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Abstract. An N argument function f(xl . . . . .  xs) is called t-private if a protocol 
for computing f exists so that no coalition of at most t parties can infer any 
additional information from the execution, other than the value of the function. 
The motivation of this work is to understand what levels of privacy are attainable. 
So far, only two levels of privacy are known for N argument functions which are 
defined over finite domains: functions that are N-private and functions that are 
L(N - l)/2J-private but not [N/2]-private. 

In this work we show that the privacy hierarchy for N-argument functions which 
are defined over finite domains, has exactly [(N + 1)/2] levels. We prove this 
by constructing, for any IN/2] < t < N - 2, an N-argument function which is 
t-private but not (t + 1)-private. 
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1. Introduction 

An N - a r g u m e n t  f u n c t i o n  f (x l  . . . . .  XN) is ca l led  t-private if  a p r o t o c o l  for  d i s t r ibu-  

t ive ly  c o m p u t i n g  f exists ,  so  t h a t  n o  c o a l i t i o n  o f  a t  m o s t  t pa r t i es  can  infer  any  
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additional information from the execution of the protocol. By "additional informa- 
tion" we mean any information, in the information-theoretic sense, on inputs of 
noncoalition members which does not follow from inputs of coalition members and 
the value of the function f ( x l  . . . . .  xN). Ben-Or et al. [3] and Chaum et al. [5] have 
shown that, over finite domains, every function can be computed L(N - 1)/21- 
privately. Some functions, like modular addition [2], are even N-private, while 
others, like Boolean OR, are L(N - 1)/2J-private but not [N/2]-private 13]. 

These two levels of privacy raise the question whether functions which are 
t-private but not (t + 1)-private, for IN/2] _< t < N - 2, exist. For certain infinite 
families of functions the answer to this question is negative. Chor and Kushilevitz 
[7] proved that every Boolean function which is [N/2]-private is also N-private. 
Chor and Shani [8] proved a similar result for a class of symmetric functions. No 
function which is t-private but not (t + 1)-private, for IN/2] < t < N - 2, was 
known before the current work. In this paper we show that this "gap" between 
L(N - 1)/2.I-privacy and N-privacy is a property of specific families of functions, 
and is not true in general. Specifically, we show that, for every IN/2] < t < N - 2, 
a function exists that is t-private but not (t + 1)-private. This proves the existence 
of a "dense" privacy hierarchy, with no gaps in it. 

2. Definitions and Background 

In this section we describe the model of communication, give the formal definition 
of privacy, and state two known lemmata which are used in what follows. The 
system we consider is a distributed network of N synchronous, computationally 
unbounded parties P1, P2 . . . . .  PN. Each pair of parties is connected by a secure (no 
eavesdropping) and reliable communication channel. 

At the beginning of an execution, each party P~ has an input xl. In addition, each 
party can flip unbiased and independent random bits. (As usual, more general 
sources of randomness could also be used without seriously affecting the capabilities 
of the model.) 

We denote by r~ the string of random bits flipped by P~ (sometimes we refer to the 
string r~ as the random input of P~). The parties wish to compute the value of a 
function f ( x l ,  x2 , . . . ,  XN). TO this end, they exchange messages as prescribed by a 
protocol ~ .  Messages are sent in rounds, where in each round every processor can 
send a message to every other processor. Each message a party sends in the kth 
round is determined by its input, its random input, the messages it received during 
the first k - 1 rounds, and the identity of the receiver. We say that the protocol ~- 
computes the function f if the last message in the protocol is an identical message 
sent by/'1 to all other parties, and consists of the value f ( x l ,  x2 . . . . .  xN). 

Definition 1. Let ~ be an N party protocol, as described above. The communica- 
tion S(~, -g) sent in an execution of ~ is the concatenation of all messages sent in 
the execution, parsed according to sender, receiver, and round number. 

Definition 2. Given a protocol ~-, a communication string S is a string parsed 
according to sender, receiver, and round number, which equals S(~, ~) for some 
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input ~ and random input E Let S be a communication string, and let T ___ 
{ 1, 2 . . . . .  N}. The projected communication string, St ,  is the communication string 
S after the deletion of messages sent between parties in T. 

Intuitively, Sr is the view of the members of T of the communication string S. 

