for optimal normal bases.

Let N be a normal basis and recall from Section 3 that C(N) is the number of
nonzero terms in the bilinear form for Ck. If C(N) = 2n -- 1, the basis is called
optimal. The following theorem is proven in [16].

Theorem 5.1.

(a) I f 2 is a primitive element in GF(n + 1), then GF(2 n) has an optimal normal
basis.

(b) I f 2 is a primitive element in GF(2n + 1), then GF(2 n) has an optimal normal
basis.

(c) I f n is odd and 2 generates the quadratic residues in GF(2n + I), then GF(2 ~)
has an optimal normal basis.

We describe a construction for an optimal normal basis for each of the cases in the
theorem.

(a) Let fl be a primitive (n + 1)th root of unity in GF(2n). Then

N = {fl2':O <_ i <_ n-- 1}

can be shown [12] to be an optimal normal basis.

An Implementation for a Fast Public-Key Cryptosystem 71

(b), (c) Let fl be a primit ive (2n + 1)th roo t of unity in GF(22n). Let), = fl + fl-1.
Then

N = {),2,: 0 < i < n - 1}

is an op t imal no rma l basis in GF(2").
An op t imal no rma l basis given by (a) is called a type I basis and one given by

either (b) or (c) is called a type I I basis.
Recall f rom Section 4 that

tz~k) = bj+k ~ ~o) a
~ j "~ i j i + k "

Define
,~(k) : {ai+k: 0 < i < n -- 1, 2!9) 1}.

Fo r each ai, 0 _< i _< n - 1, let

n, = I{kj: ai ~ S) kj), 0 < j < n - 1}1.

Define the fanout for the t ransversal X to be

f (X) = max{ni: 0 < i < n - 1}.

The fanout for a t ransversal X gives us an upper bound on the number of connec-
tions between any cell of the A register and the C register. Since power consumpt ion
for a VLSI device is related to the n u m b e r of connect ions ("fanout") of any cell, it
is impor t an t to select t ransversals which minimize this value. The purpose of this
section is to prove that a t ransversal can be selected for type I and I I bases which
has a fanout of at mos t four. We only prove this result for the bases given in (b)
above. Any op t imal no rma l basis has at mos t two a 's in any grouping of terms. T o
determine the biaj terms in the bil inear form for Co in the basis (b) above, it can be
shown that, for 0 < i, j < n - 1,

2to~ = 1 iff i andj satisfy one of the four con#ruences 2 i + 2 j = + 1 (mod 2n + 1) i j _ _

(see [16"1).
As an example, we can determine c o for G F (2 5) to be

Co = boa1 + blao + bla3 + b2aa + b2a4 + b3al + baa2 + b4a2 + b4a4.

In order to simplify notat ion, we only consider subscripts. To this end let

W = {(i,j): bia i is a term of Co}.

Clearly, i f(i , j) e W, then (j, i) e W. Also, (0, 1) a lways belongs to W. It is convenient
to par t i t ion W into sets W~ and W2 such that if (i,j) e I4'1, then (j, i) e I412 for i # j
and (n - 1, n - 1) e I411. Let

W1 = {(Xo, xl): Xo = 0} to {(xi, Xi+l): 1 < i < n - 2, xi+l # x . }

to {(x._ D x.-1): x .-1 = n - 1 # x._2}.

We first p rove tha t

{ x i : 0 < i < n - - 1 } = { i : 0 < i < n - - 1 } . (2)

Since 2 is a genera tor in GF(2n + 1) then for an a e GF(2n + 1), a ~ 0, there exists

72 G.B. Agnew, R. C. Mullin, I. M. Onyszchuk, and S. A. Vanstone

x, 0 < x < 2n -- 1, such that ct = 2 x. We use the nota t ion

x ---- log 2 ~.

For our purposes it is impor tant to observe that

log2 ~t = log 2 (- ~) (mod n).

In order to prove (2), we must first prove that

x i =- log 2 (i + i) (mod n), 0 < i < n - 2.

Clearly, Xo - log2 1 (mod n) and xl - log2 2 (mod n). Assume that

x i - log2 (i + l) (mod n)

for i _< k. Consider Xk+l. Recall that x i, xi+ 1 satisfy one of

(mod 2n + 1) 2 x' _ 2 xi+l ~ + 1

and that xi+l r x~-i (mod n).
N o w

xk = log2 (k + 1) + In,

and
2 xk§ -- _+ 1 - 2tn(1 + k) (mod 2n + 1)

- + 1 - (- 1) t (1 + k) (m o d 2 n + l) .

