
J. Cryptology (1995) 8:201-222 Joumol of

CRYPTOLOGY
�9 1995 International Association for
Cryptologic Research

Practical and Provably Secure Release of a
Secret and Exchange of Signatures

Ivan Bjerre Damg~rd
Mathematical Institute, Aarhus University,

Ny Munkegade 116, DK-8000 Aarhus C, Denmark

Communicated by Gilles Brassard

Received 20 October 1992 and revised 11 July 1994

Abstract. We present a protocol that allows a sender to release gradually and
verifiably a secret to a receiver. We argue that the protocol can be efficiently
applied to the exchange of secrets in many cases, such as when the secret is a
digital signature. This includes Rabin, low-public-exponent RSA, and El Gamal
signatures. In these cases, the protocol requires an interactive three-pass initial
phase, after which each bit (or block of bits) of the signature can be released
noninteractively (i.e., by sending one message). The necessary computations can
be done in a couple of minutes on an up-to-date PC. The protocol is statistical
zero-knowledge, and therefore releases a negligible amount of side information
in the Shannon sense to the receiver. The sender is unable to cheat, if he
cannot factor a large composite number before the protocol is completed.

Key words. Exchange of secrets, Digital signatures, Zero-knowledge.

I, Introduction

1.1. The Basic Problem

Suppose parties A and B each possess a secret, sa and ss, respectively. Suppose
further that both secrets represent some value to the other party, and that they
are therefore willing to " t rade" the secrets against each other. For example, s,~
might be A's digital signature on a commitment to deliver some kind of service
to B, while s B could be a bank's signature on some digital cash. However, if the
parties do not trust each other, it is clear that none of them is willing to go first
in releasing the sec re t - -once one of them has done this, he may never get
anything in return.

If the two secrets are represented as bit strings of the same length, this can be
solved by exchanging the secrets bit by bit; if this is done honestly, no party will
be more than one bit ahead of the other. Put another way: if at some point, A
can compute s B in time T, then B can compute s A in at most time 2T by

201

202 I.B. Damg~rd

guessing the bit he may be missing. This assumes, of course, that a bit of s~ tells
A just as much as a bit of s A tells B- -we get back to this problem in Section
2.2.

However, this "solution" has created another problem: one party may have
given away his secret, only to find in the final stage that in return he has been
given garbage instead of bits of a genuine secret. Hence what we need is a way
to release the secrets in small parts, such that the receiver can cerify for each
part that he has been given correct information. The alternative, namely to
assume a trusted third party which would need to be on-line and active in every
instance of the protocol, is not attractive and probably not very realistic either.

Thus we can distill a basic primitive (introduced in [7]) which we call gradual
and verifiable release of a secret, the intuitive meaning of which should be clear
from the above. It should also be clear that a gradual and verifiable release
protocol can be used to implement an exchange of secrets between any number
of parties. In order for such an exchange to be fair, the secrets involved have to
satisfy certain conditions (see Section 2.2). In addition, the concept of a release
protocol makes sense in its own right, and might be useful for other purposes
than implementing exchanges of secrets.

1.2. Comparison with Earlier Work

The exchange and release of secrets has attracted a lot of attention in the past,
and a large body of literature exists on the subject [3], [5], [7], [8], [11], [12],
[18]-[22], [24], [27]. A general solution to the release of secrets problem fol-
lows from the discovery of zero-knowledge proofs and arguments for any NP-
language [6], [14], because these techniques can be used to construct a
release protocol that is as secure as the bit-commitment scheme used in the
zero-knowledge proof. Thus existence of any one-way function is a sufficient
assumption to implement a secure gradual release. This is relatively trivial to see
for methods that release specific bits of the secret, while more advanced
methods are required to release probabilistic information, which can amount to
less than one bit at a time (see, for example, [20] and [15]). It is even possible to
make the choice of bits to release adaptive [19]. In this work we construct a
simple bit-by-bit release, which can be used directly, or serve as a primitive in
constructions aiming at releasing "parts of bits."

The gradual release protocols resulting from the general theoretical results
are very far from practical, however, and a solution that is both practical and
provably secure does not seem to have appeared before.

Before looking at the basic problem with earlier practical solutions, we have
to point out a fundamental fact: the demand that the released parts of the secret
be correct makes sense only if the secret is itself determined by some public
piece of information. Otherwise, not even the secret itself can be verified.
Typically, something like f (s) is public, where s is the secret and f is some
one-way function.

Earlier practical release protocols assume a priori that the secret is given in
some particular form, e.g., a discrete log in [7], a factorization in [5]. However,
when trying to apply such protocols, we are likely to find that the application

Practical and Provably Secure Release of a Secret and Exchange of Signatures 203

dictates the way in which the secret is given, i.e., the particular one-way function
f involved is determined by the application. For example, if we want to release
an RSA signature on a given message, f would be the function mapping a
signature to the message it signs. Thus, if we wanted to use, e.g., [7], we would
have to make both f (s) and gS known, where g is chosen in some appropriate
group. The problem is that this may release additional information about s, and
so is very unlikely to lead to a provably secure scheme.

The release protocol of this paper solves the problem by using a new tool: an
unconditionally hiding bit commitment scheme that allows commitment to a
string of any length and can be opened bit by bit. Moreover, commitments have
length independent of the strings they hide. In addition, we present efficient
protocols for checking that the contents of such a commitment has a particular
form (for example, that it is the Rabin, RSA, or El Gamal signature on a given
message). This leads to provably secure release protocols for such signatures.

Since digital signatures are obvious candidates for representing value or
commitments in practical applications, methods for releasing or exchanging such
signatures seem to be of very strong practical relevance.