Definition 3. Let ~- be an N party protocol which computes a function f, and let 
T be a coalition of parties, T ~ { 1, 2 . . . . .  N}. We say that the coalition T does not 
learn any additional information from the execution of ~- if the following holds: for 
every two input vectors ~ and ~ that agree in their T entries (i.e., Vi ~ T: xi = y~) and 
for which f has the same value f (g )  = f(g) ,  for every choice of random inputs 
{ri}~E r, and for every projected communication string St, 

Pr~,,I,,~(Srl~, {ri}iET) = Prl,,I,,e(Srl~, {r,},Er). 

(The probability space is over the random inputs of all parties in T.) 

This definition implies that, for all inputs which "look the same" from the 
coalition's point of view (and for which, in particular, f has the same value), the 
communication exchanged between T and T also "look the same" (it is identically 
distributed). Therefore, by executing ~-, the coalition T cannot infer any informa- 
tion on the inputs of T (other than what follows from the inputs of T and the value 
of the function). 

Definition 4. A protocol ~- for computing f is t-private if any coalition T of at 
most t parties does not learn any additional information from the execution of the 
protocol. A function f is t-private if a t-private protocol that computes it exists. 

In the proofs that follow we use two known lemmata of Chor and Kushilevitz 
[7], [9]. The first lemma states a necessary condition for t-privacy (t > IN/2]) of f ,  
in terms of 1-privacy of a related two-argument function. The second lemma states 
a necessary condition for 1-privacy of two-argument functions. 

The Partition Lemma [7]. Let A 1, A 2 . . . . .  A N and B be nonempty sets, t >_ IN/2], 
and let f :  A~ x A 2 x . . .  x A N --, B be t-private. Let S ~ {1, 2 . . . . .  N} be any subset 
of size t. Denote by D (resp. E) the Cartesian product of the A i with i ~ S (resp. i ~ S). 
Let f '  be the function obtained by viewing f as a two-argument function f ' :  
D • E --, B. That is, f '  satisfies f ( x  1, x 2 . . . .  , XN) = f'({Xi}i~D, {Xi}iEr). In this set- 
ting, if f is t-private, then f '  is l-private. 

The Corners Lemma [7], [9]. Let D, E, and B be nonempty sets, and let f :  
D x E ~ B be 1-private. For every dl, d 2 ~ D, el, e 2 e E, and b ~ B, i f f (d l ,  el) = 
f (d l ,  e2) = f(d2, el) = b, thenf (d  2, e2) = b. 

3. The Hierarchy 

Theorem 1. Let t be an integer in the interval IN/2] _< t _< N - 2. An N-argument 
function ft which is t-private but not (t + 1)-private exists. 
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N - t - 1  N - t - 1  

~),0 . . . . .  5 i ,1  . . . .  , f  

0 ,0 , . . . , 0  0 0 
t + l  

0 1 1 , 1 , . . . , 1  
t-?-I 

Fig. 1. 9t does not satisfy the Corners Lemma. 

Proof. For  every t ( IN/2]  < t < N - 2), let ft: {0, 1} N -~ {0, 1} '+2 u {0, 1} be de- 
fined by 

f 
0 if x i = 0  fo ra l l  l < i < t + l ,  

f , (x l , x2  . . . . .  XN) de--f Xt+2 if x i = l  for all l _ < i < t + l ,  

L ( x t  . . . . .  xt+2) otherwise�9 

Note  that  the function ft depends only on its first t + 2 arguments.  
First we show that  f is not  (t + 1)-private. By the Par t i t ion Lemma it is enough 

to demonst ra te  a part i t ion S, S of  {1 , . . . ,  N} such that  S is of size t + 1, and the 
induced two-argument  function is not  1-private. We choose S = { 1, 2 . . . . .  t + 1 }, 
so that  S = {t + 2 . . . . .  N}. (t should satisfy t < N - 2 for S to be nonempty,  and 
t > I-N/2] for the Part i t ion Lemma to be applicable�9 In Fig. 1 we show four points, 
where the rows correspond to xl  . . . .  , x,+l, and the columns to x,+2, . . . ,  xN. It is 
clear that  the induced two-argument  function, g,, does not  satisfy the Corners  
Lemma.  Therefore g, is not  1-private, and thus f is not  (t + 1)-private. 

