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Abstract. There has been recent interest in the permutation group generated by 
the round functions of a block cipher. In this paper we present a cautionary example 
of a block cipher which generates the full symmetric group yet is very weak. 
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1. Introduction 

We consider iterated block ciphers in which each round of a block cipher is a 
permutation of the message space determined by the subkey used in that round. 
The group generated by the set of possible round permutations acting on the 
message space is of obvious cryptographic interest. For example, if this group is too 
small, then the cryptosystem obtained by iterating the round function may be 
vulnerable to attack. This group was first studied by Coppersmith and Grossman 
[1]. Further interest in the group properties of block ciphers has been stimulated 
by Wernsdorf [4], who showed that the DES round functions generate the large 
simple group A264 , which acts primitively on the message space of 64-bit blocks. 
More recently, Magliveras and Memon I-3] have considered the group properties 
of a cryptosystem based on permutation groups. They claim that the ability of their 
system to generate the symmetric group on the message space is "one of the strongest 
security conditions that can be offered". 

In this paper we present an example of a cipher whose round functions generate 
the full symmetric group yet is very weak. The conclusion (unsurprisingly) is that 
the group-theoretic properties of a block cipher should not be taken in isolation as 
a measure of cryptographic strength. This is analogous to the situation in stream- 
cipher design where no single measure of complexity is sufficient to guarantee the 
unpredictability of the keystream. 

This paper is organized in the following manner. In Section 2 we define the round 
functions of our cipher and show that they generate the symmetric group. In Section 
3 we present a known plaintext attack on the cipher that requires only one 
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plaintext-ciphertext  pair. In Section 4 we consider an r - round cipher using the 
round  function of  Section 2, and we show that  such a cipher generates either the 
symmetric  g roup  or  the alternating g roup  depending on whether r is odd  or  even. 
Finally, in Section 5, we draw some conclusions. 

2. The Round Functions and Their Group 

For  n > 3, let V~ denote the vector space of  dimension n over Z 2. Thus  the elements 
of  V~ are binary n-tuples. We denote  an n-tuple by the corresponding number  in the 
range 0 . . . . .  2" - 1. We take our  message space, M, and subkey space, K (for each 
round), both to be V~. The one- round functions Ek: M ~ M are defined, for k ~ K, by 

m E  k = (m t~ k)O, 

where ~ denotes bitwise X O R  and 0 is the following permutat ion of  V.: 

0 = (I, 2 . . . . .  2 "-1 - I, 2 "-I  + I, . . . ,  2" - 3, 2" - 2, 2 "-I)  e $2.. 

Thus 0 is a (2" - 2)-cycle and has 0 and (2" - l) as fixed points. Let G denote the 
subgroup of  $2, generated by {Eklk  ~ K} .  

Lemma 1. G is transitive on V.. 

Proof. Let x, y be arbi t rary elements of  V.. Then xE~  = y, where a = y0 -1 ~ x. 
[ ]  

Let G o denote the stabilizer of  0. Thus, G o = {g ~ GI0g = 0}, and we have the 
following result. 

L e m m a  2. G O is transitive on V.\{0}. 

Proof. Clearly, E~ fixes 0 for any power  i, and so E~ ~ Go for any power  i. Now,  0 
is a (2" - 2)-cycle, so, for arbi t rary elements x, y # 2" - 1 of  V.\{0}, a power i exists 
such that  xO i = y, and so xE~o = y. Thus  we have shown that, for any x, y ~ 0, 2" - 1, 
an element 0 ~ G o exists such that  xa = y. 

Now,  E 1E 2 ~ Go, since 

(0)E1E 2 = (1)0E 2 = 2E 2 = (0)0 = 0, 

and therefore E1E2E~ ~ Go for any power i. However,  

(2" - 1 )EIE 2 = (2" - 2)0E 2 = (2"-1)E2 = (2 "-1 + 2)0 # 0, 2" - 1 (n > 3). 

Hence for any x :# 0, 2" - 1, there is a power  i such that  (2" - 1)EIE2E~o = x, and 
it thus follows that  Go is transitive on V.\{0}. [ ]  

F r o m  Lemmas  1 and 2, we can immediately deduce the following. 

Corollary 1. G is 2-transitive on V.. 
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We now prove the final lemma needed to establish that  these round  functions 
generate the symmetr ic  group. 

Lemma 3. G contains the transposition (0, 2" - 1). 