1.3. Fair Exchange and Contract Signing

Intuitively, a fair exchange of secrets protocol is one that avoids a situation
where A can obtain B's secret, while B cannot obtain that of A. If there is no
assumption made that third-party intervention is possible, the best we can do is
to guarantee that if one party stops the protocol early, both parties are left with
roughly the same computational task in order to find the other party's secret.
This is the model used in this paper. In Section 2.2 we discuss to what extent
such a fair exchange follows from a gradual and verifiable release.

However, in any case, it is clear that if, for example, A has much more
powerful hardware than B, the actual time A would need to find the secret in
case of early stopping would be much smaller than for B. Depending on the
application this may or may not be a problem. One example where this comes
up is if we use exchange of secrets to implement fair contract signing. This is
straightforward: A and B both sign the contract, and then gradually exchange
their signatures. However, if the contract involves time-related issues, such as a
commitment taking effect at a certain date, the above "real-time" problem
could be serious in case one party cheats.

In [2] Ben-Or et al. show how to avoid this problem, if we assume that a judge
is available to settle disputes. Since the judge only has to be active in the event
of a dispute, this assumption is less demanding than one that calls for an active,
on-line trusted third party. The protocol can make use of any signature scheme.
The difference to our work is first the assumption about the judge, and second
that the protocol of [2] is a dedicated protocol for solving the contract-signing
problem: it does not implement an exchange or a release of secrets.

The protocol in [2] involves a certain computational overhead: the signature
scheme must be employed a large number of times by both parties. In [10] we
showed that most of this overhead can be avoided.

204 I.B. Damg~rd

1.4. Organization of the Paper

In Section 2 we give a formal definition of release protocols, and a discussion of
the extent to which release protocols can be used to build exchange protocols
both in general and in the particular cases we consider. The reader most
interested in the actual protocol constructions can skip this section in a first
reading. However, note that some of the material in Section 2.2 can be read
before Section 2.1 and may be of interest independently of the formal defini-
tions.

Section 3 describes the bit commitment scheme we base our protocols on and
proves its basic properties, while Section 4 gives some protocols for checking the
contents of commitments. Finally Sections 5 and 6 describe complete protocols
for releasing RSA/Rab in signatures and discrete log-based signatures, respec-
tively.

2. Basic Definitions

This section gives some basic definitions and some connections between them.
Although the model is certainly not the most general possible, it does describe
appropriately the protocols we present in the following.

2.1. Release Protocols

In this section we give a formal definition of a secure release protocol. Intu-
itively, we model the situation where party A has a secret s, which he will
release bit by bit to B who knows t, where (if A is honest) (t, s) satisfy some
predicate P. Typically, P will be satisfied if t is the image under some one-way
function of s. At any point in the protocol, B should be able to compute some of
the bits of s correctly, but the protocol should not give him more than this, i.e.,
he should be in the same situation as if he had been given t and the bits of s by
an oracle. Note that, in general, B may be able to compute (on his own)
additional bits of s from ones already released. This is of no concern in this
definition, however, because all we want to express is that, at any point of the
protocol, B gets whatever he can compute efficiently from the information he is
entitled to know at the given time.

We think of the pair (A, B) as interactive Turing machines as defined in [16]
and use the notation of [13]. In particular, both A and B are polynomial-time
bounded in the input length, and are equipped with knowledge tapes containing
their private inputs. In the following X means A or B. Following [13], we let X
denote a machine following the protocol specified for party X, while 27 denotes
an arbitrary cheating participant playing the role of X. The symbol X repre-
sents X or X.

A bit string t of length k is common input to A and B, while A receives as
private input on its knowledge tape a string s of length at most f (k) , where f is
a polynomial. To model the fact that B may have some a priori knowledge, we
assume that B receives the string k s on its knowledge tape.

Practical and Provably Secure Release of a Secret and Exchange of Signatures 205

In the following, sli denotes the i least-significant bits of s (sl0 is the empty
string).

The event that one party sends a message to the other is called a pass. Passes
are numbered ordinarily, starting from 1. After each pass, the participant
receiving a message may output "reject" and stop, indicating detection of
cheating. We say that (A , B) completes pass i if no party outputs reject after
pass i.

Following [13], the view of a participant is defined to be the ordered concate-
nation of the messages sent in the protocol, followed by the random bits read by
the participant. This is denoted by Viewx(t , s, rA, kB, rB), where r x is the
content of the random tape of party X. The symbol Viewix(t, s, r A, k B, r B)
denotes party X's view of the truncated protocol where we only consider passes
1 through i (note that this view may be shorter than i passes if the protocol
stops earlier). In the following, Views(...) always refers to a conversation with
A, while Views(. . .) refers to a conversation with A.

To define the properties of (A, B), certain items need to be specified. We
have to be able to tell which values of A's secret are correct, and which are not;
it should be specified at which points in time the bits of s are released; and
finally a method has to be specified which B can use to compute the bits of s
from the messages he sees. Formalizing this, we define the properties of (A, B)
with respect to the following:

�9 A fixed polynomial-time computable predicate P. It takes as input two of
the strings defined above: the k-bit string t and the bit string s of length at
most f (k) . The meaning of P is that it tests whether s is a "correct" secret
with respect to the common knowledge t.

�9 A series of increasing functions {Pk}~= i, where

Pk: {0 . . - f (k)} ~ N,

and where p k (f (k)) is polynomially bounded. The meaning of Pk is that, for
input length k, pk(i) is the index of the first pass after which the protocol
enables B to compute sli.

�9 A set of polynomial-time computable functions

{h~ I k = 1..~, i = 1..f(k)}

such that h~ takes as input a sample of ViewP~ti)(t, s, r A, k b, rB). As output,
it produces an/ -b i t string. These functions should be used by B to compute
the first i bits of the secret after pass pk(i) is completed. The value
hik(ViewP~t~ s, r A, k b, rB)) is said to be correct if there is a z of length at
most f (k) bits such that P(t , z) = 1 and

zli = hik(View~k")(t, s, rA, kB, rB)).