Hence

I f / = 0, then

where l = 0 o r l

Xk+l = log2 (__ 1 -- (-- 1)'(1 + k)).

Xk+l = l o g 2 (_ 1 - 1 - k)

implying Xk+ 1 ~ log 2 (k + 2) (mod n) for otherwise Xk+ 1 ~ Xk_ 1 (mod n). If l = 1,
then

Xk+ 1 = log 2 (_+ 1 + 1 + k)

= l o g 2 (k + 2) (modn)

for otherwise Xk+ 1 -- XR_ 1 (mod n).
We conclude that

x i - log 2 (i + 1) (mod n) for 0 _< i _< n - 2.

Suppose x~ = x j for some i, j, 0 < i, j < n - 2. Then

log2 (i + 1) - log2 (j + l) - 0 (mod n)

or

which implies

i + 1"]
log2 \ j ~ , / - 0 (mod n)

(i+l (i+1
j ~ / / = 1 or \ j ~] = - - 1.

An Implementation for a Fast Public-Key Cryptosystem 73

In the former case i = j and in the latter i + j = 2n - 1, which is impossible given
the range o f / a n d j . Similarly, it can be shown that x~ ~ x,-1 for any i, 0 < i < n - 2.
Finally, note that 2n = - 1 (mod 2n + 1) and so log 2 n = n - 1. Therefore, x i =
log2 (i + 1), 0 < i < n - 1, and the p roof is complete.

We claim that the transversal

x = {FJX~:O <_j < n - 1 }

has a fanout of at most four. To prove this let

Yi = xi + xi+~, 0 < i < n - 2,
and

Yn-1 = 2Xn-1,

where for the time being we do not reduce modulo n. N o w

Yi = X'i + Xi+l

= l o g 2 (i + l) + l o g 2 (i + 2) (m o d 2 n + l)

- log2 (i + 1)(i + 2).

For what values of i and j does the relation

y i = y j , O < i < n - 2 ,

hold? If
log2 (i + 1)(i + 2) - log2 (j + 1)(j + 2)

then

implying that

(mod n),

(i + 1)(i + 2) - (j + 1)(j + 2) (mod 2n + 1)

(i - j) (i + j + 3) -= 0 (mod 2n + 1)

o r

then
log2(i + 1)(i + 2) = 2(n - 1) (mod n)

(i + 1)(i + 2) - 22t"-1)(-- 1)' (mod 2n + 1)

for some 1 ~ {0, 1}. If I = 0, then we have

4i 2 + 1 2 / + 9 = 0 (m o d 2 n + 1),

implying i = n - 1 which is again impossible. Therefore no integer in the range
[0, n - 1] can occur more than twice as yi values, 0 _< i < n - 1.

and hence
i = j or i + j = 2 n - 2 .

Because of the range of i a n d j we conclude that the yi's are distinct modulo 2n + 1.
If we reduce modulo n, then no integer in the range I-0, n - 1] can occur more than
twice as Yi values, 0 < i < n - 2.

Finally, if
Yi = Y,-x for some i, < i < n - 2,

74 G. B. Agnew, R. C. Mullin, I. M. Onyszchuk, and S. A. Vanstone

Since W 2 has no repeated values, it gives rise to y[s where no integer in the range
[0, n - 1] occurs more than twice. It now follows that the fanout for x is at most
four.

6. Limited Hamming Weight Exponents

On average, an exponentiation will require n/2 multiplications for a randomly
chosen exponent. To increase the speed of the system and to upper bound the time
taken for exponentiation, a method of limiting the Hamming weight (d) of the
exponent was developed.

Let
y=~K

represent the exponentiation process. We can represent the exponent K in its binary
form as

K = ko 2~ + k121k323 + .-- + kn_12 n-l, k i e {0, 1}.

The Hamming weight of K represents the number of coefficients k i = 1.
Consider a p-bit register which will be used as a vector to map its contents into

an exponent of the desired weight. This is done by dividing the register's contents
into segments of size l = [log2 n]. The l bits are used as an index to indicate that
the corresponding coefficient, ky(x) is 1 in the binary representation of the actual
exponent (let f (,) be the integer corresponding to the bit pattern). If d such segments
are used, an exponent of Hamming weight ofd is realized. 4 (For example, ifn = 593,
we divide the exponent register into I = 9 bit segments, each segment pointing to a
1 in the actual exponent.) Thus

K = a(K'),

where K' represents the contents of the exponent register and g(K') represents the
mapping of those contents into the actual exponent as mentioned above.

