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Abstract. A multiparty protocol to compute a function f(xi, . . . , x,) operates as 
follows: each of n processors holds an input xi, and jointly they must compute and 
revealf(x,, . , x,) without revealing any additional information about the inputs. 
The processors are connected by secure communication lines but some number of 
processors may be corrupted by a resource-unbounded adversary that may attempt 
to interfere with the protocol or to gain extra information. Ben-Or, Goldwasser, 
Wigderson, Chaum, Crtpeau, and Damgird have given protocols tolerating faults 
in t < n/3 processors. We improve the bound to t < n/2; as long as a majority 
remains uncorrupted, general and secure computations are achievable. To address 
and prove the security of our results, we introduce concise definitions for security 
and fault-tolerance. In particular, our notion of relative resilience-a means to 
compare the security and fault-tolerance of one protocol with that of another in a 
formal manner-provides a key tool for understanding and proving protocol 
security. 
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1. Introduction 

Inspired by the growth of large distributed systems, the problem of achieving secure 
and reliable computation in a network of processors has received a great deal of 
recent attention [20], [21], [14], [Ml, [a], [29], [3], [lo], [17], [27], [4]. 

Each processor in the network holds some private information, denoted xi, and 
together the processors must compute some general function f(xr, . . . , x,), without 
revealing the individual inputs. For example, each input xi might represent an 
election ballot cast by the owner of a workstation; the network of processors must 
calculate the tally without revealing the votes. Unfortunately, no single processor 
is completely reliable, either in terms of mechanical failure or incorruptibility by an 
adversary. Hence it is impossible to arrange for some central, trusted processor to 
collect the inputs and return the function value. 

i Date received: January 31, 1990. Date revised: November 1, 1990. This research was supported in 
part under NSF Grant CCR-870-4513. This work was done while the author was a graduate student at 
Harvard University. 
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The processors must therefore arrange to compute the result without a trusted 
party. To their advantage, a synchronous, completely connected communication 
network, with secure channels and broadcast channels, is available. Other sorts of 
networks can be considered--most notably, broadcast networks, in which each 
message is available for all processors to read--but solutions in these scenarios 
usually require that an adversary be computationally bounded and that unproven 
complexity theoretic assumptions be made. This work considers information- 
theoretic security, in which no computational bounds on the power of attacking 
parties are required, and no unproven assumptions are made. 

The contributions of this paper are twofold. On the one hand, this work presents 
new definitions for security that provide a concise way not only to understand but 
to prove security. On the other hand, this work develops algorithmic techniques 
to solve the problem of secure multiparty computation and to solve a related prob- 
lem, that of zero-knowledge proofs in a distributed network without unproven 
assumptions. 

A common approach to describing intuitively the meaning of security in multipar- 
ty protocols for general function computation uses the notion that the secrecy 
ensured by a trusted party should be the standard by which a general protocol is 
measured. That is, the execution of a protocol should reveal nothing more than is 
revealed in the situation where a trusted party is available, namely, nothing more 
than the value off(x1 . . . . .  x,). Other properties, such as correctness, independence 
of input selection, and fairness are equally important, and the literature contains a 
variety of approaches to describing and defining these desired properties. 

One of the primary contributions of this work is a simple definition for resilience, 
the combination of security and reliability. This definition is based on comparing 
the resilience of a general protocol with that of an ideal protocol, in which a trusted 
processor is in fact present. To compare one protocol with another, a notion of 
relative resilience is necessary. Relative resilience allows not only the comparison 
of a given protocol to an ideal situation but the comparison of any pair of protocols, 
which in turn supports modular proofs of security. A protocol may be proven as 
secure as some intermediate protocol, which is then proven as secure as an ideal 
protocol. The composition of protocols may also be proven as secure as an ideal 
protocol that computes the composition of the functions each individual protocol 
computes. 

Our approach is more general and provides a simpler approach than notions of 
fault-oracles proposed first as a definition of privacy by Galil et al. [18] and later 
extended to cover correctness as well, independently by Kilian et al. [30], [12], [26] 
and by Beaver [5]. Goldwasser and Levin [22] and Beaver and Goldwasser [i0] 
employ a definition stating that any execution of a "robust" protocol must corre- 
spond to a possible execution of the same protocol without an adversary (and such 
that the inputs of uncorrupted players are the same in both cases). All of these 
notions seek, with varying degrees of clarity, to connect a general protocol to an 
ideal, uncorrupted computation. All of these notions use a fixed comparison of a 
general protocol to a fixed ideal. The definitions presented in this paper make these 
ideas explicit, and provide a much broader and more robust means to compare any 
pair of protocols. 

The direct comparison of a protocol to an ideal situation is only one application 



Secure Multiparty Protocols and Zero-Knowledge Proof Systems 77 

of our general definition. In fact, the general notion of relative resilience provides 
simple definitions for security and fault-tolerance for a diverse set of problems in 
interactive computation (e.g., zero-knowledge proof systems, Byzantine Agree- 
ment, oblivious transfer, two-party oblivious circuit evaluation, etc.). 

With a clear set of definitions for security, the next step is to show that resilient 
protocols are possible. In fact, a variety of (unproven) positive results have been 
achieved. In the so-called crypto#raphic model, in which all processors, including 
any adversary, are polynomially time bounded and certain unproven assumptions 
are made, Goldreich et al. [20], [21] pioneered methods which allowed faults in 
t < n/2 processors in the network (here, t is an upper bound on the number of faults). 
Improvements in technique and efficiency were given [18], [25], notably by Galil 
et al. [18]. Beaver and Goldwasser [10] pushed the bounds of fault-tolerance above 
the threshold of n/2, with the restriction that either all processors learn the correct 
result in a fair fashion, or the nonfaulty processors can identify and eliminate 
corrupted processors. 

When no complexity-theoretic assumptions are made, the task of achieving high 
fault-tolerance is difficult. Achieving a resilience of n/2 or more is impossible in 
general [14], [17], [27], [4]. Ben-Or et al. [14] and Chaum et al. [15] used Shamir's 
techniques for secret sharing [31] in an elegant way to prove that secure multiparty 
protocols are possible for t < n/3. Secret sharing is a technique whereby information 
is distributed robustly among the members of a network such that no sufficiently 
small collection of members determines anything about the information. (In 
Shamir's method, a dealer, holding a secret s from some field E, creates a random 
polynomial p(u) of degree t such that p(0) = s, and sends PIECEi(s) = p(i) to each 
player i. Any t to fewer pieces are uniformly distributed, preserving secrecy, while 
any t + 1 unaltered pieces determine s.) Essentially, the protocols of [14] and [15] 
consist of several intermediate steps to create new secrets whose values are sums or 
products of earlier secrets, without revealing any of the secrets. With absolute 
security, no bound better than t < n/3 is achievable, but in the range n/3 < t < n/2, 
it has remained unknown whether secure protocols were achievable with some 
negligible chance of error. 

The methods of [14] and [15] for t < n/3 do not work for the case of t  < n/2 for 
two reasons. The first is that Shamir's methods for secret sharing are not robust 
against such large numbers of faults. A method for Verifiable Secret Sharing (VSS) 
[16], in which the network checks that a secret is shared properly before using it in 
a computation, is required. The second reason is that, even given VSS, methods for 
creating new secrets from old secrets are not robust. In particular, an intermediate 
step, in which one participant demonstrates that three secrets a, b, and c satisfy 
c = ab without revealing their values, is necessary for adaptations of [14] and [15] 
to work. Call this problem the ABC Problem. The works of [14] and [15] solve the 
ABC Problem for t < n/3 but not for t < n/2. 

Solving the first problem, Rabin [28], [29] provides an elegant method to achieve 
VSS when t < n/2. The method includes additional information in the form of 
"check vectors" to ensure that values are not changed. 

This paper presents a solution to the second problem, by developing the first 
technique for the ABC Problem when t < n/2, using VSS as a subroutine. Resilient 
multiparty protocols for t < n/2 fall out as an immediate consequence. 
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A second consequence of the solution to the ABC problem presented here is that 
it is possible for one member of a network to prove in zero-knowledge [23] that 
the value of a given secret y is the result of some function p applied to secrets 
xl . . . . .  x,,, without revealing the secret values themselves. This proof technique 
generalizes the ABC Problem, works with exponentially small probability of failure, 
and requires no unproven complexity theoretic assumptions, in contrast with the 
two-party case, where such proof systems are currently impossible without unproven 
assumptions. The communication complexity of secure zero-knowledge network 
proof systems is not large: the number of rounds depends on the size of the network 
(or is constant for t < n/3; see [2]), but not on the complexity of the function, p; and 
the number of message bits sent is polynomial in the size of a circuit for p. The latter 
measure, message size, can be reduced to a polynomial in the size of the network, 
independent of the circuit complexity of p, using techniques of Beaver and 
Feigenbaum [7] and Beaver et al. [8]. 

A different solution to the ABC Problem was independently developed by Rabin 
and Ben-Or [29], but that solution requires bit-by-bit arithmetical operations. The 
solution presented here uses arithmetic over a finite field, saving many rounds of 
interaction. A large number of rounds of interaction is usually the greatest hindrance 
to practical applications. 

Neither definitions of security nor proofs of security for the methods of VSS in 
[28] and [29] have yet appeared at the time this goes to press, and certainly no 
proofs of security using the definitions presented here have appeared. For mathe- 
matical soundness, however, all protocols and subprotocols must be proven resil- 
ient. Rather than attempt to prove [28] and [29] correct--even though the defini- 
tions of this paper provide a solid foundation for such a task--an alternate method 
for VSS that developed out of work with Feigenbaum and Shoup [9] is presented 
and proven correct. Using a set of lemmas regarding protocol composition and 
related issues, the first proof of resilience for a multiparty protocol is presented. 

This paper is organized as follows. In Section 2 notation, details of protocol 
execution with adversaries, general and ideal protocols, and induced distributions 
are described. In Section 3 new and concise definitions for resilience and presented 
and discussed. In Section 4 general methods for proving security and presented 
along with proofs of some previously unsupported folk theorems. In Section 5.1 
new methods for verifiable secret sharing are presented. In Section 5, and Section 
5.4 in particular, the main result is presented: a multiparty protocol resilient against 
faults in up to half the network. In Section 6 zero-knowledge proof systems in the 
presence of a network are proven possible. The philosophical and definitional heart 
of this work (relative resilience) lies in Section 3, and the algorithmic heart of this 
work (solving the ABC Problem for t < n/2) lies in Section 5.4. 

2. Preliminaries 

2.1. Notation 

The vector notation describes a labeled set of items: Y = {(1, xl) . . . . .  (n, x,)}. A 
subscript denotes a subset of those values: xT = {xil/e T}; In] denotes {1, 2 . . . . .  n}. 
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Labels are ordinarily omitted for readability: E = {xx . . . . .  x,}. Let E be a finite field, 
usually taken to be GF(2") or GF(p) for some prime p, n < p < 2n. Fix an alphabet 
E = {0, 1}; extensions to E (e.g., the delimiters # ,  @, ( , ) , "  , ", and the special 
symbol A signifying absence of a message (as opposed to an empty message)) are 
encoded naturally. IfS = {s 1 . . . . .  s,} is a set of strings in lexicographical order, then 
S is encoded as (s l ,  Sz . . . . .  s,) .  If S' is a set of objects, each of which has a natural 
encoding as a string, then the encoding of S' is the same as the encoding of the set 
S of encodings of each of its members. A vector is encoded as a set, and sometimes 

is used to represent the string encoding of the vector. 
The notation "i:" in a protocol description indicates the local computations and 

variable assignments of player i. The notation "i ~ j :  m" indicates that i sends m to 
j, and "i ~ [n]: m" means that i broadcasts m. The notation "(1 < i _ n)" indicates 
that the succeeding text is performed in parallel for i in the range from 1 to n. 

The probability of event Y with respect to distribution P is denoted Prp[Y]. Let 
dist(X) denote the set of all distributions on a set X. A probabilistic function is a 
function whose range is a set of distributions, namely f :  X ~ dist(Y) for some Y. 
Though the "output" of such a function is a distribution, it is sometimes convenient 
to refer to an output as a sample from that distribution. 

The difference of two distributions P and Q on a set X is defined by I P - Q I = 
~x~x IPrp[x] - PrQ[x]l. A sample taken according to P is denoted by x ~ P. A 
sample taken according to P subject to the condition that A(x) holds is denoted by 
{x ~ PIA(x)}. If f :  X ~ dist(Y) and g: Y ~  dist(Z), then g o f :  X ~ dist(Z) is de- 
fined by 

Pr,  o/(x)[z] = ~ Pr/(x~[y]'Prg~,~[z]. 
.vEY 

"Deterministic" functions (i.e., functions) may also be included. The composition 
of a function h with a probabilistic function f is described by the following nota- 
tion, intended to suggest an "experiment" to produce a sample from the resulting 
distribution: 

h of(x)  = {y ~ f(x): h(y)}. 

The uniform distribution on a set X is denoted uniform(X). The uniform distribu- 
tion on the set Poly(t, s) of polynomials f(u) of degree t satisfying f(0) = s is denoted 
UPoly(t, s). Fix a finite field E and consider a fixed set of points ~1 . . . . .  e,, normally 
either {1 . . . . .  n} or {1, o~ . . . . .  o~ "-~ } where 09 is a primitive nth root of unity. The 
distribution on sets of n values obtained by selecting a polynomial at random 
according to UPoly(t, s) and evaluating it at n points is defined by 

Pieces(n, t, s) = { g  ~ E"l(Zlf~ Poly( t ,  s))(Vi)yi = f(cq)},  

UPieces(n, t, s) = uniform(Pieces(n, t, s)). 

Shamir's method for secret sharing takes a sample ~ *- UPieces(n, t, s) and sends Yi 
to player i. 

An ensemble is a particular kind of probabilistic function, namely a family 
= {P(z, k)} of distributions on y<_p~tzl,k~, parametrized by z e E* and k e N, where 

p(., .) is polynomially bounded. 
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Definition 1. Ensembles ~ and .~ are 6(k)-indistinguishable, written ~ ,~tk) .~, if 

(u (u I~(z, k) - ~(z, k)l < 6(k). 

Under the standard O-notation, f(k) = O(g(k)) means (3c, ko) (k > k o =~ f(k) < 
c" g(k)). The value k o is called the convergence parameter. 

Definition 2. Ensembles ~ and ~ are O(6(k))-indistinguishable if 

(3A: N ~ N) ~ ~A(k) .,~ and A(k) = O(6(k)). 

Perfect (i.e., 0) indistinguishability is written ~ ,~ ~. Exponential (i.e., O(c k) for some 
constant 0 _< c < 1) indistinguishability is written ~ ~e .~. Statistical (i.e., O(k -c) for 
all constants c > 0) indistinguishability is written ~ ~s 2. The notion of computa- 
tional indistinguishability concerns the ability of a polynomial-time Turing machine 
to distinguish the two ensembles, but this is of no concern in this paper. 

The class of probabilistic finite functions PFF  computed by protocols mapping 
n-vectors of m-bit arguments to distributions on n-vectors of m-bit arguments is 
defined as 

PFF  = {FIF: E* --, dist(E*), F((Em) ") _ dist((Zm)")}, 

with the restriction that, for each value of n and m, the restriction of F to (E'~)" is 
computed by a probabilistic circuit C,,m. A circuit is a directed, acyclic graph whose 
nodes are labeled AND, OR, and NOT (arithmetic versions over a finite field are 
also possible), evaluated in a natural way. Input nodes are those with no incoming 
edges and output nodes those with no outgoing edges. A probabilistic circuit has 
some number r(m, n) of distinguished input nodes; the distribution computed by 
such a circuit is induced naturally by assigning these nodes uniformly random values 
from {0, 1}. Without loss of generality, functions that output a single m-bit string 
or even a single bit may be considered. 

