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Abstract. We present in this paper an idea ofhow to reduce the number of possible 
permutations when trying to solve the permuted kernels problem. We refer to the 
identification scheme of Shamir [2] and we also show how a dishonest prover can 
maximize his prospects to pass the test. 
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1. Introduction 

In the rump session of Crypto '89 Shamir presented a new identification scheme 
based on permuted kernels [2]. The users of this identification scheme agree on a 
prime p and on a universal m x n matrix A. The coefficients of A are elements of 
GF(p). Without loss of generality we can assume that A is given in the block form 
A = [IIA'] where I is the m x m identity matrix and A' is a random m x (n - m) 
matrix. Each user chooses as his secret key a random permutat ion rc and as his 
public key an n-vector V = (v 1, v 2 . . . . .  v,) r ~ (GF(p))" such that V,, ~ K(A), e.g., 
AV,~ = 0 mod p (V~ denotes the application of the secret permutat ion n on the 
components  of the vector V). By proving knowledge of the secret permutat ion n, 
users can establish their identity. 

In this paper  we show how to reduce the number  of permutations to be considered 
when trying to find the secret permutat ion 7t. We also present a strategy which 
maximizes the prospects of a dishonest prover to pass the test proposed in [2]. 

2. The Algorithm 

The identification protocol presented by Shamir is as follows: 

1. The prover chooses a random vector R and a random permutat ion a, and 
sends the cryptographically hashed values of the pairs (tr, AR) and (ntr, R,)  to 
the verifier. 
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2. The verifier chooses a random value 0 < c < p and asks the prover to send 
W = R~ + cV~ o. 

3. After receiving W, the verifier asks the prover to reveal either a or ntr. In the 
first case the verifier checks that (tr, Ao W )  hashes to the first given value, and 
in the second case the verifier checks that (rra, W - cV~,) hashes to the second 
given value. 

It is obvious that an honest prover who knows rr will always pass this test. 

3. On the Security of the Proposed Scheme 

Now consider the kernel K ( A )  of A. Its size is pk, k = n - m. K ( A )  can be represented 
as linear combination of k n-vectors V 1, V 2 . . . . .  V k (V, i = 1, 2, . . . ,  k, being, in the 
following equation, then n-vector multiplied with )`~, respectively): 
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r being a positive integer�9 

with constants al. 1 . . . .  , ak, m e GF(p) (depending on the components of A) and 
parameters 21, . . . ,  2k e GF(p). Consequently, K ( A )  is the set of vectors of the form 

(fl ,  f2 . . . . .  fro, 21, )-2 . . . . .  )-k-l, )-k) r (2) 

with f / =  )-1a1,i + )-2a2,i + )-3a3,i + " ' "  + )-kak, i mod p, for i = 1, 2 . . . . .  m. 
It is obvious that when trying to find out the permutation • we do not have to 

place correctly all n but only the last n - m coefficients of V,. In case of success the 
first m coefficients will be calculated and placed automatically in the kernel equation 
(1) or (2), else the kernel equation will not provide acceptable coefficients. Therefore 
the number of the permutations to be considered is not n! (that is the number of all 
possible permutations of a set of n elements) but is equal to the number of possibili- 
ties of picking (n - m) elements out of a set of n elements and placing them correctly. 
That is, 

n ] / ( ( n  - m)! * m!)  * (n - -  m)! = n ! / m !  (3) 

Furthermore, we may reduce the number (n!/m!) of permutations to be considered 
if we succeed in forming equations including )-1, )-2 . . . . .  )-k. We can obtain such 
equations by considering the coefficients of the vectors V and V~. Since V~ e K ( A )  
we get, by using (2), 

k 

v~ m o d p =  ~ yr. m o d p =  ~ f / "  m o d p +  Z)-r modp,  (4) 
i = 1  i = 1  i = 1  i = 1  
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To compute (4) is easy for r = 1 or r = 2 but is very complicated for r > 2. 
Nevertheless, by using these equations for r = 1 and r = 2 we may reduce the 
number of permutations to be considered to (n!/(m + 2)l) since (according to (3)) we 
will have to pick (n - m - 2) elements out of a set of n elements and place them 
correctly. 

By using (4) for r = 1 we will replace in (1) some 2i by a linear combination of the 
other (k - 1) parameters. By using (4) for r = 2 we will have to deal with a quadratic 
equation when replacing another 2 i by the remaining ( k -  2) parameters. That  
means that it will be necessary to compute square roots in GF(p). The effort to 
compute such a root requires O(log p) steps [1] but because of the small size of p 
(8 bits [2]) it seems more efficient to store all elements of GF(p) and their squares 
in a file which requires only once at most (p - 1)/2 squarings modulo p. The double 
effort needed in some cases where the solution of the quadratic equation will provide 
two different valid values for 2 i will be at least equalized by the cases where the 
equation mentioned above will provide no valid solution for 2j. The effort needed 
to compute the remaining first m coefficients of the n-vector V~ is no more than the 
effort needed to check for a given n-vector T if T ~ K(A). 