Otherwise it is incorrect.

206 I. B. Damg~.rd

We can now give the following:

Definition 1. The pair (A, B) is called a secure release protocol with respect to P,
{p~}, and {h~} if the following three properties are satisfied:

1. If A and B follow the protocol, B always gets correct information.
Formally: If A and B follow the protocol, then, for any (t, s) such that
P(t , s) = 1, any i = 0..f(Itl) = f (k) , and any r A, k~, r n, we require that
hik(ViewPk(i)(t, s, r A, k n, rn)) is correct.

2. A cheating A should be able to convince B about incorrect bits of s with
only negligible probability. We define this by saying that the event that B
computes an incorrect value for the first i bits of s almost never happens
simultaneously with the event that no cheating is detected in the first pk(i)
passes. Formally: VA Vc 3k 0 Vltl > k o Vs, rA, k e Vi = 1..f(k):

Prob(hik(ViewPk(i'(t, s, r A , k B, rn)) incorrect

and (A , B) completes pass pk(i)) < k -C.

The probability is taken over the choice of r B.
3. At each point of the protocol, B should know no more than what he can

compute from the information he is entitled to know at that point. This is
defined by requiring that B can simulate the conversation up the given
point from only the information he is supposed to know. Formally:

For each B, an expected polynomial-time machine M n exists, which on
input bit strings x (first i bits of a correct secret), t, k 8 and with random
tape r M simulated B's view of the first Pk(i) passes of the conversation
with _/L Let Ms(x , t, kB, r M) denote MB's output, considered as a random
variable with distribution taken over rM.

We then require that, for all k and all i = 0-. . f (k) , whenever x = sli
for some s with P(t, s) = 1, the distribution of Mo(x, t, kb, r M) is
statistically indistinguishable from that of ViewP~(i)(t, s, r A, k B, rB), where

the distribution is taken over r a and r n.

Remarks

�9 For simplicity, we only consider a bit-by-bit release in the above definition.
The definition could trivially be generalized to talk about a release of a
block of bits per pass.

�9 We need to be able to simulate for each i = 0..k, because we want A to be
protected, even i f /3 stops before all bits are released. The best we can do in
such a case is to require that /~ can compute only what he can get from the
information he is entitled to know at the given time.

2.2. Exchange Protocols

In this section we discuss to what extent release protocols can be used to build
fair exchange protocols. Suppose parties X and Y possess secrets s x , Sv,

Practical and Provably Secure Release ofa Secret and Exchange of Signatures 207

respectively, defined by (possibly) different predicates P, P ' . Then if we have
release protocols for these predicates as in Definition 1, it is natural to try to
exchange the secrets by interleaving the release of s x with that of s r.

Consider now the question whether this exchange protocol is fair, where we
think of fairness as defined by Yao [27]: even a cheating Y (or, symmetrically, a
cheating X) cannot force a situation where it is feasible for him to find s x , but
infeasible for X to find s r.

It is clear from Definition 1 that the interleaving approach forces the parties
to send correct bits of their secrets, and also that each party knows at each point
only a prescribed number of bits of the opponent's secret. Nevertheless, the
exchange will not necessarily be a fair one in general: it is possible that, for
example, s x is easily computed already from the first half of its bits. If this is not
the case for s t , then Y could gain an unfair advantage by quitting halfway
through the protocol, perhaps leaving X with only useless information about s r.

The point is of course that the problem Y has to solve to find s x may be of a
totally different nature than the one X is facing to find s r. The parties may of
course always decide to use the interleaved exchange anyway if they believe that
the two particular problem instances involved have similar complexities. How-
ever, to say something more general, we have to be restricted to a set of "nicer"
cases, where it is possible to connect the two problems. One possible step in this
direction is to require that Sx, s r be defined by the same predicate (i.e.,
P = P') , and that the corresponding public strings t x , t r be drawn indepen-
dently from the same distribution. This leads to the following definition of the
exchange protocol i nduced by a release protocol:

Definition 2. Let (A, B) be a release protocol secure with respect to P, {Pk},
and {h i} (see Definition 1). The following two-party protocol (X, Y) is called the

exchange pro toco l induced by (A , B):
X and Y receive two common inputs t x , t v , both of length k bits and drawn

independently from the same probability distribution 7r k. X and Y get as private
input s x (resp. Sr) , such that P (t x , s x) = P (t v , s x) = 1.

X simulates copies A x , B x of A and B, giving Sx, t x as input to A x and t v

as input to B x . Correspondingly, Y runs copies A v , B v on inputs sv , t r and t x .

X, Y will now, for i = 1, 2 execute pass i of (A x , B y) followed by pass i of
(A v, B x) , until both protocols halt.

Even an induced exchange protocol is not guaranteed to be fair if we do not
know anything about the predicate P: it is possible that, for a nonnegligible
fraction of the t's, finding an s, such that P (t , s) = 1, is much easier than for
other t values. If t x happens to be such an easy case, Y is clearly in a better
situation than X. What we need to avoid this is that the problem of finding s
such that P (t , s) = 1 based on t and some bits of s is of about the same
difficulty for nearly all choices of t under ~r k. One way of stating such "uniform
hardness" of a problem a little more precisely is to say that any algorithm that
solves a nonnegligible fraction of the instances of the problem can be turned
into an algorithm that uses not much more time, and solves nearly all instances.