2.2. Protocol Execution 

Informally, a protocol is a collection of sets of Turing machines, one set of n machines 
for every n ~ N. Each Turing machine has some number of input and output 
communication tapes, one for each communication channel; without loss of general- 
ity we take each machine M to have a single input-output  tape on which incoming 
messages are written in lexicographic order, tagged with an integer stating the 
identity of the communication line. At the start, the values 1", 1", 1 k, x, and a are 
written on the input tape: n represents the number of machines in the network; m, 
the number of bits in the input; k, a security parameter; x, the input of that machine; 
and a, an auxiliary input of that machine. Each machine also has a work tape W 
and a "random" tape R, namely a particular tape on which a "random" sequence 
of bits is placed. A "random" tape is a convenient intuitive representation for the 
idea that each machine represents not a deterministic function (on input tape 
I = n # m # k # x # a and "random" tape R), but a probabilistic function (on 
n # m # k # x # a )  defined as follows. Let tp(R) denote the rightmost location 
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M reaches on R, let H be the set of R's on which M halts, and let ~b = 
{pref~lR)(R)lR ~ H}, where prefa(b) denotes the first a letters of b. Let ~k(z)= 
{R ~ ~blM(n # m # k # x # a, R) = z}. Then M computes the probabilistic function 6 
defined by 

2 -IRI 

p r , ~ ( n # m # k # x # a ) [ Z ]  = 1 ~  ~�91 

~, 2 -IRI 
R~ q~ 

Each Turing machine enters a waiting state when its computation is complete, 
and is restarted later with a new set of incoming messages; the work tape is left 
unchanged. Without loss of generality, each machine can accept a description v(r) 
of all previous inputs for some number r of activations and can compute the next 
output based on v(r). 

The only reasons to adopt a Turing machine model are for concreteness and to 
supply a measure of communication and computational complexity. A more general 
definition is the following. 

Definition 3. A player is a tuple (Q, q(0), 6, Y), where Q is a (possibly infinite) set 
of states, q(0) ~ Q is an initial state, 

6: Q x 2~*--+ dist(Q x 2 ~*) 

is a probabilistic transition function, and Y: Q --+ E* is called the output function. 

The state ofa Turing machine player is, under this definition, a superstate combining 
its tape contents and its finite control; the transition function arises naturally from 
the transition function of the Turing machine; and the output function maps the 
superstate to a string describing the contents of the machine's work or output tape 
(or to A if the output tape has an infinite word written on it). The advantages of 
using a higher level of generality are twofold. Only the input/output behavior of 
the players is important; the rest can be abstracted away, and the analysis of security 
need only consider the given probabilistic functions. Computations need not be 
recursive functions, thus allowing an adversary to "gain" tremendous power by 
corrupting a potentially "tremendously strong" player; protocols resilient against 
stronger adversaries provide greater assurance of security. Note that the protocols 
presented here do require only polynomial-time Turing machine computations; 
weak players can participate, but adversaries of unbounded computational power 
are permitted. 

A channel describes how a message sent by one player is transformed into the 
message received by another player or by several other players. 

Definition 4. A channel is a probabilistic function: 

C: E* ~ dist(2 N• N• 

The probability that a given sequence ((i, j l , /~ l )  . . . . .  (i, Jr, #t)) is output by channel 
C when player i applies message # is Prctu)[{(i, j l  , i~1) . . . . .  (i, Jt, #l)}]. 
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Typical channels include the private channel between i and j, for which 
Prc~u~ [(i, j, #)] = 1, and the broadcast channel for player i, for which Prc~u)[ {(i, 1, #), 
(i, 2,/t) . . . . .  (i, n,/t)}] = 1. Another common channel is the noisy (Oblivious 
Transfer) channel from i to j, for which Prc~,)[{( i , j , (1 , / t ) )}]=�89 and 
Prcr (0, 0))}3 - �89 

A synchronous, n-player, R-round protocol is executed as follows. Each of 
n players begins with an input xi and an auxiliary input al on its input tape. 
Before the protocol begins, player i is in state q(i, 0). Round 0 consists of an 
initial computation, (q(i, 1),/t~ In], 1)) ~-  t~ i (q ( i  , 0), xi#a~). (In general, q(i, r + 1) 
represents the state of player i after its computation in round r, and/t~ [n], r + 1) 
the messages it intends to send. The notation /t(A, B, r) represents a string of 
messages from players in set A to those in set B.) Channel functions are applied to 
the undelivered messages, and the outputs, #-delimited and lexieographically 
ordered, are placed on the input tapes of the recipients. The messages to be delivered 
to player i are denoted/tdel([n], i, r + 1). 

In each round, each player computes locally on the input messages and its current 
state, producing new output messages (ignored in the final round) and a new state. 
In the case of Turin9 machine players, the "state" represents a superstate consisting 
of the finite control state and work-tape contents, and the local computation is a 
recursive transduction from these and the random-tape contents to new tape 
contents, finite control state, and outgoing messages. A Turing machine that fails 
to halt or that gives an output that cannot be parsed is considered to output an 
empty message string, ~ .  

Definition 5. A protocol 1-I is a family of sets of players along with (labeled) set of 
channels: H = {(P1 . . . . .  P., ~,}ln ~ N}, where ~. = { (Cl ,  C 1 )  . . . . .  (CN(n), CNt.))} for 
some function N, and c~ e Z* is a label for the channel C~: N x Y,* ~ dist(2 N • N • ). 
Each player P~ accepts an input of the form 1"# 1 " #  1 k# X~ # ai, where I xi[ = m. We 
consider only protocols in which the computations of each uncorrupted player are 
independent of its auxiliary input. 

It is sometimes convenient to refer to {P1 . . . . .  P.}, for a given value of n, as a 
protocol. A universal protocol includes a label of a function to compute along with 
the inputs, normally in the form of a string description of a circuit. 

For purposes of formal security analysis, it is best to abstract away mechanical 
details--which often vary according to taste--and consider the execution of a 
protocol simply as a composition of probabilistic functions. The al#orithmic specifi- 
cation of an execution described in Fig. 1 can be represented as a probabilistic 
function mapping (Y, d )  to a string of final states and views of the execution, 
(if(R), ~(R)), by composing the following probabilistic functions. Here, each state 
is described by a string; the superstate of a Turing machine (including tape contents) 
is a concatenation of a description of its finite control and current state, along with 
the contents of all tape locations over which the head has passed. 

�9 Lexicographically order a set of strings: 

Ord(sl # "" #SN) = Si(1)# ' ' '  #SI(N), 

where i (1) . . . i (N)  is a permutation such that (u s,j) _< s,j+l). 
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1 ( l _ < i < n )  
For r = 0.. R(n, m, k) - 1 do 

r.1 ( l < i < n )  i: 

r.2 

r.3 
r.4 

end 
R(n,m,k).l 

Execute Protocol 

#i"([n], i, 0) ,-- P #  1~'# P#xi#ai. 
begin 
Compute locally: 

(~(i, r + 1), #o~t(i, In], r + 1)) ,,- 
~i(q(i, r), /./in(En], i, r)). 

Apply channel functions to #~ i, r + 1) to obtain 
~~ [n], r + 1). 

Sort messages to obtain #i"([n], [hi, r + 1). 
Update views. 

Final computation after protocol: 
(~(i, R(n, m, k) + 1), #o~t(i, I-n], R(n, m, k) + 1)) *-- 
t~i(4(i, R(n, m, k)), #i"([n], i, R(n, m, k))) 

R(n,m,k) .2  ( l _ < i < n )  i: output ~(i, R(n, m, k) + l) 

Fig. 1. Description of steps involved in executing a protocol on (n, m, k, ~, d). Messages #out report 
what the processors wish to send; #de~ represents messages output from the channels, which become 
incoming messages #i~ for the next round. With adversaries, #a~l may be altered before it becomes #i,. 

�9 S t r ing  m a n i p u l a t i o n :  

(A1 . . . . .  AN> C) (B1,  . . . ,  BN> • <<A1, n l > , - . . ,  <AN, BN)>, 
Q - I ( < < A 1 ,  B I >  . . . . .  <AN, BN>>) = <<A, . . . . .  AN>, (B1,  . . . ,  BN>>. 

�9 C o n v e r t  s t a n d a r d  a n d  aux i l i a ry  inpu t s  to  an  init ial  g loba l  s ta te  vector :  

Init(n # m # ~" d, k) = <<ql (0) . . . . .  q.(0) >, 

( 1 " #  l m #  l k # X l # a l  . . . . .  1 " #  l m #  l k # x . # a . > ,  

< ~  . . . . .  ~>>. 

�9 P e r f o r m  all local  c o m p u t a t i o n s :  

6(<q(1), . . . ,  q(n)>, (/z(1) . . . . .  /~(n)>) = G- l (< ,~l (q(1) ,  fl(1)), . . . ,  6n(q(n), fl(n))>), 

Local((~' , / . / in,  ~>)  = (~', ]./in, ~', (~(~, ]./in)). 

�9 E v a l u a t e  c h a n n e l  funct ions:  

S e n d ( ( C  1, m ,  > # - ' -  # (CN, raN>) = C l ( m l ) #  "'" # Cs(mN). 

�9 E x t r a c t  m e s sa ge s  for  p l a y e r j  f r o m  a list: 

Se lec t ( j ,  ( i~ , j x ,  ml  ) # " "  # (( iN,iN,  mN)))  

= Ord((( ik(1) , jk t l )mk(1)))  # " "  # ((ik(z),Jktz), mk(l)))), 

w h e r e  {k(1) . . . . .  k(l)} = {k l j  =Jk}" 
�9 Sor t  a list of  m e s s a g e s  a c c o r d i n g  to  recipient :  

Sort(L)  = ( S e l e c t ( l ,  L) . . . . .  Select(n,  L)>,  

whe re  n is the  m a x i m a l  rec ip ient  n u m b e r .  
�9 Pas s  m e s s a g e s  t h r o u g h  channels :  

Channel((q ' , /~in,  ~', (~'new, /Zou,>>) = (~', #iu, F, ~'new, #nut, Send(/zo~t)). 
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�9 Produce a new global state vector describing the entire system, and update 
views: 

Update((~', pin, v, ~'now, ~tnut, pdel)) 

= (•, Sort(/~del), ~(~) #in C) ~new (~) #out (~) Sort(ftdel)). 

�9 Perform one round of local computation and message delivery: 

Round = Update o Channel o Local. 

�9 Extract outputs from final states: 

Outputs(~') = (Yl(qx) . . . . .  Y~(qn) ). 

�9 Convert global state vector to output and view: 

Out((~ ,  #, ~)) = Outputs(~).  ~. 

Definition 6. An R-round execution of a synchronous n-party protocol on m-bit 
inputs is the following ensemble: 

Exec(n # m # :~" d, k) = n # m # Out(Round a~ . . . .  k~(lnit(n # m # ~" d, k))). 

The n and m values are often omitted for clarity. In particular, Exec maps an input 
string of the form ~. d to an output string of the form Y' ~'. 

A slightly more general definition might operate the protocol until all uncorrupted 
players enter a special, finished state. Such a modification is easily incorporated. 

The execution of a protocol in the presence of an adversary takes a slightly 
different course. The adversary examines a subset of the messages to be delivered 
and substitutes its own. The coalition of players whose messages are read and altered 
may be chosen statically or dynamically. A passive adversary changes no messages; 
a Byzantine adversary is permitted to do so. A rushing adversary may examine and 
replace messages from newly corrupted players before the entire set of messages is 
delivered. 

Definition 7. A t-adversary is a pair (d ,  T) where d is a player with one communi- 
cation line, with state set QA, transition function 6A, and output function YA. Here, 
T: QA ~ [n] is a coalition function, namely a function describing the set of players 
corrupted so far by d ;  T is "nondecreasing" and never exceeds t corruptions: 
(Vs e Z*) T(qA) ~ T(6A(qA, S)) and (Vq~) I T(qA)I < t. 

This definition requires the adversary to remember, for the sake of our convenience, 
which processors it has corrupted. The communication line is used to transmit 
requests for corruptions, responses containing information from those corruptions, 
and messages to replace those from corrupted players. 

For full generality we describe protocol execution with a dynamic, rushing, 
Byzantine adversary. The description applies equally well to passive or static 
adversaries, even though it specifies that the adversary request corruptions and 
replace outgoing messages; a passive adversary, for example, "replaces" messages 
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from faulty players with the identical, correct message (e.g., it keeps an internal copy 
of players it has corrupted and continues to operate them exactly as specified by 
the protocol, thereby effecting no change). 

The execution of a protocol in the presence of an adversary is a modification of 
the adversaryless execution. In particular, all nonfaulty players perform local com- 
putations and generate messages that are then passed through the communication 
channels. At this point, the adversary takes action. It requests incoming mes- 
s a g e s - f r o m  both the previous round and those generated in the current round, 
rushed--and outgoing messages, view, and state for a particular player by generat- 
ing a request i e [n]. Letting Q = (~', pin, v, ~'new, pout, pdel), define 

Fault(i, Q) = (qi, pdel([ -n'], i), Vi, p~ [ n ] ) ) ,  

(Q@(qA, i), i q~ [n], 
Request(Q@ ( qa, i)) 

(Q@f(qA, Fault(i, Q)), i ~ [n-]. 

After up to n rounds of learning new information (t for t-adversaries, who restrain 
themselves to requesting only t corruptions), d produces a set of messages to replace 
those from faulty players; these messages are passed through the channels. Views 
and states of corrupted players are nullified. 

Replace"(/, T, v, w) = t v' 
i T, 

w, i~T,  

Replace'(T, ~', if) = (Replace"(1, T, v(1), w(1)), . . . ,  Replace"(n, T, v(n), w(n))), 

Replace(Q@(qA, #)) = (~, pin, Replace'(T(qA), ~, 0), Replace'(T(qa), ~'oew, ~), 

pout, Replace'(T(qA), #dr Send(p)))@qA. 

The corruption state during a given round is concisely described by the following 
probabilistic function: 

Corrupt = Replace  o Request". 

Note that this expression is very general; it allows any number of corruptions, and 
does not specify any restrictions on the adversary. When a particular adversary class 
is described (for example, t-adversaries, polynomial-time adversaries, etc.), it is the 
specification of the adversary class that "restrains" the adversaries' behavior (e.g., 
to no more than t corruptions), not the description of protocol execution with an 
adversary. 

Extend Iuit and Out  so that 

Init(n # m # ~ .  d .  aA, k) = Init(n # m # ~" d, k)@~A(qA(O), 1 n # 1 n # 1 k # aA), 

Out((~, #, ~)@qA) = Outputs(~) o ~ o YA(qA). 

The n and m are often omitted for clarity. Extend the other functions f defined 
previously for adversaryless n-player protocol execution so that f(Q@qa)= 
f(Q)@qA. Define 

R o u n d A  = U p d a t e  o Corrupt o Channel  o Local .  
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Definition 8. An R-round execution of an n-party protocol on m-bit inputs in the 
presence of an adversary ~r is the following ensemble: 

ExeeA(n # m # ~" d" aA, k) = n # m # Out(RoundARr # m # ~" d" a A, k))). 

The n and m values are often omitted for clarity. In particular, ExeeA maps an input 
string of the form ~. d" aA to an output string of the form ; .  ~'. YA. To specify a 
particular protocol 1-I and adversary ~r we write ExeeA [II, ~ ]  (n # m # ~. d. aa, k). 

As before, the definition may be modified to allow the number R of rounds to depend 
on the number of repetitions of RoundA before all nonfaulty players reach a 
quiescent, finished state. The round complexity of a protocol is the maximal number 
of such repetitions; the message complexity is the maximal net size of all messages 
from nonfaulty players; and the local complexity is the maximal amount of time 
required by a Turing machine player to compute outgoing messages from incoming 
messages, namely to evaluate ~5 i. The last is distinguished from the computational 
complexity of the function the protocol purports to compute. Computation of a 
particular function is discussed later. 

The outputs of the players and of the adversary are often of greater significance 
than the views of the players. We define 

Y(; '~ 'YA)  = (YA, Yl . . . . .  Y~), 

YA;'~" YA) = (YA), 

Y[n](; 'v 'YA) = ( Y l  . . . . .  Yn)" 

Definition 9. The ensemble of outputs [H, ~ ]  induced by protocol H with adver- 
sary ~ '  includes outputs of the players and the adversary: 

[H, d ]  (n # m # ~" d' an, k) = Y(ExeeA(n # m # ~" d" an, k)). 

Relevant portions are the ensembles describing adversary outputs and player 
outputs: 

[rI, d]rA(n # m # ~" d" aA, k) = Ya(ExecA(n # m # s d" an, k)), 

I-H, ~]Yt'~(n # m # ~" d" aA, k) = Ytnl(ExeeA(n # m # ~" d. an, k) ). 

2.3. Real and Ideal Protocols 

An Adversary class is a set of adversaries. Unless otherwise specified, we consider 
dynamic, rushing, Byzantine adversaries. The t-adversary class A t consists of t- 
adversaries whose coalitions are arbitrary t-subsets of [n] (see Definition 7). A real 
protocol is one associated with a t-adversary class; in particular, no player is above 
corruption. 