N o w  we show that  ft is t-private�9 We present an appropr ia te  protocol,  ~,, and 
prove that it is a t-private protocol�9 

1. Par ty  Pt+2 chooses at riandom t + 1 bits ml, m,+~ such that  X-',+: ,,, �9 �9 " ,  / , i = 1  " ' i  ~ "  

x,+2 mod  2 (each such t + 1 tuple is chosen with the same probability). Pt+2 
sends ml to Pi (1 < i < t + 1). (The effect of this step is that the par ty  P,+2 shares 
its input, xt+2, among the parties P~, P2 . . . . .  Pt+l using a t + 1 out  of t + 1 
secret-sharing scheme [10], [41.) This ensures that  P1, P2, - . . ,  Pt+l together  can 
reconstruct  xt+2, while any subset of them does not  have any information 
about X t  + 2 . 

2. Each par ty  among P~, P2, . . - ,  Pt+l sends its input to all o ther  parties in this list. 
3. If xl  = x2 = "'" = xt+~ = O, then the parties Px, P2 . . . . .  Pt+l announce  that  the 

output  is 0 (i.e., f,(Y) = 0), and the protocol  terminates. 
4. If x~ = x2 . . . . .  x,+~ = 1, then the par t ies / '1 ,  P2 . . . . .  P,+~ reconstruct  x,+2 

x-',+l m mod 2. Par ty  P~ announces  that  the output  is by comput ing xt+ 2 = ~i=~ 
xt+2, and the protocol  terminates. 

5. Otherwise, P~, P2 . . . . .  P~+~ reconstruct  xt+2 by comput ing  x,+2 = 
E t + l  i=1 mi mod  2. Px announces  that the output  is (Xl . . . . .  xt+2), and the protocol  
terminates. 
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We now prove that the protocol ~ is indeed t-private. The parties P,+3 . . . . .  PN 
are not active in the protocol. The following claim says that we can ignore these 
passive parties while proving the t-privacy and consider only coalitions which are 
subsets of P1 . . . . .  Pt+ 2" 

Clair, 1. Let 7"1 ~ {1 . . . . .  t + 2} and T 2 c_ {t + 3 , . . . ,  N}. I f  the coalition TI does 
not learn any additional information from the execution of the protocol 4 ,  then neither 
does the coalition T 1 u T 2. 

Proof. Observe that, in every execution, the parties in T 2 receive only the final 
message from P1 containing the output of the protocol (and send no messages). This 
implies that, for every communication string S, the projected communication string 
with respect to T1 u T2, St1 ur2, equals the projected communication string with 
respect to T 1, St1, together with those messages containing the output. Therefore, 
the claim follows from Definition 3. []  

The next claim says that the arguments of Pt+3 . . . . .  PN have no influence on the 
communication. 

Claim 2. For any two input vectors ~ and ~ that agree on the first t + 2 arguments, 
the communication in the protocol ~ is distributed in the same way. 

Proof. As the parties Pt+3 . . . . .  PN do not send or receive any messages (except 
receiving the final output), then, for every choice of random inputs for all parties, 
7, we have S(~, 7) = S(~, F). []  

Pairs of inputs ~ and ~ for which f,(~) ~ f~(~) can always be distinguished by any 
coalition. Indeed, there are privacy requirements only with respect to pairs of inputs 

and ~" satisfying ft(~) = f~(g). Therefore, it is convenient to break the proof of the 
t-privacy to cases, by the output values. Any output different from {0, 1} completely 
determines the input values of the active parties P1 . . . . .  Pt+2. Therefore, by the 
definition, the privacy requirements are always met on these inputs. This leaves us 
with input ~ for which f~(~) = 0 or f,(~) = 1. If the output is 1, the input vector is 
of the form 

= (1, 1 . . . . .  1, x,+3 . . . . .  xN). 
J 

All such ~'s agree on the first t + 2 arguments, which are all l's. By Claim 2, for 
each of the possible input vectors of this form we have the same distribution of 
communications. In particular, for any coalition T __. {1 . . . . .  t + 2}, Sr is identically 
distributed for all these inputs. Therefore the privacy requirements are satisfied for 
inputs with f (~)  --- 1. The remaining case is where the output is 0. This corresponds 
to inputs ~ of the two forms 

= (0, 0 . . . . .  O, xt+2, x,+3 . . . . .  xN) and ~ = (1, 1 . . . . .  1, O, xt+3 . . . . .  XN). 
k ) k. J ~ r  

1+1 I~1 
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There are three possibilities for coalitions of size at most t which contain only active 
parties (subsets of P1, . . . ,  Pt+2): 

�9 Coalitions of size at most t which are (nonempty) subsets of {/'1, P2 . . . .  , Pt+l }. 
�9 The coalition {P,+2}. 
�9 Coalitions that consist of Pt+2 and at least one of P~ . . . . .  P,+~. 