208 I.B. Damg~rd

With this assumption on P, we can say the following about the induced
exchange: assume that some I ~ has a strategy for aborting the protocol at some
stage and subsequently finding s x with some nonnegligible probability. When
the protocol is aborted, this leaves Y with t x and, say, i bits of S x . X is left with
t r and i or i - 1 bits of s t . This is essentially the o n l y information the parties
have been given since, from it, the entire views of X (resp. 17) can be simulated,
by condition 3 of Definition 1. So except for perhaps one bit X has to guess, this
means that both parties are faced with samples of the same problem, drawn
from the same distribution. By the above assumption on P, this implies that
whatever method 12 uses to find s x will also work for X to find s r , and
therefore the protocol is fair.

Using the simulators guaranteed by Definition 1, this reasoning can be
formalized. One way of doing this is shown in the Appendix. Here we concen-
trate on the question of whether the types of secrets one might want to
exchange in practice are likely to have a uniform hardness property such as the
one we have discussed.

We have already discussed that digital signatures are interesting in this
context. So, as an example, assume that t specifies a message and an RSA public
key, and that P (t , s) = 1 precisely if s is a valid RSA signature on the message.
With our current knowledge, we can only conjecture that this predicate has an
appropriate uniform hardness property. Some evidence is known in favor of this
conjecture, however: from the multiplicative property of RSA, it follows easily
that if you can sign in polynomial time a polynomial fraction of the messages for
some modulus, then you can sign all messages using that modulus in expected
polynomial time. Moreover, the results of [1] give strong indications that
something similar holds when some number of bits of s are given. This alone is
not enough to argue uniform hardness for RSA. Since presumably X and Y will
be using different moduli, we also need to know that signatures generated from
different moduli are equally hard to forge. Thus the key-generation algorithm
must ensure that no significant fraction of the moduli generated are much easier
to break than others- - th is of course is a natural user requirement, even if the
signatures are not being used in exchange protocols.

Since El Gamal signatures are known to have properties similar to .the
multiplicative properties of RSA, we find it reasonable to conjecture that at least
the signature schemes we consider in this paper have uniform hardness suffi-
cient to make induced exchange protocols fair when using these signatures.

At this point one could perhaps complain that the assumptions made in the
definition of induced exchange protocols, and particularly the assumption that
t x and t r are identically distributed, are too demanding in practice. What if Y
could somehow manipulate the distribution of t x a n d / o r t r , presumably to
make life easier for himself? Whether this objection is reasonable or not will of
course depend on the practical circumstances. However, there is one general
remark we can make: if messages are hashed before they are s igned--as is
nearly always the case in prac t ice- -Y is not likely to benefit from manipulating
messages: if the hash function used is strong, he will not be able to control the
hash result and, for example, force t x to be an easily signed hash value (of

Practical and Provably Secure Release of a Secret and Exchange of Signatures 209

which there are only very few). This is the same kind of reasoning that underlies
the Fiat-Shamir signature scheme.

In summary, we have argued that exchange protocols induced from release
protocols are useful in many cases that are important in practice. As a side
remark, it is also worth noting that more complicated exchange protocols that
can deal with seemingly incompatible types of secrets typically work by choosing
some auxiliary secret w, making public some information connecting w and the
actual secrets, and then releasing w bit by bit, see, e.g., [27]. Thus a bit-by-bit
release as defined here can also be useful as a building block in other protocols.

3. The Bit Commitment Scheme

In this section we define the bit commitment scheme we use, and prove its basic
properties.

To set up the commitment scheme, B, who will receive commitments from A
in the following, must generate and make public a Blum integer [26], [4] N (i.e.,
N = pq, where p, q are primes congruent to 3 modulo 4), and g, a quadratic
residue modulo N chosen uniformly at random. The security for B will be based
on the difficulty of computing a square root modulo N of g. Therefore the
uniform random choice of g is essential: it is well known that this ensures that
computing a square root of g is equivalent to factoring N. In the following the
commitment scheme is used as a tool in release protocols satisfying Definition 1.
The bit length of N should therefore be polynomially related to the security
parameter k of these protocols.

Having chosen N and g, B must in zero-knowledge prove that he knows the
two prime factors of N [23], prove that they are both congruent to 3 modulo 41
[17], and that g is a quadratic residue [16]. The methods for doing this are well
known and quite efficient, and in any case this step does not have to be executed
at every application of the commitment scheme.

In this first phase either A acts as the verifier or this role is played by a
trusted third party. The latter case is the most likely one in practice, as setting
up a large-scale public-key system nearly always requires a certification author-
ity that registers users and certifies the relation between identities and public
keys (moduli). Such a center might as well act as the verifier in the above, and
certify by a digital signature that N and g have been verified successfully.

Let SQ(N) denote the subgroup of quadratic residues modulo N. Having
established N and g, the parties agree on a natural number /. Then A can
commit to any integer s satisfying - 2 t- i < s < 2 t- 1 by choosing R uniformly
at random in SQ(N) and computing the commitment

BCg(R, s) := R2~ s.

1Actually, the protocol in [17] only proves that N = prqS, where r, s are odd and p, q are 3
modulo 4. However, even for such numbers , squaring is a permutat ion of the quadratic residues, and
this is the property we need.

210 I.B. Damghrd

This is called a base-g commitment. A commitment is opened by revealing R
and s, which allows B to verify the above equation.

The commitment scheme is based on the hash functions from [9]. In fact,
BCg(R, s) is precisely the hash value of s computed with starting point R, using
the factoring-based hash function from [9]. The same type of function was used
in [25] for the purpose of fail-stop signatures.

In this scheme, A is prevented from cheating by the difficulty of finding
collisions for the function BCg, while the security against B is ensured by the
uniform choice of R done by A. More precisely, we have the following lemma:

Lemma 1. The commitment BCg(R, s) has distribution independent of s, when R
is a uniformly chosen square mod N. Moreover, if A can open the same commit-
ment using values R, s (resp. R', s'), where s 4= s', then A can compute a square
root modulo N of g.