In contrast, an ideal protocol contains one or more incorruptible players, called 
trusted hosts. These players are numbered n + 1, n + 2, etc., for convenience. The 
ideal t-adversary class A~dea I contains adversaries designed against ideal protocols 
but, as before, allowed only to corrupt t-subsets of [-n]. 

An ideal protocol represents a situation that is too risky to assume in general. In 
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ID(F) 

1. ( l < i < n )  i ~ n + l :  x i 
xi, if x i e dom(F), 

2.1 (1 < i _< n) n + l: x; = 0, otherwise (default value) 

2.2 n + 1: (Y l  . . . . .  y . )  *-- F(x'j . . . . .  x'.) 
2.3 ( l < i < n )  n + l - - * i :  Yl 
2.4 (1 < i < n )  i: outputyl 

Fig. 2. Ideal protocol for trusted host (n + 1) to compute probabilistic multivalued function F, which 
without loss of generality is extended to handle default values. When default values are used, the trusted 
host returns an n-bit vector with a 1 in the ith position if player i supplied a value outside the domain 
(not shown). 

fact, the problem of designing secure multiparty protocols is motivated by the lack 
of, and great risk inherent in, trusted parties. A simple, ideal protocol represents the 
goal to pursue: compute what a trusted host would compute when supplied with 
inputs from each participant, even though such a trusted host is never available. 
Figure 2 describes a two-round ideal protocol to compute a function F e PFF. 

2.4. Concatenating General Protocols 

Auxiliary inputs are included for two reasons. The first is of lesser concern in this 
paper. In computationally bounded models, auxiliary inputs present a means to 
introduce nonuniformity to uniform Turing machine computations. Often, crypto- 
graphic techniques are claimed to be secure against nonuniform circuit families used 
to break them. Auxiliary inputs allow strong measures of security to be considered 
when limited resources are of concern. 

The second reason is the more important: auxiliary inputs provide information 
gained externally, often through earlier interactions. Auxiliary inputs for nonfaulty 
players capture historical information from earlier protocols. When an adversary 
corrupts a player in a later protocol, it should gain all the historical information 
held by that player. Furthermore, a protocol that is secure for all possible auxiliary 
inputs need not be concerned with being broken by sensitive information revealed 
in advance. In other words, when one protocol follows another, the resilience of the 
second protocol is not jeopardized by information from the earlier one. 

Let {~1, ct2 . . . .  } be a collection of protocols, and let f(n, m, k): N ~ N. The 
sequential concatenation off(n,  m, k) protocols from {~r} is the protocol described 
in Fig. 3 and is written ~I = o~,. The function ExecAr represents an execution of 

CONCAT-PRoTOCOL({~r }, f(n, m, k)) 

1 ( l _ < i < n )  i: xi(l)*--xi;ai(1)~-a i 
2 For r = 1. . f(n,  m, k) do 

Run protocol 0c, to obtain new global state: 
(,xl(r + 1) . . . . .  x.(r + 1))- (a l ( r  + 1) . . . . .  a~(r + 1))'aA(r + 1) *- 

ExecA,(n # r n #  (x l ( r )  . . . . .  x.(r) )" (al(r)  . . . . .  an(r)) " aA(r), k) 
3 ( l _ < i < n )  i: outputxi(f(n , r e , k ) +  l) 

Fig. 3. Algorithmic specification of the concatenation of f (n,  m, k) protocols from the collection 
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protocol ~r. The inputs, output, and view of player i in the rth subprotocol are 
denoted xi(r ), ai(r), yi(r), and vi(r ). At each execution, xi(r + 1) is set to the previous 
output, yi(r). The view of the current subprotocol contains the auxiliary input from 
the previous protocol, so that a~(r + 1) becomes the concatenation y~(r) of a~(r) with 
the messages seen and computations performed by i during the subprotocol. 

The adversary is the same throughout the entire execution, and the set T of 
players it corrupts must contain those it corrupts in each subprotocol. More 
formally, if subprotocol ct, is associated with adversary class At, then the adversary 
class for oar is N "~r The adversary may be regarded as a repeated operation of d 
with auxiliary input aA(r + 1) updated to ya(r) each time. 

3. Security 

In the past, the analysis of the security and fault-tolerance of multiparty tprotocols 
has pursued the following sort of reasoning: a trusted host would return the value 
of f ( x l  . . . . .  x,)  but no other information, so a general protocol should maintain 
privacy, i.e., it should reveal no more than f ( x l  . . . .  , x,); a trusted host would return 
the right value, maintaining correctness; a trusted host would collect all inputs 
individually before computing f ( x t  . . . . .  x,)  or returning any information at all, 
maintaining independence of  inputs, i.e., requiring that one processor's choice of 
input 2 is not influenced by another's. Addressing these properties separately and in 
an ad hoc manner introduces confusion and makes formal definitions difficult. For 
example, correctness must be defined with respect to inputs, and often a notion of 
commitment to inputs is introduced to facilitate this approach. A commitment 
scheme (encryption and broadcast of inputs, for example) may interfere with 
independence of inputs (a faulty processor may choose the encryption of a good 
processor's input as its own input, with unpredictable effects on independence--or 
at least effects that are complicated to analyze). Without becoming mired in histori- 
cal details, suffice it to say that the ad hoc, analytic approach allows a variety of 
different versions of definitions that are not overly cohesive, comprehensible, or 
comparable. 

To unify these otherwise diverse definitions, we must return to the simplicity of 
the original goal, that of achieving the same results as though an ideal, trusted party 
were available. Galil et al. [19] and later Beaver and Rogaway et al. [6], [30], [12] 
make an initial foray in this direction, measuring the information leaked by a 
protocol with reference to a fault oracle that is guaranteed to return exactly one 
computation f ( x l  . . . . .  x.)  based on inputs held by correct processors and arbitrarily 
modified inputs of faulty processors. 3 In analogy to the zero-knowledge approach 
pioneered by Goldwasser et al. [23], we must demonstrate that the transcript of an 

2 A choice of inputs is necessary, e.g., when flipping a global coin by computing the parity of random 
input bits supplied by each processor, or in tallying a secret ballot. 

3 Even in an ideal case, faulty processors can supply different inputs to the trusted host; but this is 
their only influence. 
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execution of the general protocol can be generated ("simulated") using only the 
information provided by restricted access to the fault oracle. 

Kilian et al. [26] and Beaver [6], [5] note that it is not enough to measure the 
information obtained by the adversary. The influence the adversary has on the final 
output through calculated choice of corrupted players and their inputs, must also 
be considered. Correctness and dependencies among inputs are closely related to 
the power of influence. They propose that a simulation of a general protocol should 
not only produce a transcript seen by an adversary but should induce outputs for 
the correct players that are identical (indistinguishable) with those in the general 
protocol. Because the fault-oracle computes all outputs correctly, this lends the 
additional notion of correctness to the oracle-based simulation approach, and 
unifies widely varying definitions. 

Though the fault-oracle approach can be modified to capture the combination 
of information and influence, it is rather inelegant. It does not support modular 
proofs. For example, two protocols may each be proved secure by relating each to 
a different fault-oracle. To prove the concatenation of the two protocols secure, we 
must use a single fault-oracle. It is not clear how two calls to two oracles can be 
captured by a single call to a single oracle. If the concatenation is to be proved 
secure without further modification to the definitions, we must begin from scratch, 
at best able to employ the particular details of the particular individual proofs in 
an ad hoc manner. 

3.1. Relative Resilience: The Tool To Measure Security 

The insight that surpasses the solid but unsatisfactory fault-oracle approach is that 
a means to compare any two protocols, not simply a given protocol against a 
fault-oracle, is essential to providing comprehensible definitions and proofs. In his 
doctoral dissertation, the author [6] introduces and defines the notion of relative 
resilience. The work presented here adopts that approach. Given a means to 
compare the resilience of any two protocols, absolute resilience can be defined with 
respect to a standard, particular, ideal protocol, in which an incorruptible, trusted 
host is available. A general protocol is resilient if and only if it is as resilient as the 
ideal protocol. 

Consider two protocols, a and fl, each with an associated class of allowable 
adversaries, A~ and Ate. To compare the resilience of protocol ~ against an adversary 
~r e A, to the resilience of protocol/3, adversary d should be allowed to wreak 
havoc on protocol ft. Unfortunately, a and fl may be radically different protocols. 
One might have many more players than the other, one might disallow certain 
players from being corrupted, one might be written in C while the other is written 
in FORTRAN, and so forth. We cannot simply run protocol fl with adversary ~r 

Instead, ~r is surrounded by an interface, J ,  that creates an environment for d 
similar to that it finds in protocol a, and that at the same time participates in 
protocol fl as an adversary of its own right. The pair of machines or and ~r may be 
considered as a single adversary J ( d )  when the communications between the two 
are ignored. Of course, the combination J(~r must be a permissible adversary in 
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A~. 4 In a certain sense, the interface translates all of the adversary's prowess in 
corrupting protocol ~t into a corruption of ft. 

Definition 10. An interface J is a machine (interactive Turing machine or general 
player) with two communication lines; the first is called an environment simulation 
line, and the second is called an adversarial line. If a admits adversary class A~ and 
13 admits adversary class An, then J is an interface from �9 to fl if for every ~ / e  A~, 

To say that a is as resilient as fl is to say that ~ withstands attacks as well as ft. 
Thus, there must be some interface J that translates attacks on a into attacks on 
r,  such that the information gained and influence wielded by adversary ~ in a is 
the same as that of J ( ~ )  in ft. 

Definition 11 (Relative Resilience). A protocol ~ is as resilient as protocol fl with 
respect to adversary classes A~ and Ap, written 

O( ~'(A~, A#) fl, 

if there exists an interface J from a to fl such that for all adversaries ~ ~ A~, 

[~, ~ ]  ~ [/~, J ( ~ ) ]  

The subscript (A~, An) is omitted where clear from context. If [~, ~ ]  ~6(k) Jr, Y ( ~ ) l ,  
the protocols are called 6(k)-relatively resilient, written ~ ~ t~(k) ft. The protocols are 
exponentially (>_e) or statistically (>-s) relatively resilient according to how indistin- 
guishable the ensembles are. 

It is not only information but influence on outputs that is important. Previous 
attempts to define security seem quite ad hoc because they treat these issues-- 
privacy and correctness--separately. The definitions presented here unify all 
properties a priori. Furthermore, these definitions provide a general approach, 
allowing comparisons between arbitrary protocols, not simply direct measurements 
against a fixed standard. This permits modular proof techniques: the property of 
relative resilience (and its component properties, privacy and correctness) is easily 
shown to be a partial order. (It is not clear that it is an equivalence class: the existence 
of an interface in one direction is not clearly sufficient to show the existence of an 
interface for the reverse direction.) Hence proofs can be simplified by comparing 
intermediate protocols rather than proceeding in one intricate step to the goal. 

A standard of secure computation is nonetheless necessary. The ideal protocol 
serves as the measure of absolute resilience, in the same way that a trusted party 
guaranteed to provide a correct statement, "x ~ L," provides the standard for 
zero-knowledge proofs. 

The diagram in Fig. 4 illustrates a comparison of resilience between a real 
protocol and an ideal protocol. Three scenarios are of importance. The first 
represents the ideal world, in which a trusted and reliable host is available and 

4 Technically, there must be an adversary in A s with an identical input/output behavior as that 
produced by the pair of players, Y and ~r 
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Ideal Protocol 

Limited Adversary 

Protocol with Interface 

Adversary A 

Secure Multiparty Protocols and Zero-Knowledge Proof Systems 

Real Protocol 

Adversary A 

Fig. 4. Three scenarios: first, an ideal protocol with a trusted host, dearly delineating the limited 
information and influence of an adversary; second, an adversary attacking a trusted host by way of an 
interface that creates a simulated environment for it; third, an adversary attacking a real protocol with 
no trusted parties. Squares and circles indicate players; squares within the interface are simulated players. 
The cross ( x ) marks indicate corrupted players. 

ensures that the adversary is truly restricted to gaining only the inputs and outputs 
of players of its choice. The third represents the real world, in which no player can 
be trusted but a protocol must be designed to perform the same computations as 
in the ideal world, correctly and privately. The second and intermediate scenario 
joins the two, modeling the interaction in an ideal protocol attacked by a real 
adversary that is assisted by an interface. The information and influence of the 
adversary, allowed to attack the ideal protocol as best it may, is clearly delineated 
in this central case. It connects the clear measurements of security and reliability in 
the ideal case to the less easily understood powers of the adversary in the real world. 

Definition 12 (Resilience). A t-resilient protocol for F is a protocol I-I satisfying: 

II ~_~(At, A~d.,) ID(F). 
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A protocol is exponentially or statistically resilient according to whether it is 
exponentially or statistically as resilient as I D (F). Another sort of resilience, compu- 
tational resilience, in which the appropriate ensembles are computationally indistin- 
guishable, comes into play in resource-bounded settings, which are not considered 
here. This work focuses on achieving exponential resilience. 

Remark. Though this paper treats resilience as a whole, the property of resilience 
can be broken down into components, the most important of which are privacy and 
correctness. Historically, the division into separate properties has caused many 
difficulties in understanding and proving security, not the least of which has been 
to find a compatible set of definitions. Resilience, however, provides a unified and 
simple pair of definitions: 

Definition 13. A protocol ~ is as private as protocol fl if there exists an interface J 
from ~ to fl such that, for all adversaries d ~ A,, 

[~, ~3~ ~ [#, or162 ~A. 

A protocol ~ is as correct as protocol fl if there exists an interface J from ~ to fl 
such that, for all adversaries d e A,, 

[~, d]Y~ ., ~ [#, J ( d ) ]  ~f",. 

A protocol is t-private if it is as private as the ideal protocol, and it is t-correct if it 
is as correct as the ideal protocol. Note that the individual properties of privacy 
and correctness do not imply resilience unless the interfaces used to demonstrate 
both are the same. 

3.2. Fault Recovery and Defective Runs 

Cheating is defined not as departure from the protocol but as producing messages 
that are not consistent with some possible computation by a valid player. In other 
words, the adversary may replace messages from corrupted players, but if the set of 
messages has nonzero probability of being produced by a nonfaulty player, then 
the adversary has not cheated. There is no way to tell whether a player has generated 
a string according to the proper distribution or not, apart from checking whether 
that string is possible or not. Thus, a faulty player asked to supply a uniformly 
random bit may instead supply a biased bit without a problem, but if it supplies the 
string 00110, for example, it is deemed to cheat. 

Definition 14. An adversary cheats on message p(i, j, r) from faulty player i if a 
nonfaulty player i would never send # (i, j, r); that is, if Pr [ #(i, j, r)[/z(i, I-n], 1.. r - 1), 
#(In], i, 1.. r - 1)] = O. 

Most protocols turn out to be robust against using improper distributions, though 
this property is not always explicitly mentioned. For example, a protocol to generate 
a uniformly random bit will request bits from all players; if at least one player 
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supplies a uniformly random bit, the parity will be uniformly random, despite 
substituted distributions, even if no player accuses another of cheating. 

The difficult part in designing protocols is to detect cheating and recover graceful- 
ly. A relatively simple recovery method uses secret sharing: each player must share 
its inputs and random choices at the start of the protocol. During the protocol, a 
protocol RECOVER is run whenever cheating is detected to reconstruct the secrets of 
cheating players; thereafter, the messages from the cheating players are implicitly 
determined, publicly known and locally computable, and need not actually be sent. 
A slightly more complicated method is to run a recovery protocol that converts the 
n-player protocol to an (n - 1)-player protocol, redistributing the information held 
by the cheating player without revealing it. The same techniques enabling secret 
addition allow such a recovery protocol. As in a protocol by Galil et al. [18], this 
preserves privacy of participants suffering from accidental faults. In the case of 
polynomial-based secret sharing, this consists of reducing the degree of each polyno- 
mial by 1. In the protocols of this paper, it is implicitly assumed that RECOVER is 
executed when cheating is detected; to state this explicitly in all protocol descrip- 
tions would be burdensome. 

A defective run of a protocol is defined to be an execution in which the adversary 
cheats using some player i that is not immediately deemed by other players to be 
cheating. Normally, an interface easily determines whether a run is defective, by 
calculating whether the messages from J indicate cheating and whether the prop- 
erly distributed responses from nonfaulty players (which the interface simulates) 
include messages disqualifying the cheating player. Defective runs are ordinarily a 
problem for the interface because they may permit ~r greater information and 
influence in protocol ~ than it ought to have, whereas the interface has neither the 
information nor the degree of influence on players in its own protocol (fl) that ~r 
has in ~. It will be shown that if the probability of a defective run is small, then the 
behavior of the interface when faced with a defective run is irrelevant. 