As an example, consider the case of a 20 MHz clock, n = 1000 bits and d = 150
bits in the exponent. This would require about 6.5 ms for an exponentiation or
would be able to support a throughput of 150 kbps.

7. A Conventional Cryptographic System Based on
Discrete Exponentiation

Once a key has been exchanged using public-key techniques, little is gained by
continued use of the public-key system. In fact, a penalty is paid in terms of
transmission bandwidth since 2n bits are required to pass n bits of information using
the E1Gamal scheme. To avoid this, an initial key K o can be passed using the
public-key technique, then the message can be encrypted in the following way.
Assume the message ~ ' is divided into n-bit blocks to form {M1, M2 Mm}. To

4 The Hamming weight is upper bounded by d. Collisions of the binary vectors can occur and reduce
the actual Hamming weight of the exponent but, for typical values of d, this probability is not high.

An Implementation for a Fast Public-Key Cryptosystem 75

encrypt message block M~, the corresponding ciphertext is

C~ = o:r,. Mi,
where

and
K , = g(K',)

K'~ = v(K~_I),

where v(,) represents the result of a one position permutation of the contents of
the exponent register. In our implementation, the various cells of the exponent
register are connected using a primitive connection polynomial to form a Maximal
Length Linear Feedback Shift Register (MLLFSR). In this way, a new exponent K i
is created for each block in the message.

To decrypt a block, we form

M i = (a-1)r,. C i,

where again, K~ = g(K'i). This requires the initial calculation of ~-1 which can then
be preprogrammed into the device (see [13] for details). A number of advantages
are inherent in this system: first, encryption and decryption are symmetric in terms
of the number of operations (time) and thus it can be used for encryption of real-time
information (note, this is not true in most public-key cryptosystems). Secondly,
repeated blocks will be enciphered under different exponents thus eliminating the
weakness inherent in Electronic Codebook (ECB) mode of ciphers. In addition, the
individual blocks (M~) of the message are linked by the sequence of K'~ and any
addition, deletion, or reordering of blocks will be detectable. 5

7.1. A Technique for Generating Message Authentication Codes

Many communication applications require authentication without secrecy. To
ensure the integrity of data transmitted across a network, some means of detecting
changes (either intentional or due to noise) must be included in the message. The
codes used to perform this operation are Message Authentication Codes (MAC).
For cryptographic purposes, the algorithm used to generate the MAC must have
the following properties:

(i) The MAC-generation algorithm should be independent of the message
length.

(ii) Any change such as additions, deletions, or modifications of as little as one
message bit should produce an unpredictable change in about 50% of the
MAC bits.

(iii) It should be computationally infeasible to generate deterministically two
messages with the same MAC.

The properties listed above are satisfied by a one-way hashing function, that is, a
function that forms a condensed, fixed-sized image of the message and is easy to

s The price paid for this is the requirement to include a method for re-establishing cryptographic
synchronization in the event of loss. A protocol to handle this situation is described in [18].

76 G. B. Agnew, R. C. Mullin, I. M. Onyszchuk, and S. A. Vanstone

calculate in the forward direction but computationally infeasible to invert. For
sufficiently large fields, discrete exponentiation is a one-way function.

With this as our base, we now proceed to describe the functions which are used
to combine the components of the message. As before, let K' be the vector form of
the exponent (for our implementation, the exponent register will be 256 bits in
length) and let K = g(K') be the mapping of K' into the actual exponent (this will
be 593 bits in our implementation of GF(2593)).

Again, let f (.) be the integer corresponding to the bit pattern .. Also, let J / b e
the message to be authenticated and let Mi be the ith 593-bit block of the message.
In this form

= { M , , Ms M,,,},

where { �9 } represents the concatenation of components. Now, K' is initially set to
a fixed (secret) value (Initialization Vector-- IV) , K'~. The first block of ~ is
processed as

C1 = M~ (r').