Proof. The first statement is clear from the fact that squaring modulo a Blum
integer is a permutation, and that therefore a commitment is always a uniformly
chosen element in SQ(N). For the second statement, assume without loss of
generality that s' > s and write s' - s = (2h + 1)2 j. Clearly, j < I. Then the
equation

implies that

R2~ s = R'2tg s' mod N

(R/R,)2'- ' = g2h+l mod N

and therefore (R/R')2'-'-~g h is a square root of g. []

These properties of the function BCg were also used in [9]. The crucial
property in this context, however, is that these commitments can be opened
gradually: given a commitment BCg(R, s) to a positive number s, A can reveal
the least-significant bit b of s by revealing X such that

and

X 2 mod N = BCg(R, s) if b = 0

g ' X 2 m o d N = B C g (R , s) if b = 1.

After this, X can be regarded as a commitment to s /2 (with l replaced by
l - 1) and more bits of s can he opened.

By essentially the same argument as in Lemma 1, it is easy to see that if A
knows how to open in one step the entire value of s > 0, he cannot open single
bits of s with values that are inconsistent, unless he can compute a square root
of g.

It is also clear that the procedure for opening one bit can easily be general-
ized to allow opening in one step of any number of the least-significant bits of s.

Practical and Provably Secure Release of a Secret and Exchange of Signatures 211

Since computing square roots of random numbers mod N is equivalent to
factoring N, we need the following assumption about the hardness of factoring:

Factoring Assumption. A probabilistic polynomial-time algorithm A exists
which on input i k outputs a k-bit Blum integer N, such that, for any probabilis-
tic polynomial-size circuit family C, and any constant c, the probability that C
factors N is at most k -c, for all sufficiently large k. This probability is taken
over the random choices of A and C.

4. Checking the Contents of Commitments

When A sends a commitment as above, there is no reason a priori to believe
that this represents anything useful: A may not even know how to open the
commitment he sends. We therefore need the following protocol, which is based
on the proof system from [7], and allows us to check that A knows how to open
a commitment, and furthermore that the opening will reveal a number in a given
interval.

We let the interval be I =]a .-- b] and let e = b - a . We define I_+ e =

]a - e -.. b + e]. These parameters must be chosen such that I_+ e is contained
in the legal range for openings of commitments] - - 2 l - l . . . 2 l - 1[. The protocol
will be secure for A - - i n fact statistical zero-knowledge-- if he knows how to
open a given commitment c = BCg(R, s) to reveal s ~ I. Moreover, it will
convince B that s ~ I+_ e"

PROTOCOL CHECK C O M M I T M E N T
This protocol is executed with commitment c = BCg(R, s) as input to A and B.
It is secure for A if he knows how to open c to reveal s ~ I, and will convince B
that s ~ l •

Execute the following k times in parallel:

1. A chooses t~ uniformly in]0..e], and sets t z - - - t ~ - e. He sends the
unordered pair of commitments T 1 = BCg(S1, tl) , T 2 = BCg(S2, t z) to B.

2. B requests to see one of the following:
(a) Opening of both T l and T z.
(b) Opening of c �9 T/ mod N, where A chooses i such that s + t i ~ I.

3. In the first case of step 2, B checks that both numbers opened are in
] - e..e], and that their difference is e. In the second case, B checks that
the number opened is in I.

B outputs reject and stops if any of the openings are not correctly done, or if
any of the checks required are not satisfied.

The properties of this protocol are summarized in the following two lemmas.
Intuitively the first one says that A can only cheat with negligible probability,
and the second says that if A behaves correctly, B learns nothing except the fact
that s ~ l + _ e .

212 I.B. Damg~rd

Lemma 2. Given correct answers to both (a) and (b) in one instance of steps 1-3
above, a pair R, s such that s ~ l • and c =BCg(R , s) can be computed
efficiently.

Proof. By assumption, we are given X, x, Y, y such that

T / = X 2 ~ x and c - T / m o d N = y 2 ~ y ,

where x ~] - e . . e] and y ~ I. These two equations imply that we can write c in
the form c = B C g (Y / X mod N, y - x) so that the result follows from putting
R = Y / X mod N and s = y - x. []

Lemma 3. Knowing the factorization of N, any B's view of CHECK COMMIT-
M E N T when talking to A can be simulated perfectly, provided A is given an s in I.

Proof. With the factorization of N, modular square roots are easy to com-
pute, and so given a square Q, for any s, we can compute R, such that Q =
BCg(R, "s). Armed with this observation, the simulation is quite trivial: we simply
generate all the unordered pairs Tl, T 2 as random squares and send them to B.
If, for a given pair, we get request (a) from B, we choose tl, t 2 as A would have
done, and open Tl, T 2 accordingly. If we get request (b), we choose i at random
to be 1 or 2, choose a random x c I, and open c �9 T~ to reveal x. The simulation
of case (b) works since, in the real conversation, s + ti is always a uniformly
chosen number in I, independent of s (provided s c I). []

A slight variant allows us to show that two commitments c, c ' contain the
same number, even if the commitments use different bases, say g and h:

PROTOCOL COMPARE COMMITMENTS
This protocol is executed with commitments c, c ' as input to A and B. It is
secure for A if he knows how to open both c and c ' to reveal s c I, and will
convince B that c and c ' contain the same value s ~ I~_e.

Execute the following k times in parallel:

1. A chooses t~ uniformly in]0..e], and sets t 2 = t 1 - e. He sends to B the
unordered pair ((T1, T{), (T2, ~)) , where each component of the pair is
ordered and is defined by (T/, T/') = (BCg(Si, ti) , BCh(S~, ti)).