Ideal protocols are implicitly assumed to return an extra result, namely a string 
of n bits set to 1 for each player that sends the trusted host an improper message. 
Thus, corrupted players may choose not to participate (i.e., to cheat), but this choice 
may become public information. 

3.3. Threshold Schemes 

Given formal definitions for security, threshold schemes (see secret sharing as 
sketched in Section 1) can now be defined. Threshold schemes are concerned with 
creating distributed representations of values that cannot be changed and that leak 
no information. 

A robust representation of a value can be decoded regardless of attempts to 
change portions of the representation. Error-correcting codes and verifiable secret 
sharing are examples. If ~" is a vector of n values, a t-modification of ~ is a vector 
differing in at most t places from ~. Let S be some set of values. 

Definition 15. A (probabilistic) function sha: S ~ dist(2 ~*)") is a t-robust represen- 
tation if there exists a function rec such that rec(~') = s, for all s e S and for all 
t-modifications ~' of any ~for which Pr~h,ts)[Y] > 0. 



94 D. Beaver 

The ideal vacuous protocol, denoted I D(0), returns no outputs apart from a vector 
listing players who have decided to become disqualified. Clearly, a vacuous protocol 
satisfies all intuitions regarding privacy, so any protocol that is as private must be 
absolutely private. 

Definition 16. A function sha is t-private if the ideal protocol I D(sha) to compute 
it is as private as the ideal vacuous protocol, I D(0). 

Robustness and privacy together define secret sharing: 

Definition 17. A threshold scheme with threshold t is a pair of protocols SHA and 
REC, where SHA computes a t-robust and t-private representation sha, and REC 
computes the corresponding function rec. 

4. Techniques for Proving Security 

Several lemmas provide a foundation for provin9 the security of the protocols 
presented in this paper. These range from simple lemmas regarding composition of 
probabilistic functions to previously unproven folk theorems whose informal state- 
ments, without care for technical detail, are often false. No algorithms are presented 
in this section. 

4.1. Ensembles 

Replacing an ensemble in a composition of several ensembles by one that is 
6(k)-indistinguishable gives rise to a composite ensemble that is at most 6(k)- 
indistinguishable. 

Lemma 1. Let  P1, P~, P~2, and P3 be ensembles. Define the ensembles 

Q~(z, k) = {zl ~ Pl(z, k); z] ~ P~(zx, k); z~ +- P3(z~, k): z~}, 

Q#(z, k) = {z 1 +- P~(z, k); z~2 ~- PP2(z,, k); zPa +- P3(z~2, k): z~}. 

I f  P~ ~O(~(k)) P~2, then Q~ .~o(~(k)) Ql~. The convergence parameters are identical. 

Proof. Let k 0 be the convergence parameter for P~ and P2 p, with associated con- 
stant Co. Assume by way of contradiction that Q~ ~o(~(k)) Qty. Then there is a k >_ k 0 
and a z such that 

Z ]PrP3tz2,k)[Z3]PrP)(z,,k)[Z2]PrP,tz.k)[Zl] 
~ I , Z 2 , Z 3  

-- Pre3tz~,k>[Za] Pr,~tz,,k~[Z2] Pre,t~,k )[zx ]l > Co' b(k). 

Thus there exists a z~ such that 

[(pre3tz2,k)[Z3]Pr~t~,,k)[Z2] -- Pre3t~:,k)[Z3]Pre~,tz,,k)[Z2])] > Co'6(k). 
Z 2 , Z  3 
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It follows that 

[Pr/')tz~,k)[Z2] -- Prp~tz~,k)[Z2] I 
g2 

Since k > ko, this contradicts P]  ~o~a~k)~ p~. [] 

4.2. Relative Resilience Is Transitive 

Theorem 2. Relative resilience is reflexive and transitive. This holds for perfect, 
exponential, and statistical resilience. 

Proof. Reflexivity is trivial, using an interface that simply passes corruption re- 
quests and responses back and forth without changing them. For transitivity 
(including the cases of perfect, exponential, and statistical relative resilience), 
it suffices to show that a ~z(k) fl and fl m~ t~2(k) ~1 implies ct ~ -~l(k)+~2(k) ~). If a ~_~ dtl(k) fl 
and fl~a2tk) 7, there exist interface J,,a and Jp, r such that for all d ,  
[-~, ~ ]  ~ dil(k) [-fl, o~'at, f l ( ~ ) ]  and for all ar Jr,  sr ~ k ~  [7, Ja,y(ar Define 
J~,r = jp,  r o J~,a; this interface passes requests from ar to an internal copy of ~ .a ,  
which then requests corruptions from an internal copy of ~r r, whose requests are 
then output by J .  The responses are passed through the internal machines in the 
reverse direction. Now, 

[~, d ]  ~,o, )  [/~, .~,,p(.~)] ~,,~,,~ [~,, .~,~(.~,.~(.~))] = [~, j~,,~(~)]. 

It is straightforward to show that [~, ~r ~ t~l(k)+t~2(k) [-7, ~t ,  ~(~) '1,  hence ~ D~ t~'(k)+~2(k) ~1. 
[]  

4.3. Postprotocol Corruption 

For proofs involving dynamic adversaries, it is essential that the interface be able 
to generate the view of a newly corrupted player. Certainly, during the run of a 
protocol, an interface must be able to compute such a view accurately, in order to 
produce a reasonable facsimile of the Fault function for ar In the case of the 
sequential concatenation of protocols, however, the view of a reliable player in- 
dudes its view during prcvious protocols. An interface J that runs subinterfaces 
for each subprotocol does not, during the rth subprotocol execution, obtain xi(r) 
and ai(r) when it requests the corruption of i; it receives only xi(1) and ai(1). 
Subinterface Jr requires an answer containing xi(r ) and ai(r), however. The view 
from earlier protocols determines both values, but J must generate this view. 

If J could request of J ,-1 that player i be corrupted, then it would obtain a view 
specifying xi(r) (the output of protocol atr_ 1) and ai(r) (containing ai(r - 1) and the 
view of player i in protocol ct,_l). Unfortunately, even though J,-1 may be ready 
and willing to accept more requests on its adversarial line, as though protocol ~t,_ 1 
were in its final stage when the adversary is still able to corrupt players after all 
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communications have been sent, there is no guarantee that its responses are accu- 
rate. The fact that it is a good interface for the previous protocol means that it is 
guaranteed only to generate good responses for requests made by adversaries to 
that protocol, not necessarily for arbitrary requests made later by other, perhaps 
more powerful and extensive, adversaries. For example, in a computationally 
bounded setting, there is no reason an interface that works for coalitions generated 
by polynomial-time adversaries will also work for arbitrary coalitions, including 
those chosen later. 

Fortunately, in the cases of perfect or exponential resilience, static adversaries, 
or memoryless protocols (in which views can be erased), the interface must of 
necessity satisfy this requirement. To see this in the case of perfect or exponential 
resilience, note that for any ~r there is an ~r that, in the final round, selects an 
additional player randomly and requests its corruption. The probability of selecting 
a given player is at least l/n, so if the interface fails to provide a &(k)-accurate view, 
the resulting ensemble will be at least (6(k)/n)-distinguishable from the desired 
ensemble. 

To define postprotocol corruption, we allow an adversary to attack 11 even after 
its execution is complete. A vacuous protocol FI(~) that has no channels and 
executes no instructions serves as a convenient tool to describe an attack on a 
network after all computations have finished. Consider the following special execu- 
tion of H and l-I(~) with adversaries ar and i f :  adversary d attacks H, adversary 

is given Y" Ya, and finally ~ attacks FI(~). In the attack on H(~) ,  the "post- 
protocol adversary" ~ has access to the adversary output Ya and state qA, the 
original auxiliary input aA, the player outputs ~, and some subset of the views ~' 
generated by the first execution ExeeA [H, d ] .  It then requests more corruptions, 
receiving outputs and views of protocol I-I. Define [H, z,r s~7] to be Y'Ya "Y,i, where 
Y,i is the output of ~ .  

A postprotocol corrupter is like an interface: it translates views, inputs, and 
outputs of players corrupted in one protocol (fl) to facsimiles of views, inputs, and 
outputs of players in another (ct). 

Definition 18. A postprotocol corrupter J is an interface that, when given corrup- 
tion request i, makes a request for the input and view of player i on its adversarial 
line and returns a constructed input and view on its environment simulation line. 
A corrupter from ct to fl satisfies (Vff e A~) J"(~r ~ Aa. 

It is often convenient to imagine that both J and ~r continue running after fl is 
finished, with ~r executing 3 and d executing ~7 (after being given the string f); 
then we may "make corruption requests of J after fl is finished." 

Define the ensemble [fl, J ( d ) ,  J(~r as the outputs Y" YA" Yd induced by the 
following execution: ~1 attacks fl through J ,  ~ is given Y' YA, and finally ~7 attacks 
H ( ~ )  through 3 ,  who is given the final state of J as an input. We would like to 
say that, even knowing all the outputs of the protocol, a postprotocol adversary 
cannot tell whether it is receiving outputs and views from ct or outputs and views 
generated by a postprotocol corrupter J :  
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Definition 19. Protocol ~ is postprotocol corruptible with respect to protocol fl if 
there exists an interface J from ct to fl and a postprotocol corrupter J from a to fl 
such that, for all i f ,  ~r e A,, 

[~, .4, ~/] ~ [/~, : ( d ) ,  : ( .d) ] .  

Remark. 3 is not allowed to see all the outputs g from ~; but it may see some of 
them, since it can request new corruptions from ft. In the case of t-adversaries, the 
postprotocol adversary f f  is still limited to requesting corruptions of t-subsets 
(despite having all the outputs ; - - b u t  not the views D'); 3 can obtain the necessary 
outputs through corruption, and its real job is to transform views v~ of fl into views 
v~ apparently of ct. 

4.4. Composition and Concatenation 

Under certain circumstances, the concatenation of polynomially many resilient 
protocols is itself resilient. Consider first a family {P~} of ensembles. With respect 
to function f :  N ~ N, define the composition P:  o f f ( k )  ensembles f rom {Pi} by 
P:(z,  k) = P f ( k ) ( P f ( k ) _ X ( ' ' "  Pl(z, k) . . . ) ,  k). Two ensemble families {Pi} and {Q,} are 
uniformly pairwise {6~}-indistinguishable, written {P~} ~,~, {Q,}, if there exists a k o 
such that, for all i, P~ g~,(k) Qi with convergence parameter at most ko. Another way 
to state this is 

(qko) (Vi)  (Vk > ko) (Vz ~ Y~*) IP,(z, k) - Q,(z, k)] < b,(k). (!) 

The order of quantifiers (3ko), (Vi) is essential. 

Lemma 3. The composition of  indistinguishable ensembles is indistinguishable: 
{Pi} ~ ~' {Qi} ~ P :  "~  Q:, where b(k) = ~{~]) 6,(k). 

Proof. Assume {Pi} ~ ~' {Qi} but P :  ~ Q:. Let k o be the uniform convergence 
parameter (see (1)) for the former. For some k > ko and for some z, defining 
Rl = Pytk) o ... o Pl o Q z - 1  o . . . o  Ol, 

f ( k )  

b~(k) < ~ IPy(R ) o . . . o  pl(z,  k) - Qftk) o ... o Q:(z, k)l 
i = 1  z 

-< 5-:, IRo - RI + R1 - R 2  q-  " '"  q- R:(k)-i -- R:(k)l 
z 

< 
f ( k )  

~ IR~_:(z, k) -- R,(z, k)l. 
z i = l  

Reversing the order of summation, it follows that, for some i, 6i(k)< 
~',z IRi-l(z,  k) - Ri(z, k)l. By Lemma 1, hi(k) < ~ z  IPi(z, k) - Q~(z, k)l, contradicting 
{Pi} ~ a, {Qi}. [] 

Now consider a family {~i} of protocols, and define the concatenation ct: o f f ( k )  
protocols f rom {~i} by ~:(n, m, k)(Y. d-aa) = Ct:(k) o ... o ~l(n, m, k)(s Two 
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protocol families {ai} and {fig} are uniformly pairwise relatively {6i}-resilient, written 
{~} ___ {fig}, if there exists a ko such that, for all i, a~ _____a,(k) fig with convergence 
parameter at most ko, and each ~ is postprotocol corruptible with respect to fli. 

Lemma 4. I f  {a~} and {fl~} are uniformly pairwise relatively resilient and post- 
protocol corruptible, then the concatenations a: and fl: are also relatively resilient 

- -  f ( k )  and pos tpro toco l  corrupt ib le:  {cq} ~>~' {fig} :::I> o~ f ~_'~ flY, where  (~(k) : Ei=I ~i(k). 

Proof. Let ~ be an arbitrary adversary in A~. For each i ___ 1, let interface 
satisfy (V~r ~ A~,) [~g, .~r ~ ,  [fig, J (~ ' ) ] ,  and let postprotocol corrupter 3~ satisfy 
(Vff, d ~ A~,) [cq, ~r ~r ~ '  [cq, ~/(~r ~ ( f f ) ] .  Let these ensembles converge 
pairwise uniformly with convergence parameter ko. Define J to be an interface from 
ct: to r :  that, on input k, runs interfaces J l ,  . . . ,  J:tk), running the attack of d on 
a i synchronously with the attack o f ~  on fli. That is, J expects a series of corruption 
requests from adversary ~1 corresponding to executions of ~1 up to ct:; while ~1 is 
generating requests for corruptions in ~i, J participates in fli, running J/  as a 
subroutine. 

For the first subprotocol, J runs J l ,  using its corruption requests to corrupt 
players in fl and supplying 0r 1 with the information it receives (i.e., (xf(1), af(1))). 
Now, note that even though an interface induces player outputs ~#(2) and an 
adversary output aa~(2) that are indistinguishable from those seen in an ~ : run ,  the 
views d#(2) of nonfaulty players after an execution of fl~ will be different from those 
of nonfaulty players after an execution of~ 1 . Thus, the fact that J2 is a good interface 
will not help during the second subprotocol, since ~2 and r2 must be started with 
the same inputs and auxiliary inputs in order for ./2 to apply. Fortunately, since 
nonfaulty players compute independently of their auxiliary inputs (see Definition 
5), we can run r2 using incorrect auxiliary inputs for nonfaulty players, as long as 
when these auxiliary inputs are revealed by corruption, the interface replaces them 
with a good facsimile of an ~:view. 

Thus, when i > 1, J filters the responses to corruption requests made by ~ ,  so 
that ~ see auxiliary inputs containing views apparently from previous at-protocols 
~1 . . . . .  ~g_~, instead of the ones from fll . . . . .  fli_~ that are returned to J from its 
corruption of ft. When ~ requests the corruption of player j, J corrupts j in ft. If 
player j is already corrupt, then J has already generated its input and auxiliary 
input, and it need only tack on the view of the current run of fig before it replies to 
~ .  Otherwise, J generates a view of previous ~-subprotocols by using postprotocol 
corruption. Interface J obtains af'(1) . . . . .  af'-'(i - 1) from the corruption o f j  in 
fig; since cq and fl~ were started on the same inputs and auxiliary inputs, 3 t sets 
aj(1) = af(1). To obtain aj(2), J requests postprotocol corruption of player j from 
~ ,  and it supplies 3~ with xj(1) and aj(1). Interface J receives an output and view 
for cq which it denotes xj(2) and aj(2). Allowing r to range from 2 to i - 1, or repeats 
this process with ~ ,  supplying J ,  with a](r) and receiving a~(r + 1). Finally, J 
supplies ~ with a~(i) along with the x](i) and vf' obtained from protocol fli. A 
specification for . / i s  given in Fig. 5. 