This block is then cyclically added to K' using the circuit shown in Fig. 2. 6 The
result is that the qth bit of the next exponent Kii+l) is calculated using the algorithm:

carryin = 0
for q from 0 to 592

if q < 256
K(~)' = (KI q)' C~ q) carryin) mod 2 i+1 �9 + +

Set or Clear carryin
end if
if q > 256

j = q mod 256
Ku), ~k'(J)' + C~q) carryin) mod 2 i+1 ~ ~.J~i+l q-

Set of Clear carryin
end if

LI E~dPONENT
REGISTER

I IZ F:'56 b i t s

P~ODIJCT

REGISTER:

5S3 bits

1-E

SUM

Fig. 2. MAC generation structure.

6 The 593-bit result C a is added to the 256-bit exponent K'~ in such a way that the bits of K' overlap
in the calculation.

An Implementation for a Fast Public-Key Cryptosystem 77

7.2. Security of MAC-Generation Algorithm

How well does the algorithm described in the previous section meet the require-
ments for an MAC generator? Two forms of operations are used in the algorithm
described: discrete exponentiation and integer arithmetic.

7.2.1. Property 1--Discrete Exponentiation. The model we use is that discrete
exponentiation (i.e., Y = M x) produces a random mapping from M to Y in GF(2")
for nonzero M, X and M, X # 1. Let M* be a message block which differs in exactly
one bit position from M. Let Y* = (M*) x. Define HW[Y* - Y] to be the Hamming
Weight of the difference between Y and Y*. For our model HW[Y* - Y] is a
random variable with mean n/2. Observations have shown that this model is
appropriate for our system. Thus, any change in the message block will have the
desired effect on the MAC generated within that block.

7.2.2. Property 1A--Changing Exponents. Let x* be an exponent which differs in
exactly one bit position from x. Using the previous model

Y = M x,

y* = M x*.

Our experience suggests that HW(Y - Y*) will again be a random variable with
mean n/2. We note that in using the vector form of the exponent as described in
Section 6, a single bit change in the exponent representation K' will have the effect
of changing two bits in the actual exponent K = g(K') except in the case where this
single bit change produces g(K') = g(K'*). 7

7.2.3. Property 2--Integer Addition. In this case we examine the effect of the
integer addition of the result Ci and the current exponent Ki. Integer addition was
chosen to allow carries to propagate through the exponent. From our observations,
the distribution of carries and their propagation appears to be a random process.
Thus the linkage of the exponent used for one message block to the next will have
some randomness associated with it. a

7.3. Security Summary of MAC-Generation Algorithm

It is clear that the MAC-generation algorithm has the property of linking message
blocks, that is, the MAC is dependent on all blocks of the message. From the
properties of the elementary operations used, a single bit change in a message block
will change the resultant block in about 50% of its bit places. This result will then
be added to the current exponent K' i, and the carries introduced in the addition will
randomly propagate through K'i+ 1 .

Can an attacker deterministically generate a message Jr'* which produces the
same MAC?

7 This can only occur when a collision occurs in the vectors and the bit change maps into another
collision. For the implementation discussed here, the probability of this occurring is extremely small.

s A similar technique is presented in 1-19] by Rueppel.

78 G. B. Agnew, R. C. Mullin, I. M. Onyszchuk, and S. A. Vanstone

7.3.1. Case 1--Substitution of a Single Block. To substitute a single block, the
attacker must find M* such that

(M*)O~r~) = (Mi)gr

This seems at least as difficult as taking logarithms in GF(2").

7.3.2. Case 2--Substitution of Two or More Blocks. If the attacker could change
or add two blocks (as in a meet-in-the-middle attack) such that, given K'i-1 and
K'i+l, (M*) g~xp followed by

(M*+I)o{K~:,) ~ K'i+ 2.

Again, it appears that the attacker must have the ability to take logarithms over
GF(2").

In the above section we have shown that the MAC-generation algorithm proposed
achieves the desired properties for such a system. It is observed that the MAC-
generation algorithm as implemented is also computationally efficient when imple-
mented using the architecture for the VLSI device in normal bases.

7.4. Past and Future Development

In 1986 a prototype of the above system was created at the University of Waterloo
using custom gate arrays to implement the multiplier architecture. The device was
built for n = 593 bits on an 11 x 17 in. board. This bit size was chosen to be
realizable using gate-array technology and still provide an acceptable level of
security [4]. The measured throughput of the device was approximately 300 kbps
using a 15 MHz clock rate and exponents with an average Hamming weight of 150.
Development continued and in 1988 a VLSI implementation was designed using
2# technology. This device requires less than 90,000 transistors which is far less
complex than other implementations of public-key devices of this bit size. As more
knowledge is gained in the structure of these systems, further development of even
faster, more secure public-key cryptosystems will continue.