2. B requests to see one of the following:
(a) Opening of (T/, T/') for both i = 1 and 2.
(b) Opening of c . T i mod N and c ' �9 T/', where A chooses i such that

s + t i ~ I .
3. In the first case of step 2, B checks that opening T~ and T[has resulted in

the same number, that both numbers opened are in] -e. .e], and that their
difference is e. In the second case, B checks that opening c- T~ mod N
and c ' �9 T[reveals the same number, and that this number is in I.

B outputs reject and stops if any of the openings are not correctly done, or if
any of the checks required are not satisfied.

Practical and Provably Secure Release of a Secret and Exchange of Signatures 213

The following two lemmas give the basic properties of this protocol. Their
intuitive meaning and proofs correspond exactly to those of Lemmas 2 and 3.

Lemma 4. Given correct answers to both (a) and (b) in one instance of steps 1-3
above, R, R', and s such that s E I+_ e , C ~ - BCg(R, s), and c' = BCh(R', s) can
be computed efficiently.

Lemma 5. Given the factorization of N, any B' s view of COMPARE COMMIT-
MENTS when talking to A can be simulated perfectly, provided ,4 is given an s in I.

5. Release of Rabin and RSA Signatures

We are now ready to present a complete protocol for the release of a Rabin
signature, which is essentially an RSA signature where the public exponent is
fixed to 2. Hence the public key in this signature scheme is simply a modulus n.
This number should not be confused with the modulus N, which is used in the
bit commitment scheme.

The common input to the parties is n and a message m ~]0 . . - n[, while A's
private input is the signature on m using public key n. Usually, such signatures
are represented by numbers between 0 and n, but for technical reasons we
prefer the interval from n to 2n, i.e., we assume that the honest A knows a
number s in]n..2n] such that s 2 mod n = m. Thus k, the length of the common
input, is 2[nJ, where Inl is the bit length of n. For all commitments in the
following, we use l = 21nl + 3.

We now show the protocol, and then state its properties formally.

PROTOCOL RELEASE RABIN SIGNATURE
This protocol is executed with common input n, m to A and B and private
input s to A. Informally speaking, the protocol convinces B that he receives bits
of a value s ~]0..3n], such that s 2 mod n = m, and A is ensured that at each
stage B knows only a prescribed number of bits of s.

1. B chooses the parameters of the bit commitment scheme N, g. These are
verified interactively as explained in Section 3.

2. A sends to B the commitment h = BCg(R, s).
A sends L, = BCh(R', s) and w = BCg(R", d), where d is defined by
s2 = m + dn.
A opens (as a base-g commi tmen t) the product gmwnv-1 mod N to reveal
a 0. Note that if h, v are constructed correctly, then v -- BCg(R'R ~, s2).

3. A uses the C H E C K C O M M I T M E N T protocol with I =]n - 1 ... 4n - 1]
to prove that he knows how to open w to reveal a value d in

] - 2n - 1..7n - 1].

A uses the C O M P A R E C O M M I T M E N T S protocol with I =]n ... 2n] to
prove that he knows how to open h and v to reveal the same value s, and
that this value is in]0..3n].

214 I. B. Damg~rd

4. A releases s bit by bit by opening h gradually as explained in Section 3. B
checks each opening he receives and rejects if the check fails.

Note that in practice step 1 is only necessary once, and does not have to be
repeated for every release. Nevertheless, we have included it here to make the
formal proof easier.

Note also that all the actions in steps 2-3 can be parallelized, so that they
take only three passes. The definition of Pk below is done with respect to this
organization of the messages.

For this protocol we define the following, in order to be able to prove that it
satisfies Definition 1:

�9 P ((m , n), s) = 1 if and only if s ~]0..3n] and s 2 mod n = m. Note that this
predicate allows more than one possible s given m, n. This is no problem,
however, because there are only three possible solutions for s given (n, m),
and, from the first i bits of one solution, it is easy to compute the first i bits
of any other solution.

�9 Pk(i) = a (k) + 3 + i, where a(k) is the number of passes needed to exe-
cute step 1.

�9 The h~ functions are defined as follows: if the input view is shorter than
pk(i) passes, then output i zeros. Else output the i bits opened by A in the
final i passes of the input view.

We then have:

Theorem 1. Under the factoring assumption, (A, B) is a secure release protocol
with respect to the P, Pk, and hik funct ions defined above.

Proof. The first property is trivial by inspection of the protocol.
The proof of the second property is by contradict ion--we make the basic

assumption that property 2 of Definition 1 is not satisfied: there is an A, a
constant c, and t 's of infinitely many lengths, such that there are inputs s, r A, k a
that make the probability in condition 2 of Definition 1 larger than k -c for
some i = 1..k. Recall that the common input t in this case is in fact a pair n, m.
What this assumption means informally is that A has some strategy which with
nonnegligible probability enables him to send i incorrect bits (i.e., bits that are
not part of the signature on m) simultaneously with B accepting these bits as
being genuine.

Let k be any input length for which the above holds, and assume that we are
given a k-bit Blum integer N chosen with the same distribution B would have
used. We now describe a poly-time nonuniform algorithm which factors N with
probability at least a polynomial fraction, thus establishing a contradiction with
the factoring assumption. The algorithm is nonuniform because we have to use
the A and its inputs as given by the assumption.

We first choose a random element x modulo N, square it, and call the result
g. We start up A with the inputs given by the assumption, and generate a
random view of steps 1 and 2.

Practical and Provably Secure Release of a Secret and Exchange of Signatures 215

To this end, we send N, g to A and simulate the proof of knowledge of the
factorization of N and the proof that N is a Blum integer with A acting as the
verifier. Since the proofs are almost perfect zero-knowledge, A's behavior in
what follows will have the same distribution as in "real life," except for a
negligible amount of probability mass. The proof that g is a square we can do
according to the protocol, as we know a square root x. Note that since this proof
is perfect zero-knowledge, it is in particular witness-indistinguishable, so since
we do not use x in the following, any root of g that can later be derived from
messages sent by A is independent of x, and so leads to factorization of N with
probability 1/2.