Now, let us consider the ensemble R~(~, ~'. an, k) induced by running s protocols 
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Interface 

1 F o r / =  1..f(k) for j= 1. .ndoxj( i)~-A,a~(i) , -A.  
2 For i = 1.. f(k) do 
2.1 Participate in fll using ~/. 
2.2 On request j from ~ do: 
2.2.1 Corrupt j, obtain vfi, x~(i), af(i). 
2.2.2 Assign x~(1) from x~(i) and a~(1) from nO(i). 
2.2.3 If a~(i) = A then 

for r  = 1 . . ( i -  1)do 
qL, xj(r + 1), a~(r + 1) ~ ~(qL, xj(r), a~(r)) 

2.2.4 Return xj(i), aj(i)" vfi to ~ .  
2.3 Initialize ~ (start it on input qa = qa(i)) and record state q~c 

Fig. 5. Interface for the concatenation off(k) protocols from {ill}- 
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from { fl,} followed by f ( k )  - s protocols from {a,}, with adversary ~1 and a modified 
interface is .  Let x j (1)=xj  and a j (1)=aj  for 1 _<j _< n and set an(1 ) = a A. The 
outputs offl~ for i = 1 to s are denoted xfl(i + 1), af(i  + 1), a~(i + 1), and the outputs 
of cq for i = s + 1 to f ( k )  are denoted x](i + 1), a;(i + 1), a,~(i + 1). The modified 
interface J~ uses postprotocol corruption to create views for the first s fl-protocols, 
but uses portions of the actual views (a;) to construct views of the a-protocols. That 
is, Js runs the ~" program as in Fig. 5, but it performs postprotocol corruption (step 
(2.2.3)) for r ranging only from 1 to min(i - 1, s). If i > s, i s ,  then sets xj(i) 
x;'(i) and, letting A~(s, i) denote the suffix of a](i) corresponding to subprotocols 
cq+ 1 . . . . .  a i, ~ sets aj(i) ~ aj(s). A~(s, i). The views ~ supp, lies are thus a combination 
of fl and a views. We may write Rs = [~(s + 1)o fl(s), J~(~O], where ~(s)= 
af(k) o " "  o as and/~(s) = fls o . . .  o ill. 

Clearly, if(k) is J while Jo  is no interface at all. Therefore, RI(,)(~, d. aA, k) = 
[fly, Y ( d ) ]  (~, d" an, k) and Ro(~, d. a A, k) -- [a I, ~ ]  (~, d. aA, k). As in the proof of 
Lemma 3, a difference exceeding J(k) for k _> k o between [a f, d ]  and [flY, J ( ~ ) ]  
translates into a 6i+l(k ) difference between R~ and R~+ 1 for some i and ~" d. a A. 

Expressing Prgd;.~.aA,k)[~" ~" YA] as 

Pr[~(i+l), ~(M)I (.x'.a" .a~,k)[;" ~" YA]" Prl~(i), ~(~)l(~.a..A,k)[X'" if'" aj] ,  
~'.~'.a~ 

then as in the proof of Lemma 1, there exists a ~ ' .  ~". a~ such that 

[ Pr[~(i+l), ~l~(J~')l(.~"~"a,~,k)[-;' ~" YA] - Pr[~(i+2)o #,,,, )~§ V" YA][ 
~.~.y~ 

> 6~+~(k). (2) 

I f / <  f (k) ,  the difference of Ji+l (k) between running ai+ 1 followed by ai+ 2 . . . . .  af(k) 
and running fl,+~ followed by ai§ 2 . . . . .  af(k) will contradict the postprotocol cor- 
ruptibility of ai+l with respect to fli+l. Consider protocols ai§ and fli§ executed 
on inputs ~ ' .  ~' �9 a~. When M attacks a~§ it resets itself to the state listed in aj  and 
continues where it seemingly left off. Let ~ be a postprotocol adversary against a~ 
that, given ; .  YA, runs M starting in the state described by YA against an internally 
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simulated ~(i + 2) on inputs ~(i + 2) = 3(0. Then (2) translates to the following: 

I Prt ..... d, dJt;'.~'.~,kJ-3" F" Ya] - Prt#,+,, 4+,~0, ~+,t ~)lt;'-a' "a'A,k)[Y" F" Ya]l 
f.J-y~ 

> ~i+~(k) 

for some k _> ko, contradicting that a~+~ is postprotocol corruptible with respect to 
~i+1 �9 

If i = f(k) ,  then (2) says that there exists a ~ ' .  d ' .  a:~ such that 

[ Prt~:,~,, dl(;'.~' "al,k) I-3" F" Ya] - Prt#:,~, , (~/)l(:,,.~,.,i,k) [3" F" Ya] ] > t~f(k)(k) 

for some k > ko, showing O~f(k) ~i~ 6x:tkl(k) flf(k)' again a contradiction. [] 

The following states an oft-used but previously unproven and unformalized folk 
theorem: 

Theorem 5. Concatenating polynomially many postprotocol-corruptible protocols 
with identical convergence parameters preserves resilience: 

where f is polynomially bounded. This holds for exponential and statistical resilience. 

Proof. The result follows directly from Lemma 4. [] 

An essential technical point to note is that uniform pairwise resilience is required; 
simply composing polynomially many ensembles or protocols will not preserve 
indistinguishability or security. The pitfall is analogous to the distinction between 
functions that converge pointwise and functions that converge uniformly. Consider, 
for example, the ensembles Pi and Qi defined by 

Pr&(z,k)[0 ] = 1 if k < 2i, 

Prv,(z.k)[1 ] = 1 if k > 2i, 

PrQ,(z.k)[1 ] = 1 always. 

Clearly, for all i, Pi ,~ot2-k)Qi, since (Vi, z) (Vk > 2i) P~(z, k ) =  Q~(z, k). Letting 
f(k) = k, we see (Vz, k) Prv:r = 1, because Pyr k) = Pk(P~-l( '") ,  k) and k < 
2k. On the other hand, (Vz, k) PrQsr = 0. Hence (Vz, k) IPY(z, k) - QY(z, k)l = 
1, eliminating the possibility that PY ,~or162 2 ~ Qf. The conclusion of Lemma 3 
fails without the uniformity condition. Considering protocols, let F(x  1 . . . . .  x , )  = 0 
always. In protocol cq, player 1 reveals xl when k < 2i; no other messages are ever 
sent and every player always outputs 0. In protocol fl~, no messages are ever sent 
and every player always outputs 0. Clearly, ~i ~'O(2-k) ill, but for f ( k )  = k, ~: always 
reveals x~ while fl: reveals nothing. It easily follows that c~ y ~Otytk). 2 k) flY. 

4.5. Concatenating Ideal Protocols 

The direct concatenation of ideal protocols does not quite provide the desired level 
of resilience we expect. Operating two protocols I D(F) and I D(G) in sequence does 
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not ensure that the inputs to the second protocol are in any way related to the inputs 
or outputs of the first. A corrupt player might obtain y~(1) as its output of F but 
instead supply yi(1) + 7 or 2 or x~(1) - 63 as its input xi(2) to G. 

In many circumstances this is quite undesirable. For example, the employees of 
a company might wish to calculate their average overall salary and the average 
salary of management. First, they compute the overall average. For the second 
computation, however, the management may report lower salaries to obtain an 
advantage in salary negotiations. 

Let ~ = {F'},~ N be a possibly infinite collection of functions F r ~ PFF, and let 
f :  N 3 ~ N be polynomially bounded. 

Definition 20. The open concatenation o f f  ideal protocols from : is the following 
protocol, denoted by olD(F~). Consider n + f ( n ,  m, k) players. Players i >  n are 
incorruptible. The protocol requires 2f(n, m, k) rounds; let r range from 2 to 
f(n, m, k): 

(Round 1) Each player i ~ [n] sends xi(1) = xl to trusted player (n + 1). 
(Round 2) Player (n + 1) computes Fl(xl  (1) . . . .  , x,(1)) and returns yi(1) to each 

player i E [n-I. 
(Round 2r - 1) Each player i ~ [n] sends xi(r) = y~(r - 1) to trusted player 

(n + r). 
(Round 2r) Player (n + r) computes Fr(xx(r),... ,  x,(r)) and returns yi(r) to each 

player i e [n]. 

Technically, the objection simply to concatenating protocols directly is the fol- 
lowing. Operating ideal protocols in sequence invokes different trusted parties, one 
to compute F 1, one to compute F 2, and so on. None of the trusted parties share 
any information or communicate at all. In the ideal composite protocol, the host 
retains the values of the outputs for use in each successive computation. 

Definition 21. The ideal composite protocol I DC(oU) has one trusted party. The 
trusted host requests x 1 (1),..., x,(1), computes F 1, computes F 2 o n  the results, and 
so on, up to the computation o fF  f(n'm'k). It returns the values yi(1) . . . . .  yi(f(n, m, k)) 
to each player i. (Notation: every appearance of %" within I DC(') indicates a 
function value to return.) 

Robustness, privacy, and threshold schemes (see Section 3.3) resolve the problem 
of inconsistent arguments being used in different stages of a concatenation of 
protocols. Robust computations are performed equally well when several different 
trusted hosts each compute an individual stage in the computation, as when a single 
host computes and returns all the intermediate results (ensuring outputs of earlier 
functions are used as inputs to later ones). Computing and revealing sequence of 
private functions is as secure as computing only the final result. These properties 
come together in the following theorem, which demonstrates that the share/add/ 
multiply/reveal structure found so often in multiparty protocol design--though not 
proven--is as resilient as having a single trusted host compute and return only the 
final result. (In fact, to the author's knowledge, only one protocol departs from this 
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Fig. 6. Illustration of ideal protocols for hide(Ff). The first protocol, o i ID(hide(Fi)), contains several 
hosts who compute robust and private representations of intermediate results. The second protocol, 
I DC(o i hide(Fi)), contains just one host who computes and returns the same values. The third protocol, 
I D(o i hide(Fi)) (equivalently I D(hide(F:))), contains just one host who computes and returns only the 
final representation. 

paradigm: the constant-rounds noncryptographic protocol of Bar-Ilan and Beaver 
[2], which uses an even more general technique to reduce the number of rounds of 
interaction. See [6] for a formal statement of this more general methodology.) 
Define FY = F :r . . . .  k) o . . .  o F ~, and for any function H, let hide(H) be the function 
sha o H o rec. 

T h e o r e m  6. I f  (SHA, REC) is a t- threshold scheme comput ing (sha, tee), then 

REC o (or D(hide(Fi))) o SHA ~- I D(Ff). 

Proof. The proof contains four stages, some of which are illustrated in Fig. 6. The 
first stage uses only the property of robustness to show that, even though individual 
trusted hosts do not communicate among themselves, a sequence of hosts is as 
resilient as a single host (who guarantees that the outputs of F i are used as inputs 
to F i§ The problem of faulty players who substitute false values for the outputs 
of earlier protocols is thus solved. Formally, if sha is t-robust, then, for any family 
of functions {El},  

o~ I D(hide(Fi)) _~ I DC(o~ hide(Fi)). (3) 

Let ~ = o i ID(hide(F~)) and fl = IDC(o i hide(F~)). In potocol g, there are f ( n ,  m, k) 

trusted hosts: host (n + i) computes hide(Fi). Inductively, by robustness, as long as 
no more than t values of the outputs of hide(F z) are changed, then the output of 
F i+~ is F i+1 o . . .  o F l ( x~  . . . . .  x,). Therefore, the outputs of players in �9 and f l - -  
namely, just the list off(n,  m, k) values returned by the hosts--are identical, if the 
xi values given to host (n + 1) in ct are the same as those given to (n + 1) in ft. 

At the start of~, interface J responds to requests to corrupt player i by requesting 
that i be corrupted in ft. It then returns x~ and ai to ~r When ~/ outputs its 
substituted messages from corrupted players to host (n + 1) in g, J simply repeats 
these messages--which represent alternatively chosen x~ inputs-- to the single host 
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(n + 1) in ft. In both protocols, the original set of inputs is easily seen to be the same. 
Hence the computations o fF  i are identical. Now, J completes protocol 3, obtaining 
messages yi(1) . . . . .  y~(f(n, m, k)) for each corrupted player. In ~, these computations 
have not yet occurred, but now J is ready to supply them to ~r when needed. 
Furthermore, when ~1 requests a new corruption, J simply requests that player i 
be corrupted in 3, obtaining the entire sequence of returned values, which J then 
uses to supply ~r gradually with the results returned by the sequence of hosts in ~. 
This completes the proof of (3). 

The second stage uses the property of privacy to show that a protocol in which 
a single host reveals private representations of intermediate results is as resilient as 
one in which the single host reveals only the final representation: 

I DC(o~ hide(F~)) ~ I D(o~ hide(F~)). (4) 

Let ~ = I DC(oi hide(Fi)) and/~ = I D(oi hide(F/)). Both protocols contain a single 
trusted host who returns a result (or string of results) in one step. Because there is 
only one host in each case, the outputs of nonfaulty players are identical whenever 
the inputs are the same in both protocols. Interface . / m a k e s  sure that requests by 
d to replace inputs are sent to protocol 3 to ensure that the inputs are the same. 

The only difference between protocols is that in ~ the view of a corrupted player 
includes several progressive outputs from the computations of o~ hide(F~). Because 
sha is t-private, an ideal protocol to compute the output hide(F ~) = sha o F ~ o tee at 
each step is as private as the ideal vacuous protocol. Hence there exists a sub- 
interface ~ha that J can run to take care of the computation. Because ~ha itself 
expects to participate in a vacuous protocol, it expects only initial inputs x~ # a~ in 
response to its corruption requests. Interface J generates the intermediate inputs 
by postprotocol corruption of earlier incarnations of ~ha" Thus . / i s  able to provide 
the proper responses to d ,  simulating the vacuous protocol without using addition- 
al information. 

The third stage is to show that if (S~A, REC) is a t-threshold scheme for functions 
(sha, ree), then, for any function H, 

I D(rec) o I D(hide(H)) o I D(sha) _ I D(H). (5) 

Let ~ = ID(rec)o ID(hide(H))o ID(sha) and let /~ = ID(H). Robustness implies 
that, provided inputs are the same in ~ and 3, the outputs are the same, since 
ree o hide(h) o sha = H. As in the second stage above, protocol ~ reveals intermedi- 
ate values that are private representations, and the previous arguments hold. When 
~r requests the final view and output of I D(rec) for a corrupt player, J supplies d 
with the value lifted directly from corrupting that player in I D(H). 

The fourth and final stage puts these pieces together to prove the theorem. Using 
(3) and (4), 

o, I D(hide(F')) _ I DC(ohide(F~)) 

~- I D(hide(F:)). 

Using Theorem 5 and result (5), 

REC o (ol D(hide(Fi))) o SHA ~" REC o I D(hide(Ff)) o SHA 

)-I  D(F:). [] 
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4.6. Security with High Probability 

To achieve an exponentially resilient protocol, it suffices to give a protocol that 
provides security for most runs. Let Defect be a predicate on strings that states 
whether an execution producing Y'-~'YA is "defective." We leave the particular 
definition of a defective run open for the moment, but, as an example, it may label 
as defective a run in which a faulty player gives a successful proof of a false statement 
to a nonfaulty player, or one in which a faulty player shares a secret that the players 
accept after a verification procedure even though it cannot later be reconstructed. 
In particular, we consider predicates that are computable strictly from the adver- 
sary's output (the examples just given are such). It is also useful to allow the 
adversary's output to be a particular symbol, "defect," such that Defect("defect") = 
1; an interface may output "defect" when it comes to a point where the adversary 
"gets away with" such cheating. In such a situation, the interface would not have 
the information to supply or the influence on the fl protocol that it needs to match 
exactly what the adversary would gain in the ~ protocol. 

Define an ensemble induced by nondefective executions: 

[[l-I, ~ ]  ] (n # m #  ~. d. aA, k) 

= {Q *-- ExecA(n # m # ~" if" an, k): Y(Q)](Defect(Q) = 0)}. 

The term optimistic connotes ensembles conditioned on nondefective runs. Note 
that this definition applies equally well to any protocol, since Defect is defined on 
strings. 

One protocol is optimistically as resilient as another if there is an interface that 
works when the runs are not defective: 

Definition 22. A protocol e is optimistically as resilient as protocol fl with respect 
to adversary classes A, and Ao, if there exists an interface J from ~ to fl such that, 
for all adversaries d ~ A,, 

[[~, d ] ]  ~ [[/~, J (~ ) ] ] .  

We write this as 
~/~.  

Let the maximal probability of a defective run in protocol ~ with adversary class 
A, be 

PrDefeet(~) = max t ~ ~ A ...... ~.a,,A) Pr [Defect(ExecA(n # m # ~' if- a n, k)) = 1] 

as a function ofk. Similarly define PrDefect(fl). In order to show a protocol resilient, 
it suffices to prove that it is optimistically resilient, as long as defective runs are rare: 

Theorem 7. I f  ~ ~e fl and, for some c > 1, PrDefect(~) = O(c -k) and PrDefect(fl) = 
O(c-k), then c~ ~c ft. 

Proof. Note first that various combinations of perfect, exponential, and statistical 
resilience are also possible. By the premise of the theorem, there is an interface and 
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a constant d satisfying [[~, ~r gd ~ [[fl, j (~r  We use the following elementary 
lemma: 

L e m m a  8. Let P be a distribution on X and let Y ~_ X be such that Pr[Y]  2 1 - 6 

for some 6 < �89 Then IP - (PI Y)I < 36. 