Proof.  We have Eo = 0 and mE2.-, = (m ~ 2"-1)0. Thus 

E o = 0 = (1, 2 . . . . .  2 "-1 - 1, 2 "-1 + 1 . . . . .  2" - 3, 2" - 2, 2"-1), 

E2.- t  : -  (0, 1, 2 "-1 + 2, 3, 2 "-1 + 4 . . . . .  2 "-1 - 3, 2" - 2, 2 "-1 - 1, 

2" - 1,2"-* + 1,2,2"-* + 3 ,4  . . . . .  2" - 3,2 "-1 - 2,2"-1), 

so Eo is a (2" - 2)-cycle and E2.-1 is a 2"-cycle. Now,  

Eo 2 . . . .  t __ (1, 2 "-1 + 1)(2, 2 "-1 + 2) . . . (2  "-1 - 2 , 2 " - 2 ) ( 2  " - 1 -  l, 2"-1), 

2.-, 2" 2 "-1 E2,_1 = (0, -- 1)(1, + 1)(2, 2 "-1 + 2 )""  (2 "-1 -- 2, 2" -- 2)(2 "-1 -- 1, 2"-1). 

Mult iplying these two elements together gives us 

g 2"-1 172  . . . .  1 = (0, 2" 1) e G. [ ]  2~-t z-, 0 

We now prove the main result about  this cipher, namely, that  the round  
functions generate the full symmetr ic  g roup  on V.. 

Theorem 1. G = Sv, = $2~. 

Proof.  Clearly, G < S v .  However,  we have shown that  G is 2-transitive and 
contains a transposit ion, so G contains all transpositions. The set of  transposit ions 
on V~ generate the symmetric  g roup  on V~, a set of  size 2". [ ]  

3. Cryptanalysis 

Clearly, as a cryptosystem, these one- round  functions are weak. Given a corre- 
sponding message and ciphertext pair  (m, c), we can easily find key k since k = 
m �9 cO -1. However,  many  block ciphers are built from iterations of  weak functions. 
Consider  Fk = Ek,"" Ekr, the r - round iterated block cipher consisting of  encrypt ion 
functions Ek,, where kl . . . . .  k, are independent  n bit subkeys. Thus the key of  this 
iterated block cipher is (kl . . . . .  k,), so the key space is of  size 2 "r. We have seen that 
this is a cipher whose round  functions generate $2., so it is a candidate  for a good  
cipher. We show that  this is not  the case. 

Let x (~ denote  the ith most  significant bit of  x ~ V., so x (1) denotes the left-hand 
bit of  x, etc. It can be clearly seen that  (x0) (1) = x (1) unless x = 2 "-1 - 1, 2 "-1. Thus  
(xO) (1) = x (1) with probabil i ty (1 - 2-("-1)). Generally, 

(xO) (~ = x (~ with approximate  probabil i ty (1 - 2 ' -")  (i < n), 

and so 

(XEk) (i) : (X (~ k) "} with approximate  probabil i ty (1 - 2 ' -")  (i < n). 
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If we consider  the i terated cipher, then we have, for i < n, 

(xFk) (i) = (XEkl "" Ekr) = (X ~ k I ~ "" ~ kr) ") with probabi l i ty  > (1 - 2i-") '. 

I f  we know one p la in tex t -c ipher tex t  pair, (m, c) where c = raFt, then we know the 
bit of  key informat ion  (k 1 ~ . . .  G k,) ti) with probabi l i ty  (I - 2i-") ", that  is, for 
reasonably  large n, mode ra t e  r, and mos t  i, with near  certainty. If  we knew m a n y  
pairs of  plaintext  and ciphertext,  we would be able to determine key bits much  more  
accurately.  Moreover ,  if we know (k 1 ~ . . .  ~ k,) t~ then, for any ciphertext  block, we 
know that  the cor responding  plaintext block mus t  be m ~~ = c ti) ~ (kl ~ . - "  ~ k~) ") 
with probabi l i ty  (1 - 2~-") ". 

4. The Group Generated by the r-Round Encryption Function 

Although Wernsdor f  [4] showed that  the round  functions of  DES  generated the 
al ternat ing g roup  A264, as he pointed  out, it is not  known if the full 16-round DES 
generates the a l ternat ing group.  In this section we demons t ra te  that  the r - round  
i terated cipher described above  generates either the symmetr ic  or  the a l ternat ing 
g roup  on 2" letters if r is respectively odd or  even. We proceed in a similar way to 
Section 2. Thus,  let G ~') denote  the g roup  generated by such an r - round  cipher, and  
let G~o ') denote  the stabilizer of  0 in G {'). 