That  means by using (4) for r = 1 and r = 2 we will have to consider, for n = 32 
and m = 16, only (32!/18!) ~ 265 and, for n = 64 and m = 37, only (64!/39!) ~ 2 t42 
possible permutations. These numbers, although still large, are much smaller than 
the numbers presented in [2]. 

The following example serves only to demonstrate how (4) can be used. Consider 
p = 13, m = 3, n = 6, V = (vt, v 2 . . . . .  v6) T = (11, 10, 6, 7, 12, 4) T, and 

A =  1 0 5 7 . 

0 1 8 9 

By the following triples we denote the squares (first component) and their square 
roots (second and third component) modulo 13: 

(0, 0, 0), (1, 1, 12), (3, 4, 9), (4, 2, 11), (9, 3, 10), (10, 6, 7), (12, 5, 8). 

Further, it holds that 

and 

vl + v 2 + ' " + v 6 =  11 

+ v ,  + - - .  + = 11 

K(A) has, according to (2), the following form: 

"1121 + 922 +" 723" 

821 + 622 + 1023 

52x + 422 + 1223 
K(A) = 

2a 

22 

23 

rood 13 (5) 

mod 13. (6) 

mod 13. (2a) 
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By using (4) we get 

1. for r = 1 (with (5)), 

which is equivalent to 

11 = 1221 + 722 + 423 mod 13 

21 = 722 -k 423 + 2 mod 13 (4a) 
and 

2. for r = 2 (with (6)), 

11 = 322 + 422 + 822 + 92122 + 52123 + 42223 mod 13 

which provides (with (4a)) 

22 = 323 - 2 _ (5232 + 623 - 3) 1/2 rood 13. (4b) 

We now only need to find among the six components of V the one corresponding 
to 23. 

If 23 = 4, then we get, for 22, the values 3 or 4, neither of which is acceptable since 
no remaining component  of V has such a value. 

If 23 = 6, 7, 10, or 11, then the value of the discriminant in (4b) is 5 or 11, neither 
of which is a quadratic residue modulo 13. 

If 23 = 12, then we compute, for 22, the values 11 and 5. Only the first one is 
acceptable. 

This solution provides, by using (4a) and (2a), the vector V~ = (7, 6, 4, 10, 11, 12) 
and the secret permutation n = (1, 5, 6, 3, 2, 4). 

This way we reduced the possibilities from n! = 6! = 720 to n!/(m + 2)[ = 
6!/5! = 6. 

4. The Probability To Succeed with Cheating 

In [2] it is shown that the probability of a dishonest prover to pass the test given 
in Section 2 above without knowing a suitable permutation n is at most (p + 1)/2p. 
In this section we present a strategy which shows that this bound is tight. 

Strategy. At step 1 of the protocol the dishonest prover chooses a random n-vector 
R and two random permutations tr and r, and sends the cryptographically hashed 
values of the pairs (or, A R )  and (T, R,) to the verifier. The prover computes the 
permutation/~ = ~tr -x and checks if V~ e K(A) .  If this is the case the dishonest prover 
can use/~ and follow Shamir's protocol with guaranteed success. I fp  does not behave 
as wished, then the dishonest prover can maximize his prospects as follows: 

1. If c = 0 (with probabili ty P(c = O) = l/p), then the dishonest prover will pass 
the test anyway. 

2. I f c  ~ 0 (with probability P(c ~ O) = (p - 1)/p), then the dishonest prover has 
to guess whether the verifier will ask him to reveal cr or nor. The probability of 
the prover to guess correctly is 1/2. 
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2.1. In the first case the prover chooses an n-vector S ~ K(A)  and sends 
to the verifier the vector W = Rr + cSo. Since A , W  = Ao(Ro + cSo) = 
A R  + cAS  = A R  the verifier cannot reveal the bluff. 

2.2. In the second case the prover sends to the verifier the n-vector W = 
Ro + cV~. Since W - cV~ = Ro by definition the prover passes the test. 

Consequently, the probabili ty of success of a dishonest prover to pass the test 
without knowing such a Ir is l ip + (p - 1)/2p = (p + 1)/2p. 

In addition we point out that if ~r is the secret key and even if Vu E K(A), the 
equality ~r = # is not guaranteed. It  is very easy to give examples for larger parame- 
ters but for space reasons let us consider the following example for p = 13, m = 3, 
n = 6, V = (10, 11, 9, 8, 7, 0) T, lr = (1,4, 3, 5, 2, 6), and 

A =  1 0 8 3 . 

0 1 11 6 

It is obvious to show that V~ = (0, 7, 8, 10, 9, 11) t E K(A). However, by also using 
the permutat ion # = (1, 2, 5, 6, 4, 3)we find out that V, = (9, 10, 8, 0, 11, 7) T ~ K(A).  
This example shows that there exist cases in which some lucky dishonest prover 
may always succeed in his activities without knowing the secret key re. 

5. Summary 

In this paper  we made some remarks on the security of the identification scheme of 
Shamir based on permuted kernels. We showed a way to reduce the number of the 
permutations to be considered when trying to find the secret permutat ion 7r. We 
also showed that the bound of the probability of a dishonest prover to pass the test 
given in [2] is tight. 
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