P r o o L  Since 6 < �89 we have 1/(1 - 3) > 1 + 23, and 

\Pr~(Pr[x] ) IPr[xl Y ] -  Pr[x]l  = ~ Pr[x]  
x'Tr ;7r  

Now consider the points not in Y: 

= ( 1  -1 6 1)- Pr [Y]  

< (1 + 26 - 1)(1 - 6) < 26 - 262. 

[ P r [ x l Y ] -  Pr[x][ = ~ Pr[x]  = &  
xCY xCY 

Therefore, 
[Pr[x] Y] - Pr[x]] < 36 - 232 < 38. []  

x~X 

Because PrDefeet(~) = O(c -k) and PrDefeet(fl) = O(c-k), there exist k~ and kp 
such that k _> k~ =:, PrDefeet(~t) < c -k and k > k s =~ PrDefeet(fl) < c-~; we may 
assume c -k < �89 without loss of generality. In particular, setting 6 --- 6(k) = c -k and 
letting Y be the set of defective runs for ~, Lemma 8 implies that, for all for k _> k~, 
for all adversaries ~r e A~, and for all n # m # ~" a- aa, 

][0~, ~ r  ~" d'aA, k) - [[~, ~ r  :~'d'aA, k)] < 3c -k. 

Likewise, for k > ks, and noting additionally that s r  A~ implies J(~r e Ap, we 
have 

[[[fl, J ( a ' ) ] ]  (n # m # ~ .  d. aa, k) - [fl, J(~r  ( n # m #  ~-ft. aA, k)[ < 3c -k. 

Set ko = k~ + ks; clearly, for k > ko, the differences in probability distributions are 
not large: 

][cq d ] ( n # m #  :~'d'aA, k) - [[~, d ' l ] ( n # m #  ~ ' d ' a a ,  k)[ 

+ 1[[~, ~ ] ] ( n # m # : ~ ' a ' a A ,  k) - lift, J ( ~ ) ] ] ( n # m # : ~ ' a ' a a ,  k)l 

+ I[[fl, J ( ~ ) ] ] ( n # m # ~ ' d ' a A ,  k) - [fl, J ( ~ c ) ] ( n # m # . ~ . d . a  a, k)l 

< 30 -k + d -k + 3c -k. 

Letting C = 1/7. rain{c, d} and using the triangle inequality, the following holds for 
all ~ E A~ and for all n # m # ~" d" aA: 

k _> k o ~ ][a, d ] ( n # m # : ~ ' d ' a a ,  k) - [fl, J ( d ) ] ( n # m # ~ ' d ' a a ,  k)l <_ C -k, 

completing the proof of the theorem. []  
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4.7. The Strong Principle of Independence 

Another oft-cited but imprecise principle is that "the messages the adversary sees 
from nonfaulty players are independent of their inputs, so the protocol is secure." 
In fact, it is often the case that nonfaulty behavior is not completely independent 
of the inputs--for example, when defective runs are possible. Independence by itself 
says nothing directly, for example, about an adversary's influence or about computa- 
tionally expensive messages (providing free, uncomputable data in a resource- 
bounded setting). Message independence might not hold when comparing two 
slightly insecure protocols and is thus not always applicable tO proving relative 
resilience. A precise formulation, proof, and description of the applicability of this 
principle is required. 

The principle of message independence reflects a more fundamental statement: 
optimistically, the messages from nonfaulty players in ~ are a fixed probabilistic 
function of adversarial outputs in ct and messages seen by corrupted players in/3. 
When/3 = ID(F), the messages in/3 contain only the final output, so by fiat, the 
nonfaulty messages in ct are independent of all information except the output. The 
adversary's computations are based on these nonfaulty messages and on inputs of 
faulty players, and as a result they are inductively independent of nonfaulty players' 
information. 

Definition 23. The Strong Principle of Independence for ~t and/3: Optimistically 
(i.e., conditioned on nondefective runs), Fault is a function of #(T, [n], 1 ..r) 
and #(In], T, 1 ..r) in each round r of protocol g and of #a(T, I-n], 1 . .R p) and 
#P([n], T, 1.. R p) in protocol/3. As in Definition 7, T indicates the coalition chosen 
by the adversary at round r of g; R a is the number of rounds in protocol/3. 

Theorem 9. I f  the strong principle of independence holds for o~ and r, and 
PrDefect = O(cS(k)), then ct >. o(~(k)) /3. 

Proof. A canonical interface J operates internal versions of nonfaulty players in 
~, each starting with input xi = 0 (or some allowed input). Intuitively, it should not 
matter with respect to messages sent to ~r whether nonfaulty player i holds 0 or 
some other input. When the interface must evaluate Fault(i, <~', #i,, v, ffnew,/~out, 
#ael>) in response to a new corruption request i from d ,  it requests that i be 
corrupted in ft. It then restarts the internal set of players, this time with xl set to the 
value obtained from/3. At each step of the internal execution, J makes probabilistic 
calculations for each internal player as specified by ~t, but conditioned on messages 
already sent to and received from ~r (i.e., p(T, In-I, 1.. r) and #(In], T, 1.. r)) and on 
messages sent to and received from J in/3. 

For example, if player i has secretly shared xi, then 3" repeats the sharing with 
the condition that PIECEj(Xi) for j e T is unchanged; in this case, the conditional 
distribuuon on remaining pieces is efficiently calculable, simply by selecting a 
certain number of remaining pieces uniformly at random and solving linear equa- 
tions to determine the rest. Care must be exercised: if a secret s from player i has 
already been reconstructed, then later messages seen by ~r contain all pieces, so no 
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new selection of pieces is required. These checks are normally simple. In the case of 
Turing machines, appropriate areas of player i's random tape must be overwritten 
to comply with messages committed to ~r This, too, is normally easy to compute. 

The Strong Principle of Independence allows a canonical interface to be success- 
ful. Because Fault is expressible as a function solely of messages to and from ~r in 

(here, actually to and from J )  and messages to and from J in r,  all these messages 
have nonzero probability for any set of inputs ~, hence the conditional distributions 
are well defined. Note that there is no guarantee that the conditional distributions 
are simple, but normally they are, being the result of a uniform bit selection or a 
linear algebraic calculation. Note also that in the complexity-based setting, an 
interface may easily fail at this point because the messages it has committed to ~r 
are not consistent with any execution, so the conditional distributions are ill defined 
and impossible to satisfy. (A standard trick in complexity-based settings is to 
"simulate" an encrypted value for which a decryption is not known by replacing it 
with a random string. This may lead to problems when a dynamic adversary later 
corrupts the sender, becoming able to decode earlier messages. Claims of security 
against dynamic adversaries (for example, those made in [20] and [21]) fall on this 
issue, unless other techniques such as tape-erasing in a memoryless model are 
employed [11].) In the information-theoretic setting, such issues fail to arise (and 
the presence of private channels obviates the need to deal with computationally 
complex functions). 

Thus, a canonical interface can, in the absence of defective runs, produce the 
necessary conditional computations and views that match exactly  those in an 
execution of [ct, ~ ] .  The output of J ,  after it repeats the internal simulation and 
extracts the view of player i, is identical to the output of Fault in [at, ~ ] .  Hence, 
optimistically, ct ~ ft. By Theorem 7, ~ >.~k~ ft. [] 

5. Multiparty Protocols with Faulty Minority 

Ben-Or et al. [14] and Chaum et al. [15] present protocols secure against passive 
t-adversaries for t < n/2. The protocol presented in this paper follows [14], with 
modifications: a modified version of Rabin's solution to verifiable secret sharing for 
t < n/2 is employed, and a new method to protect against t < n/2 faults during secret 
multiplication is presented. The latter constitutes the major algorithmic contribu- 
tion of this paper. Previously, solutions existed only for t < n/3. 

The overall structure of the main protocol EVAL to compute F e PFF is simple: 
secretly share inputs; secretly recombine shared values to compute a new secret 
equal to F(x l  . . . . .  x,); reconstruct the final secret, F(x l  . . . .  , x,). 

Let Cr be an arithmetic circuit for F over finite field E = GF(2m). For ease of 
protocol description, assume without loss of generality that Cr(m, n) is an array of 
gates of width W(m, n) and depth D(m, n), with multiplicative gates on even levels 
and additive gates on odd levels. The values at level l of the circuit are denoted 
Xll, x12 . . . . .  Xlw. Each gate g(I, i) is represented by a string of the form 
(E, c o . . . . .  Cw) indicating a computation xH ~ Co + ~ = ~  cjxtt_x~j, or by a string 
(H, j ,  k) indicating xli ~ xtz_x)jX,_l) k. The values at level 0 are simply the inputs: 
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Fig. 7. 
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UNIVGATE (CF, l, i, x(t_l) l . . . . .  X(1_1) w, Xu) 

if  0(l, i) = (Y~, c o . . . . .  C w )  then 
LINEAR-COMBINE(0(/, i), xa_ l )  1 . . . . .  x(1_1) w,  XU) 

else if 0(l, i) = ( I I ,  j, k )  then 
MULTIPLY(y(/, i), x(1_1)1, . . . ,  x(l_l) w,  xli) 

Universa l  gate  pro tocol  to add  or mul t ip ly  secrets, p roduc ing  secret ou tpu t  x n. 

Xo~ = x i for 1 < i < n and Xoi = 0 for n < i < W. No wire skips a level; an additive 
gate with all constants 0 except one supports this assumption without loss of 
generality. The circuit is evalutated level by level, evaluating g(l, 1) to g(l, W) at each 
level. 

Without loss of generality, the output of F is described by the entire output layer, 
which all players are allowed to see. This assumption is made for the sake of 
presentability. The output values can be divided into subsets seen by each player, 
if desired. It is also worth noting that if each player supplies a sequence of random 
bits and the circuit uses these bits to mask portions of the output, then the entire 
output may be revealed without loss of security, since each player can effectively 
read only the portion whose mask it knows. 

Once values have been secretly shared, the EVAL protocol consists merely of 
applying a universal gate protocol UNIVGATE to create new secrets as functions of 
the previous level. The universal gate protocol runs an addition protocol or a 
multiplication protocol, depending on g(1, i) (Fig. 7). These protocols, LINEAR- 
COMmNE and MULTIPLY, are described in later sections. 

The term "completeness" has been used to describe techniques for general multi- 
party computation. A formal statement of the general methodology for "complete- 
ness" results follows: 

Theorem 10 ("Completeness" Paradigm). Let (SHA, R~C) be a t-threshold scheme. 
Let F ~ PFF  be such that there exists a function family {F i} such that, for some 
polynomially bounded f(n, m, k), F = o:1( . . . .  k) F'. I f  there exists a family {ct,} of 
protocols that uniformly t-resiliently computes robust and secret representations (e.9., 
secretly shared) of {Fi}, then REC o ~: o SHA (where ~: = o:1 (~'m'k) ~i) is a t-resilient 
protocol for F. This holds for perfect, exponential, and statistical resilience. 

Proof. By Theorem 5, ct: = o~ i ___ o ID(hide(Fi)) and REC o at f o SHA ~ REC o 
(ol D(hide(Fi))) o SHA. By Theorem 6, REC o ( o 1 D ( h i d e ( F i ) ) )  o SHA ~" I D(F). The re- 
sult follows by the transitivity of ~- (Theorem 2). Furthermore, each theorem in the 
proof applies to exponential and statistical resilience as well. []  

Theorem 11 (Main Result). For all F E P F F  and for all t(n) < n/2, there exists an 
exponentially t-resilient protocol for F. The protocol has messaoe complexity and 
round complexity polynomial in n, m, k. 

Proof. Let F ~ PFF  be computed by arithmetic circuit family Ce = {Ce(n, m)} 
having depth D(n, m) and width W(n, m). Protocol EVAL is described in Fig. 8. It 
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EVAL (C r,  x I . . . . .  xn, x m . . . . .  xow  ) 

1 (1 < i <  n) i: SnAl~(xl) (as input secret Xo~) 
2 for l = 1. .D(n,m) do 

forj = 1.. W(n, m) do 
UNIVGATE(CF, l, j, X0_I) 1 . . . . .  X(i-a~w, X O) 

3 for j  = 1 . .W(n,m) do 
RECONSTRUCT( X oIn. mid) 

Fig. 8. A t-resilient protocol to evaluate a function F at inputs x l , . . . ,  x,. Implicit in each subprotocol 
is the recovery protocol RECOVER, which reconstructs secrets of players who fault, so that the computa- 
tion may continue. 

requires a t-threshold scheme (SHARE, RECONSTRUCT) and t-resilient subprotocols 
LINEAR-COMBINE and MULTIPLY. These protocols are described and proven resilient 
in later sections (see Sections 5.1-5.3). Protocols LINEAR-COMBINE and MULTIPLY 
compute robust and private representations of linear combinations (hide(LinComb)) 
and products (hide( x )). Because a finite number (two) of protocol types are used, 
relative resilience is uniform. Hence the conditions of Theorem l0 are met, so EVAL 
exponentially t-resiliently computes F. [] 

5.1. Verifable Secret Sharin9 and Time Capsules 

The first tool required for protocol EVAL is a method for verifiable secret sharing 
(VSS). Shamir's technique (dealer selects p(u) 4-- UPoly(t, s) and sends PIECEi(s ) = 
p(i) to each player i) provides a t-threshold scheme against passive adversaries, but 
when adversaries may change values, two important properties fail: 

1. After sharing, all nonfaulty players know whether the dealer is cheating. 
2. The players hold a robust representation of s (i.e., a unique secret is recon- 

structible, regardless of faulty behavior). 

Several schemes to satisfy the added requirements of verifiability have been 
proposed [16], [ 14], [15], [28], [29]. Rabin has proposed the first method tolerating 
t < n/2 in the noncryptographic model. Her approach follows Shamir's outline, but 
utilizes many three-party subprotocols to ensure that pieces are not altered (or are, 
at worst, omitted), and it utilizes a cut-and-choose method (based on [ 15]) to ensure 
that a dealer who does not select p(u) ~ Poly(n, t, s) for some s is disqualified. 

The key tool to Rabin's method for VSS is a three-party protocol based on 
"check-vectors." This protocol solves a problem described below as the Time 
Capsule problem. An alternate solution requiring no field multiplications is 
presented here. Rabin's original method solved the first half of the problem of 
achieving multiparty protocols for t < n/2; a solution for the second half, based on 
a problem described later as the ABC Problem, is the main result of this paper. 

5.1.1. Time Capsules. The Time Capsule problem is a kind of three-party secret- 
sharing scheme: a sender S passes a secret b to an intermediary I, who later passes 
it on to a receiver, R. The receiver R must be able to detect tampering (as long as 
S is nonfaulty,) and I must know if S provided valid information with which to 
convince R of the message. The ideal protocol I D(te) for time-capsules is as follows: 
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in round 1, S sends b to the trusted host, and I and R send a 0 to the host. In round 
2, the host returns b to I and R if both sent a message other than 0 (if both misbehave, 
then they can learn b). In the second phase, starting with round 3, I sends 0 or 1 to 
the host, who in round 4 sends b on to R if I sent a 1. (The intermediary can choose 
that the encapsulated information b is not passed on. Recall the implicit assumption 
that the host reports whether S or I cheats.) 

Rabin's solution to this key problem uses linear polynomials over a finite field; 
S sends R a random line l(x) and sends I the value Xo at which l(xo) = b. The 
intermediary cannot tamper with b without also guessing the line. The coeffi- 
cients are called a "check vector," and they ensure detection of cheating with high 
probability. 

An alternate method, derived from later work of the author with Feigenbaum 
and Shoup, is described in Fig. 9. A one-time pad (pad) known to S and R is used. 
This pad consists of two columns of 2k uniformly random field elements. The secret 
b is used to generate a mask (mask) which, added to the pad, gives a masked table 
(cypher). The mask corresponds to adding b to one or the other entry in each row, 
according to a uniformly random key (key) of 2k bits. The sender sends b and cypher 
to I and key and pad to R. Later, I sends cypher to R, who obtains b using key and 
pad. If at least k/2 rows are consistent with some value b, then R accepts; otherwise 
it declares CHEATING. In order to keep the secret hidden from I, b is actually split 
into two random bits whose exclusive-or is b; R uses one to decode the bit obtained 
from the process just described. 

As in [28], a cut-and-choose method is used to ensure that I can later convince 
R of the value of b r The intermediary requests a random subset {i 1 . . . . .  ik} of the 

Phase I. 