Acknowledgment

The authors would like to thank Mike Walker for valuable discussions concerning
the fanout problem of Section 5.

Appendix A

The following derivation of the multiplier structure was suggested by one of the
anonymous reviewers. Let k~, 0 < i < n, be some arbitrary constants.

u.v= X bj+, X -,+,/-
t=o \ j = o i=o

An Implementation for a Fast Public-Key Cryptosystem 79

As in the case described
kj,/3 tX".-1)(oL~ x j+kj~/_~i=O (i i+kjl"

S b j+, E I
j=O L t=O i

"-I Fn~I b f n - l ~ tO)a ~ 2 k j - t 1

r.
j=o L,=o . , j a i + ~ j _ , j ~. _] .

in the body of the paper, we compute, for all j at position

References

1. Diffie, W., and M. Hellman, New directions in cryptography, IEEE Transactions on Information
Theory, Vol. 22, 1976, pp. 472-492.

2. Diffie, W., The first ten years of public-key cryptography, Proceeding of the IEEE, Vol. 76, May
1988, pp. 560-577.

3. Rivest, R., A. Shamir, and L. Adleman, A method of obtaining digital signatures and public-key
cryptosystems, Communications of the ACM, Vol. 21, pp. 120-126.

4. Blake, I., P. Van Oorschot, and S. Vanstone, Complexity issues for public-key cryptography,
Proceedings of the Nato Advance Research Institute Conference, Ciocco, Italy, July 1986.

5. Coppersmith, D., Cryptography, IBM Journal of Research and Development, March 1987,
pp. 244-248.

6. Beth, T., and D. Gollman, Algorithm engineering for public-key algorithms, IEEE Journal on
Selected Areas in Communication, Vol. 7, No. 4, May 1989, pp. 458-466.

7. Brickell, E., A survey of hardware implementations of RSA, Proceedings of Crypto '89, Santa
Barbara, CA, August, 1989.

8. ElGamal, T., A public-key cryptosystem and a signature scheme based on discrete logarithms, IEEE
Transactions on Information Theory, Vol. 31, 1985, pp. 469-472.

9. Hastad, J., On using RSA with low exponent in a public-key network, Advances in Cryptography--
Crypto '85, Springer-Verlag, New York, 1986, pp. 403-408.

10. Ore, O., On a special class of polynomials, Transactions of the American Mathematical Society,
Vol. 35, 1933, pp. 559-584.

11. Lenstra• H. w.• and R. J. Sch••f• Primitive n•rma• bases f•r •nite •e•ds• Mathematics •f C•mputati•n•
Vol. 48, 1987, pp. 217-232.

12. Wah, P., and M. Wang, Realization and application of the Massey-Omura lock, Proceedings of the
1984 International Zurich Seminar on Digital Communications, March 1984, pp. 175-182.

13. Agnew, G., R. Mullin, and S. Vanstone, Arithmetic operations in GF(2"), Submitted to the Journal
of Cryptology.

14. Omura, J., and J. Massey, U.S. patent #4,587,627, May, 1986.
15. Onyszchuk, I., R. C. Mullin, and S. A. Vanstone, U.S. patent #4,745,568, May 1988.
16. Mullin, R. C., I. M. Onyszchuk, S. A. Vanstone, and R. M. Wilson, Optimal normal bases in GF(f) .

Discrete Applied Mathematics, Vol. 22, 1988-89, pp. 149--161.
17. R•sati• T.• A high-speed data encrypti•n pr•cess•r f•r pub•ic key crypt•graphy• Pr•ceeding •f •EEE

Custom Integrated Circuits Conference, San Diego, CA, May 1989, pp. 12.3.1-12.3.5.
18. Agnew, G., R. Mullin, and S. Vanstone, An interactive data exchange protocol based on discrete

exponentiation, Proceedings of Eurocrypt '88, May 1988, Lecture Notes in Computer Science, Vol.
330, Springer-Verlag, Berlin, pp. 159-166.

19. Rueppe•• R.• C•rre•ati•n imrnunity and the summati•n generat•r• Pr•ceedings •f Crypt• •85• Lecture
Notes in Computer Science, Vol. 218, Springer-Verlag, Berlin, pp. 260-272.

20. Ash, D., I. Blake, and S. Vanstone, Low complexity normal bases, Discrete Applied Mathematics,
Vol. 25, 1989, pp. 191-210.