A view of steps 1-2 is called good (that is, good for a cheating A) if it can be
completed up to pass pk(i) with probability at least k-C~2, and the h~-value
that can be computed from the completed view is incorrect. The assumption
implies that the probability of (A, B) completing pass pk(i) with an incorrect
h~-value is at least k-C. This means that a random view of steps 1-2 is good with
probability at least k-C~2.

We now show how to factor N with probability at least 1 /2 minus a
superpolynomially small fraction, assuming that the view of steps 1-2 we just
created is good. By the above, this will be sufficient.

We repeatedly rewind A to the start of step 3 and issue randomly chosen
requests in step 2 of the subprotocols. CH ECK CO MMITMEN T and COM-
PARE COMMITMENTS. In doing so, we try to find correct answers to both
requests in the same instance of the CHECK CO MMITMEN T (resp. the
COMPARE COMMITMENTS) protocol. Since the probability of acceptance is
at least k-C~2, we can do this in polynomial time and succeed with probability
essentially 1. By Lemmas 2 and 4, this tells us how to open h and v with the
same value s, and how to open w with some value d, where s c]0 - - . 3n] and
d ~] - 2 n - 1 --. 7n - 1]. This means that we can write v as a base-g commit-
ment t o s 2, which is a legal way of opening v, since s 2 < 2 l - 1. This in turn
implies that we know how to open legally the number gmwnv-~ mod N as a
base-g commitment, namely, as m +dn - s 2. Recall, however, that we have at
this point a view of steps 1-2, which is good and therefore does not lead to
rejection by B. In particular the view of step 2 must include a correct opening by
A of the same number gmwnv-~ mod N to reveal 0. Hence, by Lemma 1, we
get a factorization of N with probability 1 / 2 unless m + dn - s 2 = 0 or, in
other words, unless s is correct, i.e., is indeed a Rabin signature on m.

Hence if the s we have found is incorrect, our algorithm finds the factoriza-
tion (with large probability) and halts. If it is correct, we execute the next and
final part:

We use rewinding A to its state at the start of step 3, to generate random
views of both step 3 and the following step 4, until we find one where pass pk(i)
is completed, and the bits released by A are incorrect, i.e., inconsistent with the
s we already know. Once again, since we start with a good view of steps 1-2, this
can be d o n e in polynomial time to succeed with probability essentially 1.
However, this means that we have two different ways of opening part of the
contents of h, which by the discussion following I_emma 1 gives us a factoriza-

216 I.B. Damgfird

tion of N with probability 1/2. This concludes the proof of Property 2 of
Definition 1.

Property 3 is proved by first observing that step 1 contains a proof of
knowledge of the factorization of N. Thus if B completes step 1 with probability
more than a polynomial fraction, we can always find the factorization. Moreover,
B cannot get a nonsquare accepted as g with probability more than 2 -k. Thus
we see that, except for negligibly few cases, we can simulate the conversation
perfectly by sending random squares in place of all commitments, and opening
them as needed using our knowledge of the factorization of N. In particular,
step 3 is simulated using Lemmas 3 and 5, and step 4 is simulated using the
input we are given, which tells us what the least-significant i bits of s are. []

It is easy to see that this protocol can be modified to release, for example, an
RSA signature with public exponent 3 by introducing a new commitment u, such
that h = B C g (R , s), v = B C h (R ' , s), and u = B C v (R " , s), which will make u a
base-g commitment to s 3. It is also clear, however, that this quickly becomes
impractical with increasing public exponents.

6. Release of E! Gamal Signatures

In this section we sketch how to release E1 Gamal signatures. We first recall the
usual setup of the E1 Gamal signature scheme: a large prime p is chosen,

* A private key x is a number in [0..p - 1[, together with a generator a of Zp.
while the corresponding public key is y = a x mod p. Messages are numbers in
[0..p - 1[, and a signature on message m is a pair (r, s) such that

a m = y r ' r S mod p.

For the owner of x, a signature is easy to compute by choosing a random w
relatively prime to p - l, setting r = a w mod p and solving the equation
m = (xr + ws) mod(p - l) for s, where s ~ [0..p - 1[. It is conjectured that
computing signatures from scratch is as hard as finding x from y. In the
following we assume that c~ really is a generator of Zff. In practice, this
assumption may be justified because p, c~ was generated by a trusted party, or
because the factorization of p - 1 is made public, which makes it easy to test a .

The following is based on the observation that the gradual release of a
discrete log mod p is sufficient for the release of an E1 Gamal signature. The
idea is that we first reveal r and then release s bit by bit. Note that s is the
discrete log base r of fl = a m y -r mod p. This reduces the problem to that of
proving that the discrete log base r of /3 equals the contents of a base-g
commitment h = B C g (R , s) computed as in Section 3.

We assume that the prover (sender) A knows such a discrete log s in the
interval I =] (p - 1)..2(p - 1)]. Such an s can always be obtained from an El
Gamal signature by adding p - 1 to the last component.

Using a technique similar to that of C O M P A R E C O M M I T M E N T S , we get
the following protocol, which will be a proof that A knows a suitable s in
]0..3(p - 1)]. If A uses an s in I, the protocol will be zero-knowledge.

Practical and Provably Secure Release of a Secret and Exchange of Signatures 217

PROTOCOL TRANSFER DISCRETE LOG
This protocol is executed with /3 = r s mod p and commitment h = BCg(R, s)
as common input, s is private input to A. It convinces B that A knows how to
open h to reveal a value in]0..3(p - 1)], which is also a discrete log of /3 base r.