1.1 S: 

(1 < i < 2 k ,  O < j <  1) 

TC(S, I, R, b) 

1.2 S -~ 1: 
1.3 S ~ R: 
2 I - * R :  
3 R ~ I :  
4 I: 
Phase II. 
5.1 I --*R: 

5.2 R: 

bR ~ unif(E) 
b, ~ bR + b 
key *-- unif({0, 1} 2k) 
pad(1. .  2k, 0 . .  1) ~ unif(E 4k) 
mask(i, j )  *-- b t �9 (key(i) ~ j )  
cypher ~ mask + pad 
(bl ,  cypher)  
(b R, key, pad )  
( i  1 . . . . .  ik) *- uniform({S c 2tzkJ[ IS[ = k}) 
(key(J1), pad(J1, 0 . .  1) . . . . .  key(ik), pad(ik, 0 . .  1)) 
if inconsistent then broadcast C~ATING 

(bl ,  cypher)  
decode ,-- cypher - pad 
if (3bl) (Vi, j )  (decode(i, j )  = b I "(key(i) + j)  

then output b I - b R 
else output Ch~ATIr~G 

Fig. 9. Time capsule protocol for S to leave a message b with I, wl~o later relays it to R. Tampering by 
I and misbehavior by S are checked. Addition of two tables indicates addition entry by entry. The 
protocol requires addition over some group, but not multiplication: thus exclusive-or (addition mod 2) 
may be used, or addition over a field E in order to be compatible with secret sharing. 
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rows of the key and pad from R. If any discrepancies occur then I broadcasts that 
it has detected cheating. If S has introduced enough discrepancies to cause a 
problem when I passes on b~ then I will detect it with very high probability. 

Theorem 12. Protocol TC is an exponentially 1-resilient protocol for tc; in particu- 
lar, Phase I of  TC is (exponentially) as 1-resilient as Phase I of I D(tc), and Phase II  
of  TC is (exponentially) as 1-resilient as Phase II  of I D(tc). 

Proof. The intuitive arguments given above are formalized as follows. An S- 
defective run occurs when a corrupt S undetectedly sends I and R tables that disagree 
on at least k/2 rows: 

k 
S-defective ~ t{il(3j)(cyphers-.1) ~ b~.(key(i)O j) + pad(i,j)}l > 

and I does not broadcast CHEATING, 

where cyphers_. ~ is the message sent by S to I. An I-defective run occurs when S is 
honest but R fails to detect an extensive attempt by I to cheat: 

k 
/-defective ,~  l{i[(3j)(cypher1~R) ~ b~.(key(i) ~ j) + pad(i,j)}[ > 

and R does not broadcast CHEATING, 

where cypherl_. R is the message sent by I to R. A defective run is one that is either 
S-defective or 1-defective. The probability of a defective run is at most 

which is O(c -k) for some c > 1. 
Thus, by Theorem 9 it suffices to show that the strong principle of independence 

holds for TC and I D(tc). Messages from nonfaulty players to faulty players must be 
considered. 

The messages in round 1 from nonfaulty S to I are always uniformly random, as 
are those from S to R. If both I and R are corrupt, interface ~" must request that I 
and R send 1 to the trusted host in protocol I D(tc), thereby obtaining b, from which 
it directly computes the round 1 messages from S in TC. A nonfaulty I produces a 
uniformly random set of indices in round 2. A nonfaulty R sends strings received 
from S; if S is corrupt, interface J fills in the messages according to earlier specifica- 
tions by ~' ,  whereas if S is nonfaulty, the earlier message from S to R is produced 
simply by running S with the condition that bx and cypher have the values specified 
already by the view of corrupt player I. (Interface J selects key at random and solves 
for pad.) In round 3, a nonfaulty I accepts if S and R are nonfaulty; otherwise, it 
is computable from previous corrupted messages whether nonfaulty I reports 
CHEATING or  not. 

The message from nonfaulty I to R in round 4.1 is determined by previous 
messages from S if S is corrupt. Otherwise, interface J corrupts R in protocol ID (te) 
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(i.e., if it has not already done so) in order to obtain b. Using the value of bR from 
round 1.3, J computes b~, and using key and pad from round 1.3, or computes 
cypher, thereby determining the message from nonfaulty S to faulty R in round 4.1. 
If a nonfaulty R detects k/2 inconsistencies in round 5 ( J  calculates this from the 
adversarial view), then J causes I to send 1 in round 3 of the ideal protocol I D(te), 
so that in the ideal protocol, R will also output CHEATING. Otherwise, I has behaved 
well enough in TC for R to accept the value S sent, and J causes a corrupt I in 
I D(te) to send 0, allowing the trusted host to pass on the value of b. 

By Theorem 9, then, TC >.e I D(te). [] 

5.1.2. VSS. The methods of [28] and [29] use time-encapsulated information to 
support VSS as follows. Combined with Shamir's method for secret sharing, TC 
allows a dealer to weakly share a secret: the dealer's secret is never compromised, 
and the dealer cannot change the secret once shared, but the dealer must remain 
present for the secret to be reconstructed. The dealer D uses TC with every pair 
(i,j), to give PIECEi(S) to intermediate player i so that i can later report it toj .  

To build a full VSS scheme from weak secret sharing, [28] and [29] use a 
second-level sharing of secrets. Each player i weakly shares PIECEi(S ) using subpieces 
PIECE 1 (PIECEI(S)) . . . . .  PIECEn(PIECEi(S)). If a subdealer fails during the reconstruction 
of its piece VIECE~(S), then that piece is omitted. The secretly shared pieces 
PIECEI(S ) . . . . .  PIECEn(S ) cannot be changed. With an additional cut-and-choose 
technique, the players can verify that the dealer D actually uses a proper polynomial 
to share s. If not, the dealer is disqualified, which constitutes a valid output that a 
dealer, even in the ideal case, can choose to make. Section 3.2 describes fault- 
recovery in general protocols; normally, if the result of a VSS scheme is that the 
dealer is disqualified, the dealer is written out of the overall protocol and any secret 
information it holds is reconstructed and revealed, so that all nonfaulty players can 
run an identical internal copy. 

The details of the construction of a VSS protocol from a time-capsule protocol 
can be found in [29]. Although definitions of security are not provided in [29], the 
arguments given there essentially show that the strong principle of independence 
(as defined in Section 4.7) holds. By Theorem 9 of this paper, the arguments of [29] 
for the security of the Vss protocol apply mutatis mutandis to show the following: 

Theorem 13 (After [29]). For t(n) < n/2, there exists a t-resilient protocol Vss(D, s) 
for dealer D to verifiably secret share s. In particular, there exist protocols SHARE and 
RECONSTRUCT such that (SHARE, RECONSTRUCT) is an ([n/2J)-threshold scheme. 

5.2. Linear Combinations 

The principle behind adding secrets is simple (see [13]-[15]): if polynomials pxl(u) 
and px2(u) represent secrets xl and x2 (i.e., p~l(0)= Xl and p~2(0)= x2), then 
px,(U) + p~2(u) represents x 1 + x 2. Note that (Px~ + Px2)(O) = Xl + x2, the degree 
of(px~ + p~2)(u) is. t, and ifpx,(U) or p~(u) is uniformly random then so is their sum. 
Hence it suffices to use PIECEi(x 1 q- X2) = PIECEi(X1) + PIECEi(X2). 

The robustness of a representation of a secret, however, is not based solely on the 
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piece each player holds but on the verification information from Vss. This includes 
the second-level sharing of each piece, as well as time-capsule verification informa- 
tion (key, mask, pad, cypher). As before, each subpiece of player i's new piece 
PIECEi(Xl + x2) is easily calculated as PI~CEi(PIECE~(Xl + X2)) = PIECEs(PIECEI(Xl)) + 
VlECEj(VIECE~(X 2) ). 

It remains to show that each sender (namely each player i who has encapsulated 
various pieces VIECEj(VlECEi(Xl)) and VlECEs(VlECE~(X2)) for other players j) can con- 
struct verification information for the sum of the encapsulated values. In general, 
say that sender S has encapsulated b~ and b2 using TC. The verification information 
is not compatible for adding bl and b2. On the other hand, if the keys were identical, 
then the intermediary could simply add the masked (cypher) tables together and the 
recipient could add the pads together. Each would also add its b~ or bR values 
together. With an informal notation representing the tables used in both cases: 

cypherb~ + cypherb~ = (maskb~ + padb,) + (maskb~ + padb~) 

= (maskbl + maskb 2) + (padb L + padb 2) 

= maskb~+b2 + padb,+b2. 

It is not hard to see that the resulting tables provide a proper verification structure 
for (bl + b2). 

It is extremely improbable that the keys from each encapsulation will happen to 
be identical. The sender can, however, extend the tables further, using a key that is 
now identical in both cases. Two verifications of the sender's behavior are necessary. 
First, the extended tables must continue to represent b~ and b 2. Second, intermedi- 
ary I should, as usual, be assured that it can later convince R of the values. The 
second check is performed as in steps 2-4 of TC. At the same time, intermediary I 
can immediately deduce whether the rows returned are consistent with the b~ values 
it holds. 

It is also easy to see that multiplication of encapsulated values and of pieces by 
a fixed constant is sufficient to produce a robust and private representation of the 
result of multiplying the encapsulated value or secret by that constant. For example, 
PIECEi(CX1) = CPIECEi(X1) gives a piece derived from a polynomial Cpx, (u) represent- 
ing x~. For encapsulated values, no interaction or extension of structures is 
necessary. 

P r o t o c o l  LINEAR-COMBINE, described in Fig. 10, reflects the modifications to the 
verification structure. The only interactions in protocol LINEAR-COMBINE concern 
the extension of the verification structure and employ steps of TC; the proof of 
Theorem 12 demonstrates how an interface operates during these steps. 

Theorem 14. Protocol LINEAR-COMBINE computes LinComb t-resiliently. 

5.3. Multiplication Resilient Aoainst Passive Adversaries 

The idea behind secret addition fails when applied to multiplication. The value 
PIECEi(Xl)" PIECEi(X2) is indeed a point on a polynomial py(u) = px~(U)px2(U) with free 
term pr(0) = xlx2, but the degree of py(u) has grown to 2t. Soon, there will not be 
enough pieces to determine the secret. In order to preserve the properties of VSS, 
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1 ( l < D , i , j < n )  

2.1 (1 < D < n )  
2.2 ( l < D , i , j < n )  

2.3 (l < D , i , j < n )  

1 ( l<_D,i , j<_n)  

2.1 (1 < D < n )  
2.2 ( l < D , i , j < n )  
2.3 ( l < D , i , j < n )  

ADDPAIR (X D g2,  y) 

D, i,j: TC(D, i,j, PIECED(XI)), TC(D, i,j, PIECED(X2) ) 
with same new key ~ 

(i checks this during TC) 
and with same old hi, b R 

D: PIECED(y ) 4--- PIECED(X1) q- PIECED(X2) 
i: (mask + pad) ~ *- 

(mask + pad) ~ + (mask + pad) o'i'j'x2 
i: (pad) D'j'i'r ~ (pad) ~ + (pad) ~ 

LINEAR-COMBINE ( ( Z ,  C O . . . . .  CW ) , X 1 . . . . .  XW, y) 

D, i,j: T C ( D ,  i,j, PIECEI(Xl) ) . . . . .  T C ( D ,  i ,j ,  PIECEI(Xw) ) 
with key ~ = key ~ = ... = key ~ 

(i checks this during TC) 
and with same old bl, b R 

D: PIECEo(y ) ~ C O -4- ~,kW=l s 
i: (mask + pad) D'i'j'r ~ Co + ~r=l ck(mask + pad) D'i'J'~k 
i: (pad) ~ ~ c o + ~r= 1 ck(pad) ~ 

Fig. 10. Protocols to add or perform linear combinations (the function LinComb) of secret values. The 
ADDPAIR protocol illustrates the slightly more complicated LINEAR-COMBINE protocol. The superscripts 
(D, i, j, x) indicate the variables in the subprotocols with the given participants. Adding a constant to an 
array means to add the constant to each entry, and multiplying a constant by an array means to multiply 
each entry. 

a new p o l y n o m i a l  r ep r e sen t i ng  x 1 x 2 m u s t  h a v e  degree  t. W i t h o u t  w o r r y i n g  a b o u t  

B y z a n t i n e  er rors ,  a s imple  p r o t o c o l  for  degree  r e d u c t i o n  can  be c o n s t r u c t e d  f r o m  

l inear  c o m b i n a t i o n s  (see [14]  and  [15]).  

A n y  p o l y n o m i a l  q(u)  of  degree  at  m o s t  (n - 1) can  be  expressed  as the  we igh t ed  

sum of  fixed, L a G r a n g e  po lynomia l s :  

L,(u)= I] (u-l) 
1=1 . . . . . .  ;l:bi (i I)' 

q(u)  = ~ L i (u )q ( i ) .  
i=1 

For any polynomial q(u), define q(u)= q(u)mod u'+L This operation truncates 
high-order terms. If player i knows and shares or has shared the value q(i), then, 
for anyj, El(j) is easily computed as a secret sum using protocol LINEAR-COMBINE: 

El(U) = ~ Li(u)q(i), 
i=1 

El(j) = ~ L , i (J)q( i )  �9 
i=1 

Fig. 11. 

UNIFSECRET (r) 

1 ( l < i < n )  r i~uniform(E) 
2 ( l < i < n )  RunVss(i, ri). 
3 R u n  LINEAR-COMBINE: r = ~'~=1 ri. 

Protocol to produce a uniformly random secret field element r. 
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TRUNCATE (q(u)) 

0 Each player i starts with secretly shared q(i). 
Define % = [,i(J). 

1 Run UNIESECRET(R). 
2 (1 < i < n) Run Vss to extend PIECEi(R) to a fully shared secret, denoted r(i). 
3 (1 < j < n) Run LINEAR-COMBINE: 

sj , -  ~7=1 aijq(i) + ~7=1 i" %" r(i). 
4 (1 < i , j  < n) i --~j: PIECEi(Sj) , with verification information. 
5 (1 < i < n) i: Use sj as PIECEI(q(0)). 

Fig. 12. Protocol to produce pieces of a degree-t polynomial from pieces of a degree-2t polynomial 
q(u). At the start, it is assumed that eacii player i holds the secretly shared value q(i). 

For a particular j, the publicly known weights on secrets q(1) . . . . .  q(n) are 

L'I (J) . . . . .  L'.(J). 
A simple way to "randomize" the coefficients of q(u) without changing the free 

term is to add a polynomial of degree t + 1 and free term 0: 

{r(u) ~ UPoly(t + 1, 0): F/(u) + P(u)} = UPoly(t, q(0)). 

The TRUNCATE protocol described in Fig. 12 uses these linear combination and 
randomization methods to create a properly shared representation of q(0). Letting 
q(u) = Pxl (u)px2(u), the protocol to multiply secrets is simply to apply the truncation 
protocol to q(u). 

The values of PIECEi(Xl)PIECEi(X2) do not, however, provide a robust representa- 
tion of the inputs to the truncation protocol: it is easy for a Byzantine adversary to 
break the protocol merely by changing one value ofq(i) = PIECEi(X 1)PIEcE(x2). Each 
player must therefore supply PIECEi(Xl)PIECE~(X2) as a properly shared input and 
must prove that it supplies the correct input. Given that PIECE,(Xx) and PmCEi(X2) 
are already weakly shared under Vss, if their sharing can be extended to a full- 
fledged VSS-sharing, it would then suffice for each player to prove that it has shared 
PIECEi(Xl)PmCE~(X2) as the input to protocol TRUNCATE. The chance of a defective 
run, i.e., a run in which an incorrect value of q(i) is used without detection, must be 
made small. This task, called the ABC Problem, is the crucial step in achieving 
general multiparty protocols. A solution that uses VSS and linear combinations is 
given below. 

5.4. ABC Problem: Verifyin# Multiplication 

The key algorithmic result of this paper is a technique to solve the problem of 
verifying products of secrets: 

The ABC Problem. Alice knows the values of secrets a and b. Alice must share a 
new secret c and prove to the other players that the secret value of c is ab, without 
revealing the values themselves. 

In the ideal protocol I D(abe) for this problem, each player supplies the trusted 
host with its portion (namely, the pieces and verification information) of a robust 
and private representation of secrets a and b. Alice supplies the entire representation 
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0 
Phase I. 
1 
2 (1 _<j < 2k) 

(1 < j  < 2k) 
(l _<j < 2k) 

3 (1 _<j _< 2k) 

Alice: 
Alice: 
Alice: 

PROVE-PRODUCT (a, b, c) 

Let a and b verifiably secretly shared. 

