J Mol Med (1995) 73:379

CORRIGENDUM

Tables 2, 4 and 5 published in J. Mol. Med. <u>73</u>:123–132 (1995) were composed in a manner allowing misinterpretation. Therefore, these tables are presented here in a structurally modified version.

© Springer-Verlag 1995

REVIEW

B. Nürnberg · T. Gudermann · G. Schultz

Receptors and G proteins as primary components of transmembrane signal transduction

Part 2. G proteins: structure and function

Table 2 Covalent modifica-
tions of G protein α subunits

¹ functional uncoupling of receptor-G-protein interaction ² also modification of $G\alpha_t$ by lauric acid and unsaturated fatty acids (C-14:2, C-14:1) ³ in platelets additionally acylation of $G\alpha_i$, $G\alpha_q$, $G\alpha_z$, $G\alpha_{13}$ by arachidonic acid ⁴ substoichiometric phosphorylation; unknown physiological

role ⁵ unknown physiological role ⁶ inhibition of pertussis toxin-

sensitive PI response

Table 4 Posttranslational modifications of G protein γ subunits

¹ A = aliphatic amino acid, $X \neq \Phi$ ² abbreviations of amino acids: Ala = alanine, Cys = cysteine, Glu = glutamic acid, Leu = leucine, Met = methionine, Ser = serine ³ members of monomeric GTPases

ADP-ribosylation	
constitutively activated G protein	$\begin{array}{l} G\alpha_{s} \ (Arg^{186/201}), \ G\alpha_{t} \\ G\alpha_{i1-3}, \ G\alpha_{o1-2} \end{array}$
Pertussis toxin: inactivated $\alpha\beta\gamma$ heterotrimer ¹ sequence motif: <i>C</i> GA Φ (C-terminus)	$G\alpha_{i1-3}, G\alpha_{o1-2}, G\alpha_t$
Acylation	
Myristoylation ² (cotranslational, irreversible) sequence motif:MGXXXS/T? (N-terminus) enzyme: N-myristyl transferase	$G\alpha_{i13}, G\alpha_{o12}, G\alpha_t, G\alpha_z$
Palmitoylation ³ (posttranslational, reversible) sequence motif:MGC? (N-terminus)	$\begin{array}{l} G\alpha_{11-3}, G\alpha_z, G\alpha_{o1-2}, G\alpha_s, \\ G\alpha_{11-13}, \end{array}$
Phosphorylation	
cAMP-dependent protein kinase ⁴	$G\alpha_i$?, $G\alpha_s$?
Protein kinase C ⁵	$G\alpha_z$, (Ser ^{16/27}), $G\alpha_{i2}$
cGMP-dependent protein kinase ⁶	$G\alpha_{o1-3}$

	(3) Cysteine carboxymethylation		<u> </u>
5	(2) Endoproteolytic cleavage of three C-terminal amino acids		
	CCXX; CXC	(c) geranyigeranyi mansterase m (c 20)	rab-family ³
	CAAX: X = Leu	(c) geranylgeranyl transferase II (C-20)	$G\gamma_2, G\gamma_3, G\gamma_5$?, $G\gamma_7$?
ч :		(b) geranlygeranyl transferase I (C-20)	
Б	CAAX: $X = Ala^2$, Cys. Glu. Met. Ser	(a) farmesyl transferase (C-13)	$G\gamma_1$, ras-family ³
	(1) Cysteine-polyisoprenylation	(x) for an equilation of each $(C, 15)$	
		sequence motif:CAAX ¹ (C-terminus)	

Table 5 Effectors regulated by G protein α subunits and $\beta\gamma$ complexes

^a recently it was shown that a PI-3 kinase (p110 γ) cloned and sequenced from a U 937 cDNA library is activated by both G protein α and $\beta\gamma$ subunits

ref: Stoyanov, B., Volinia, S., Hanck, T., Rubio, I., Loubtchenkov, M., Malek, D., Stoyanova, S., Vanhaesebroeck, B., Dhand, R., Nürnberg, B., Gierschik, P., Seedorf, K., Hsuan, J.J., Waterfield, M.D., Wetzker, R. (1995): Cloning and characterization of a G protein-activated human phosphatidylinositol-3 kinase, Science, in press

	α subunit	$\beta\gamma$ complex
cGMP phosphodiesterase βARK ras-regulating proteins PI-3 kinase-γ ^a Phospholipases C-β Adenylyl cyclases	↑ ↑ ↑,↓	↑ ↑ ↑,↓
Ca ²⁺ channels Cl ⁻ channels Na ⁺ channels K ⁺ ch. (inw. rect. ATP regul.)	↑,↓ ↑,↓ ↑,↓	↑