L e m m a  4. G {') is transitive on V~. 

Proof. Given  x, y ~ V~, xExEro-2 Eyo_l y, and ,-2 G~,). = E xE  o Eyo-~ ~ [] 

L e m m a  5. G~o ") is transitive on V,\{0}. 

Proof. Given  x # 0, 2 ~ - 1, there is gx E G~o ") such that  (2 n - 1)g x = x, where gx = 
E~,-~x-e ~ u , . ~  G~o ") for some power  i x and suitable s. Similarly, for y ~ 0, 2" 1, 0 ~ 1  ~ 2  t . ,0  E 

there is gy E Gto ') such that  (2" - 1)gy = y. Thus  g~-lgy e G~o,) and xg~-lgy = y. [ ]  

Corollary 2. G ~') is 2-transitive on V~. 

Theorem 2. For  r odd, G t') = $2,. 

Proof. F r o m  the p roof  of  Theo rem 1, we have, for r odd,  I,L, 2~--IL~ 0(1ff'2~-11~'2 . . . .  l~r/ = 

(0, 2 n - 1) ~ G t'). G {') is 2-transit ive and contains a t ransposi t ion,  so G t') = $2~. [] 

Theorem 3. For  r even, G ~') = A2~. 

Proof. We first show that  a one- round  encrypt ion is an odd permuta t ion .  Recall 
that  a one- round  function is defined by (m)E k = (m ~) k)O. I f  k # 0, then the X O R  
with k is a p roduc t  of  2 ~-~ transposi t ions,  so is an even permuta t ion ,  and the X O R  
with 0 gives the identity permuta t ion .  0 is a (2 ~ - 2)-cycle, so is an odd permuta t ion .  
Thus  any one- round  function, gk,  is an odd permuta t ion .  Hence  an encrypt ion  



A Weak Cipher that Generates the Symmetric Group 65 

function consisting of an even number of rounds is the product of an even number 
of odd permutations and hence is an even permutation, so G ~'~ < A2,. 

We now show that G I'~ contains all 3-cycles, by showing that G ~'~ contains an 
arbitrary 3-cycle. Let x, y, z ~ V~, then, since 1 and (r - 1) are odd, g = (x, y) ~ G "~ 
and h = (x, z) ~ G ~r-l~. If g is an /-round encryption and h is an m(r - l)-round 
encryption, then both l and m are odd, since otherwise we would have an odd 
permutation as an even-round encryption function. Now, gmht is an mlr-round  
encryption, so gmh~ = (x, y, z) ~ G ~'~. Thus G ~'~ contains all 3-cycles, and so G ~'~ = 
A2,,. [ ]  

5. Conclusions 

Magliveras and Memon 13] indicate their belief that the property of generating the 
symmetric group on the message space is "one of the strongest security conditions 
that can be offered". Our example of a weak system whose group is all of $2. is 
evidence against this belief. Further evidence that a large group is not an indicator 
of strength is the fact, already noted by Even and Goldreich 1"2], that even though 
the round functions generate a large group, most permutations in this large group 
require the composition of an enormous number of round functions. 

In his conclusions, Wernsdorf I4] indicates more refined properties that the group 
G should have in order to "exclude several imaginable crytanalytic shortcuts", 
namely, that G should be large, simple, and act primitively on the message space. 
We have shown that these conditions are not sufficient for security. Our weak 
cryptosystem's round function generates a group, $2., that has a large simple normal 
subgroup, A2., which acts primitively on the message space. Although our example 
is contrived, it is conceivable that a more realistic system could be designed to have 
desirable group properties but which is weak. 

References 

I'll D. Coppersmith and E. Grossman. Generators for certain alternating groups with applications to 
cryptology. SIAM Journal of Applied Mathematics, 2~. 624-627, 1975. 

[2] S. Even and O. Goldreich. DES-like functions can generate the alternating group. IEEE Transac- 
tions on Information Theory, 29: 863-865, 1983. 

[3] S. S. Magliveras and N. D. Memon. Algebraic properties of cryptosystem PGM. Journal of 
Cryptology, 5: 167-184, 1992. 

f4] R. Wernsdorf. The one-round functions of DES generate the alternating group. Advances in 
Cryptology--EUROCRYPT 92 Proceedings, Lecture Notes in Computer Science, Vol. 658, 
Springer-Verlag, Berlin, 1993, pp. 99-112. 