1. Coalitions T of size at most t which are (nonempty) subsets of {P~, P2 . . . . .  Pt+~ }. 
Such a coalition does not contain Pt+2, and should be unable to distinguish 
between any pair of input vectors of the form 

= (0, 0 . . . . .  0, 0, x,+3 . . . . .  xN) 
k ,t 

and 
= (0, 0 . . . . .  0, 1, x,+3 . . . . .  XN). 

k ) 

By the way that m~ . . . . .  mt+l are chosen, every proper subset of Px . . . . .  P~+I, 
and in particular T, sees the same distribution of messages, in step 1 of the 
protocol, for ~ and ~. Steps 2 and 3 of the protocol are identical for ~ and g, 
and in this case the protocol terminates in step 3. (The parties Pa, . . . ,  Pt+~ do 
not reconstruct the input x,+2.) Therefore, the distribution of the projected 
communication string with respect to T, St, is identical for ~ and ~. 

2. The coalition {Pt+2 }. This coalition should not be able to distinguish between 
input vectors of the form 

= (0,  0 . . . . .  O, O, X t + 3 , . . .  , XN)  
k ,t y- 

t + l  

and 
= (1, 1, . . . ,  1, 0, xt+3 . . . . .  xtr 

k ) 

In this case, the party P t + 2 ,  does not receive any message during the execution 
of the protocol (except the output of the function). The coalition contains no 
active party among the first t + 1 parties PI . . . . .  Pt+x, and so the distribution 
of the projected communication string SIpt+21 that Pt.2 receives and sends on 

and ~" is identical. 
3. Coalitions T that consist of Pt+2, and at least one of P1, .-. ,  Pt+~, a party we 

denote by P~ (1 _< i _< t + 1). It is enough to show that for any two inputs 
and ~ satisfying f ( ~ )  = f ( ~ )  = O, xt+ 2 = Yt+2, and xi = y~, the projected com- 
munication string Sr is identically distributed for ~ and ~. By the definition of 
f ,  i f f(Y) = O, then xl = x2 . . . . .  x,+l. So in our ease, since xi = yi, we have 
xl = x2 . . . .  = xt+l = y~ = Y2 = "'" = Yt+x, and in addition xt+2 = Yt+2. In 
other words, the inputs ~ and ~ agree on their first t + 2 arguments. By Claim 
2, Sr is identically distributed for ~ and ~. 

This completes the proof of the theorem. []  
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Combining Theorem 1 with the I(N - 1)/2J-private protocols of l-3] and [51 we 
get 

Corollary 2. The privacy hierarchy of functions defined over finite domains 
consists of exactly [(N + 1)/2] (nonempty) levels, which correspond to I.(N - 1)/2/, 
I_(N - 1)/2/+ 1 . . . . .  N - 2, and N privacy. 

We remark that by the definition of privacy, an (N - 1)-private function is also 
N-private, so there is no additional level in the privacy hierarchy. 

4. Concluding Remarks 

In proving that ft is not (t + 1)-private, we used a partition argument (the Partition 
Lemma). We demonstrated a partition of { 1, 2 . . . . .  N} into sets S, S with ISI = t + 1, 
such that the induced two-argument function is not 1-private (by the Corners 
Lemma). All known proofs of non-t-privacy for functions with finite domain and t 
in the range [N/2] < t < N - 1 are based on a similar partition argument, together 
with either the Corners Lemma or the two-party characterization of [9-1 and I-1-1. It 
is an open problem whether such an argument always suffices; that is, whether 
non-t-privacy can always be proved by a partition argument. 

It would be interesting to know the situation with respect to functions defined 
over infinite domain. Clearly, the privacy hierarchy for the infinite case contains at 
least as many levels as the privacy hierarchy in the finite case. However, in the 
infinite case the hierarchy contains at least one more level: The authors, in 1-6-1, 
proved that there are functions (over countable domains) which are not even 
1-private. The existence of functions, over infinite countable domains, which are 
t-private but not (t + 1)-private, for 1 < t < I(N - 1)/2J, remains an open problem. 
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