Run Vss(Alice, c) if c not yet shared. 
r i ~ uniform(E) 
sj *- uniform(E) 

d r ~ (a + rj)(b + sj) 
Run Vss(Alice, rj), Vss(Alice, sj), Vss(Alice, dr). 

Phase II. Verify that (u dj = (a + rj)(b + s~). 

4 (1 < i < 2k) Run UNIFSECRET(ji). 
5 (1 < i < 2k) Run RECONSTRUCT(j/). 
6 Y *'- { Jl . . . . .  Jk }, the first k distinct indices. 
7 (Vj �9 Y) Run LINEAR-COMBINE: aj *-- a + rp 
8 (Vj �9 Y) Run LINEAR-COMBINE: bj ~ b + s i. 
9 (u e Y) Run RECONSTRUCT(aj), RECONSTRUCT(bj), RECONSTRUCT(dr). 
10 if (3j �9 Y)  d r ~ ajbj then disqualify Alice 
Phase IlL Verify that c matches ab. 
11 (u r Y) Run RECONSTRUCT(rj), RECONSTRUCT(Sj). 
12 (u r Y) Run LINEAR-COMBINE: Cj ~-- C -- dj + asj + brj + rjsj. 
13 (u r Y) Run RECONSTRUCT(Cj). 
14 if (3j r Y) cj 4 :0  then disqualify Alice 
15 if Alice not disqualifed then output accept 

Fig. 13. Protocol to prove that the product of two secrets is a third secret. 

D. Beaver 

of c (i.e., all pieces); c ~ ab indicates she quits, and c = ab indicates that the host 
should give the pieces of c to the players. 

Lemma 15 (ABC Lemma). Let t(n) < n/2. If(SHA, REC) is a t-threshold scheme and 
LINEAR-COMBINE t-resiliently computes hide(LinComb), then there is a t-resilient 
protocol PROVE-PRoDUCT for I D(abc). 

Proof. Figure 13 describes the protocol. In the first phase, Alice shares several 
triples (r, s, d) of secrets such that D = (a + r)(b + s), which are used to check the 
behavior of Alice. In the second phase, the players select and reconstruct some of 
these values to confirm that every triple satisfies the equation. In the third phase, a 
simple linear combination uses the unrevealed triples of secrets to verify that 
c = ab. The protocol uses a subprotocol, UNIFSECRET, to generate uniformly ran- 
dom secretly shared values, which can later be reconstructed to generate a fair coin. 
(When the field E has characteristic 2, the low-order bit of the secret may be used 
as a uniformly random bit.) Given that the LINEAR-COMBINE protocol is ((n -- 1)/2)- 
resilient for hlde(LinComb), Theorem 10 shows that UNIFSECRET is as resilient as 
I D(uniform(E)), the ideal protocol for a function returning a uniformly random field 
element. 

If Alice is nonfaulty, the strong principle of independence is satisfied. Every r and 
s is uniformly distributed, so the revealed sums aj = (a + rj) and bj = (b + sj) are 
also uniformly distributed, and hence the products d~ = (a + ri)(b + sj) have a fixed 
distribution. Because UNIFSECRET resiliently computes uniform(E), the generation 
ofk random indices is resilient and the results are always uniformly distributed. The 
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value of every dj matches (a + rj) (b + sj). Furthermore, every secret cj is 0, and no 
nonfaulty player sends an impeachment of Alice. 

If Alice is faulty, it remains the case that the messages output by nonfaulty players 
are a fixed function of the results of the tests in phase II and phase III, which in 
turn depend only on the messages of Alice and a fixed, uniform distribution (the 
output of UNIFSECRET). 

Since the strong principle of independence is satisfied, it remains to show that 
defective runs are scarce. A defective run is one in which Alice cheats (by sharing 
an incorrect c) but is not caught, or in which the sequence of 2k random field 
elements does not contain a subset of k distinct indices. Assume that Alice shares 
c # ab. Let X be the set ofindicesj  for which dj = (a + rj)(b + sj), namely for which 
Alice has behaved. The set Y of indices chosen by the players must be a subset of 
X, or Alice would be disqualified. Indices j r Y must satisfy cj = c - dj + asj + 
brj + rjsj = 0 or else Alice is caught. But c # ab implies X = Y, and the probability 

of this is at most /"'\(7) -1 . Given that a sequence of 2k uniformly random field 
x , , ~ /  

elements fails to produce a set of k distinct indinces with probability at most 2 -k, it 
is easy to see that 

P r D e I e e t ( P R O V E - P R O D U C T )  _< + 2 -k  = O(c -k) 

for some c > 1. An interface ensures identical outputs on nondefective runs by 
corrupting whomever d corrupts and by corrupting Alice in I D (abe) if she is corrupt 
in PROVE-PRoDUCT, in order to decide whether Alice must send a proper c = ab to 
the trusted host or whether Alice cheats in PROVE-PRODUCT and must therefore 
send an improper value in I D(abe) to cause the players to output CHEATING. 

Theorem 9 applies; hence PROVE-PRoDUCT ~e I D(abe). [] 

5.5. Multiplication Resilient Against Byzantine Adversaries 

Given resilient protocols for polynomial truncation and to prove products of 
secrets, the multiplication protocol is straightforward. The protocol MULTIPLY is 
described in Fig. 14. 

Theorem 16. Protocol MULTIPLY t-resiliently computes hide( x ). 

MULTIPLY-ONE (U, V, w) 

1 (1 <_ i < n) q(i)*-- PIECEi(U)PIECEI(V ). 
(1 < i < n) Run VSS(i, q(i)). 

2 (1 < i < n) Run PROVE-PRoDUCT(PIECE/(U), PIECEj(U), q(i)). 
3 Run TRUNCATE(q) to construct  shared secret w = q(0) = uv. 

M U L T I P L Y  ((II ,  j, k), x 1 . . . . .  xw, y) 

1 Run MULTIPLY-ONE(x~, xk, y)- 

Fig. 14. Protocols to multiply secrets. Protocol MULTIPLY specifies indices of secrets to multiply, for 
use in circuit evaluation. 
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Proof. The proof that the UNIFSECRET protocol (Fig. 11) resiliently computes a 
uniformly random secret over field E follows directly from the resilience of Vss and 
of LINEAR-COMBINE, and using the fact that, since t < n, at least one player supplies 
a uniformly random addend, r i. The resilience of TRUNCATE (Fig. 12) follows from 
the resilience of UNIFSECRET, LINEAR-COMBINE, and Vss, assuming the input values 
q(i) lie on a polynomial of degree at most 2t; the combined protocol TRUN- 
CATE o PROVE-PRODUCT ensures that defective runs have exponentially small proba- 
bility. By Theorems 5 and 7, MULTIPLY is exponentially resilient. []  

6. Zero-Knowledge Proofs 

The notion of resilience captures zero-knowledge in a very concise manner. Consid- 
er not a two-party protocol but a three-party protocol for players P, V, and trusted 
host TH. Let L be a language and let XL: E* ~ {0, 1} be its characteristic function, 
namely ZL(x) = 1 ~ x ~ L. In the ideal zero-knowledye proof system, denoted I D s(L), 
player P sends x to TH, who computes ZL(x) and sends "x e L" to I / i f  ZL(x) = 1. 
The host otherwise sends "?" to indicate a failed proof. 

The classical definition of a zero-knowledge proof system given by Goldwasser 
et al. [23] is then captured by a single sentence: A two-part protocol H = (P,  V) 
is a zero-knowledge proof system (ZKPS) for L iff it is as resilient as I D3(L ). When 
an adversary corrupts P, the resilience of the protocol ensures that a nonfaulty V 
never accepts a false statement "x ~ L" (soundness), whereas if P remains nonfaulty, 
then a nonfaulty V always accepts "x ~ L" (completeness). Furthermore, the trusted 
host passes on only "x ~ L" to V, so the information gained by an adversary who 
corrupts V is limited to that knowledge. Perfect and statistical zero-knowledge are 
captured by perfect and statistical relative resilience. Computational zero-knowl- 
edge is captured by requiring that an interface J be a probabilistic polynomial-time 
machine, that the adversary d is also such a machine, and that the resulting 
ensembles are computationally indistinguishable. 

Notice that a corrupt P does have influence over the output of V: it can cause V 
not to believe a proof or it can convince V of a true statement, but its influence is 
bounded by that permitted in the ideal case. The limits of the ideal case, along with 
the idea of relative resilience, capture all desired properties at once. 

By designing the appropriate ideal protocol, other versions of zero-knowledge 
are equally easily defined. For  example, a two-sided ZKPS is defined with respect 
to the ideal two-sided ZKPS, I D(XL): P sends x to TH, who sends XL(x) to V (P also 
has the option to abstain by sending A, in which case TH sends A to V). 

Ben-Or, Goldwasser, Kilian, and Wigderson introduced ZKPS in which many, 
physically seprate provers are used. In this paper the power of multiple parties is 
used to accomplish zero-knowledge proofs, but the parties are not required to be 
separate; instead, it is assumed that a majority remain nonfaulty. 

Network Zero-Knowledoe Proof Systems (NZKPS) are defined as concisely as 
ZKPS. In the idea case, ID(L), one party P sends x to trusted host TH, who sends 
on "x e L" to V if x e L, but otherwise sends "?". Variations are possible: many 
verifiers may be considered, or proofs systems on secrets may be considered, in 



Secure Multiparty Protocols and Zero-Knowledge Proof Systems 119 

which x is a list of secretly shared values that are not revealed even though the the 
membership of x in L is revealed. 

Most variations are covered by Network Secret Zero-Knowledge Proof Systems 
(NSZKPS). The ideal NSZKPS,  ID(x~ . . . . .  XN, y, XL), contains a trusted host 
who broadcasts "yes" if XL(Xl . . . . .  XN, y) = 1 but otherwise broadcasts "?". Player 
P shares y and the players supply a robust (e.g., secretly shared) representa- 
tion of x~ . . . . .  xn. An NSZKPS for L is an n-party protocol H such that 
H ~ ID(x 1 . . . . .  xN, Y, )L)" 

Theorem 17. For any L ~ NP  and t(n) < n/2, there exists an exponentially t-resilient 
N S Z K P S  for L having round complexity O(t) and message complexity and local 
complexity polynomial in n, m, k (with the possible exception of prover P, who may 
require an NP-computation to compute XL). For t(n) < n/3 there exists a perfectly 
t-resilient N S Z K P S  that uses a constant number of rounds. 

Proof. Let C L be a circuit with nondeterministic inputs ~o 1 . . . . .  ~o w that computes 
L, namely for which x ~ L iff there exists a setting of o~ . . . . .  ~Ow such that 
CL(~X . . . . .  09W, X) = 1. A list of a satisfying set of values is sufficient to prove x e L. 
A simple NSZKPS would be for P to share the values of ~1 . . . . .  o~ w and to run a 
multiparty protocol to evaluate C L. The proof is accepted iff the results is 1. 

This direct method requires many rounds of interaction, however. Interaction is 
usually a costly resource in distributed computing. An improved method is the 
following. Prover P shares not only ~o, . . . ,  Ogrv but the results of each gate g(i,j) in 
CL. Now, the network need not evaluate the gates; it need only verify that each 
output is correct with respect to its secret inputs. Linear combination gates are 
simple to check: the network runs the LINEAR-COMBINE protocol to compute 
(xli - LinComh(co . . . . .  cw, x(/_l) 1 . . . .  , xo_l)w) ), and then reconstructs the result. If 
the result is nonzero, the proof fails. The PROVE-PRoDUCT protocol is used to verify 
multiplicative gates, with P taking the part of Alice. It is not hard to show that 
protocols computing secret representations can be run in parallel. The number of 
rounds of a single subprotocol is on the order of t: each time a player faults 
detectably, the recovery algorithm must be run, but otherwise the number of rounds 
is constant. If t(n) < n/3, the protocols of [14] and [15] are used, giving a constant 
number of rounds regardless of Byzantine behavior. []  

Theorem 18. For any L ~ I P and t(n) < n/2, there exists an exponentially t-resilient 
N S Z K P S  for L. (For t(n) < n/3 there exists a perfectly t-resilient NSZKPS.)  

Proof. Without loss of generality [1], [24], there exists an Arthur-Merl in game 
for L, in which Arthur merely sends p(n) random bits during each of q(n) rounds, 
and afterward performs a polynomial-time computation F on the messages from 
Merlin. The NSZKPS for L is as follows. Repeat the following, q(n) times. Run p(n) 
copies of the UNIFSECRET protocol to generate p(n) random bits, which are consid- 
ered as Arthur's message to Merlin; player P then shares a message that Merlin 
would send to Arthur, given the sequences of messages and random bits generated 
thus far. 



120 D. Beaver 

After q(n) executions are completed, run EVAL to compute F on the set of messages 
shared by P and the p(n)q(n) random bits. If the result of F is 1, then V accepts; 
otherwise, V rejects. Clearly, this process ideally computes the result of the interac- 
tion between Merlin and Arthur without revealing any of the messages. Because the 
NSZKPS protocol is a concatenation of polynomially many exponentially t-resil- 
ient subprotocols, it is itself exponentially t-resilient. [] 

7. Conclusion 

This paper presents efficient and provably secure methods for a network of n parties 
to compute arbitrary finite functions at private arguments supplied by each party, 
revealing only the result. These methods tolerate t < n/2 faults, namely any faulty 
minority, the maximal achievable bound. The faulty parties may be chosen by a 
dynamic, resource-unbounded Byzantine adversary, who can rush messages before 
choosing new parties to corrupt. Each protocol allows an exponentially small 
chance of error, but it is easily proven that when t > n/3 no protocol can tolerate 
t Byzantine faults without error. No unproven assumptions are necessary. A com- 
plete network with private channels and a broadcast channel is assumed, however. 

The protocols of this paper rely on a new technique to prove that the value of 
one secret is the product of the values of two others, a problem called the ABC 
Problem. A solution to the ABC Problem is presented that uses any technique for 
verifiable secret sharing that supports secret addition of secrets. 

Ben-Or [29] has independently developed a solution to this problem, but the 
solution is restricted to logical bit-operations. The protocols in this paper permit 
arithmetic over large fields at the same cost, thereby achieving far fewer rounds of 
interaction for most natural problems. In distributed systems, the number of rounds 
of interaction is often the most significant resource. An interesting and practical 
open question is whether the number of rounds can be significantly reduced. 
Bar-Ilan and Beaver [2] give a method for reducing the number of rounds by a 
logarithmic factor, but it is not clear that even Verifiable Secret Sharing can be 
performed in a constant number of rounds when the number of corrupted parties 
may exceed a third of the network. 

The methods used to solve the ABC Problem generalize to support efficient 
zero-knowledge proofs of any language in NP and, with additional machinery, any 
language in IP. The use of a network of communicating parties to maintain validity 
and privacy in the proof system, as opposed to physically separate provers, is novel. 

The results of this paper are proven using a new and concise set of definitions for 
multiparty protocol security. Unlike previous definitions, which analyze separate 
properties of the desired solution and are in general too incohesive to be satisfying, 
the definitions used here are unified under the broad and powerful concept of relative 
resilience. Relative resilience provides a means to reduce one protocol to another 
in terms of security. It is the proper generalization of the basic idea of zero- 
knowledge to an interactive setting in which the influence of an adversary, not just 
the information it gains, must be considered. 

Privacy, correctness, independence of inputs, and all desired properties are cap- 
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tured a priori by compar ing  a protocol  to an ideal protocol  in which an incorruptible 
host  performs the computat ion.  Because the ideal protocol  is, by definition, the ' 
desired goal, any protocol  which is equally resilient also captures the desired 
properties. Witness the difference between the original definition of  zero-knowledge, 
which requires the description of  several properties, and the equivalent definition 
requiring one line of  text: (P ,  V)  )-  I D(L), i.e., the p roof  system must  be as resilient 
as the ideal protocol  guaranteed to give correct results. 

Because protocol  resilience satisfies convenient  properties such as transitivity and 
invariance under  protocol  concatenat ion,  it provides modula r  and understandable 
proofs of security. Using the not ion of  resilience, this paper  also presents the first 
proofs that  the c o m m o n  share/compute/reveal  paradigm is valid. It also formalizes 
many  folk theorems that  are false without  specific and easily over looked conditions. 
A t remendous  source of  insecurity in practical settings arises precisely from in- 
stances where intuitions and unproven beliefs have turned out  incorrect. These 
proofs give the precise condit ions under  which the protocols  are secure, perhaps 
the most  impor tan t  factor in considering their value. 
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