Execute the following k times in parallel:

1. A chooses t~ uniformly in]0..p - 1], and sets t 2 = t 1 - (p - 1). He sends
to B the unordered pair ((T1, T~), (T2, T~)), where each component of the
pair is ordered and is defined by (T/, T/') --- (BCg(Si, ti) , BCg(S~, Z i)) , where
Z i : r ti mod p.

2. B requests to see one of the following:
(a) Opening of (T/, T/) for both i = 1 and 2.
(b) Opening of h . T~ mod N and T/, where A chooses i such that

s + t i ~ l .
3. In the first case of step 2, B checks that the number contained in T/ is the

discrete log base r of the number contained in T[, and that this discrete log
is in] - (p - 1) . . p - 1]. In the second case, B checks that the number
contained in h �9 T/ mod N is the discrete log base r of flz i mod p, and
that the discrete log revealed is in I.

B outputs reject and stops if any of the openings are not correctly done, or if
any of the checks required are not satisfied.

The following two lemmas give the basic properties of this protocol:

Lemma 6. Given correct answers to both (a) and (b) in one instance of steps
1-3 above, either (R, s) such that s ~]0 . . -3 (p - 1)], h = BCg(R, s),.and /3 =
r ' rood p or a square root of g modulo N can be computed efficiently.

Proof. Note that A must open T~' in both case (a) and (b). If these openings
are not consistent, we get a square root of g by Lemma 1. Otherwise, what we
have from the correct answers is a 4-tuple of numbers (u, U, v, V) such that

T~=BCg(U,u) and h . T ~ = B C ~ (V , v)

and a pair (z, Z) such that

T , ' = B C g (Z , z) and z = r u m o d p , f l z = r ~ 'modp .

Furthermore, v ~ I and u ~] - (p - 1)..(p - 1)]. From this it follows trivially
that h = BCg(V/U, o - - lg) and that /3 = r v-" mod p. []

Lemma 7. Given the factorization of N, any B' s view of TRANSFER DISCRETE
LOG when talking to A can be simulated perfectly, provided s ~ I.

Proof. Follows by trivial modifications of the proof of Lemma 3. []

218 I.B. Damgfird

To define the parameters of the release protocol, we define the shared input
to A and B to be p, a , y, r, and m, all of length IPl, so that k, the length of this
input, is k = 51pl. The private input to A is a Ipl-bit string s. The predicate P
for this situation is defined such that P(p, a, y, r, m, s) = 1 if and only if
a m =yrr~ mod p and s ~]0. .3(p - 1)].

Note that with this definition of the shared input, we have implicitly assumed
that the sender will make r known immediately at the start of the protocol. This
does not lead to a security problem, because the receiver could by himself easily
simulate such an r by first finding a /~ such that (k, p - 1) = 1 and setting
r = a k. For any such r there is an s ~ I such that (r, s) signs m. In other words,
seeing r in the beginning does not help B to compute the signature ahead of
time.

The following gives a brief outline of the complete release protocol for El
Gamal signatures:

PROTOCOL RELEASE EL aUAMAL SIGNATURE
This protocol is executed with p, a , y, r, and m as common input to A and B.
Private input to A is s, such that a " = yrrS mod p, and s ~] (p - 1)..2(p - 1)].
The protocol convinces B that he will in the last step receive bits of s ~]0..3
(p - 1)], such that the pair (r, s) is an El Gamal signature on m using public
key y.

1. B chooses the parameters of the bit commitment scheme N, g. These are
verified interactively as explained in Section 3.

2. A sends h = BCg(R, s) to B.
3. A uses the T R A N S F E R D I S C R E T E L O G protocol to prove that the value

s contained in h also satisfies that r ~]0..3(p - 1)] and r s mod p = /3 ,
where /3 = a " �9 y- r .

4. A releases s bit by bit by opening h gradually as explained in Section 3. B
checks each opening he receives and rejects if the checks fail.

The hl and the Pk functions for this protocol are defined similarly to those in
the previous section.

Theorem 2. Under the factoring assumption, the protocol outlined above is a
secure release protocol with respect to the P, hik, and Pk functions defined in this
section.

Proof. The first property is trivial. The second one is proved in essentially the
same way as in Theorem 1: since the T R A N S F E R D I S C R E T E L O G protocol is
a proof of knowledge, we can use rewinding of A to compute an s that both
opens h and satisfies r s mod p =/3 . Thus s is by definition the correct secret.
Therefore a view of the protocol that leads to an incorrect value must give us a
way of opening h that is inconsistent with s, and therefore enables us to
compute a root of g, and factor N with large probability. The third property

Practical and Provably Secure Release of a Secret and Exchange of Signatures 219

follows easily from Lemma 7 and the fact that B is required to give a proof of
knowledge of the factorization of N. []

We remark that the same basic idea can also be used for the release of
signatures in other discrete-log-based schemes such as NIST DSA and Schnorr's
signature scheme. This is because these signatures, like El Gamal signatures,
include a discrete logarithm that is hard to compute without knowledge of the
secret key. Thus the sender can reveal all components of the signature except
this discrete log, and release this gradually using the above methods.

Acknowledgments

The author would like to thank the anonymous referees for many constructive
suggestions which greatly improved the presentation.

Appendix. Formalizing Fairness of Induced Exchange Protocols

In this appendix we give one possible way of formalizing fairness of an induced
exchange protocol, and uniform hardness of a predicate. We then show that an
exchange protocol induced from a secure release protocol for a uniformly hard
predicate will be fair.

The formalization we give here is certainly not the only one possible. In
particular, the conditions in the definition of uniform hardness have been made
quite demanding, to avoid technical complications in the following arguments.

For simplicity, we restrict ourselves to predicates P which define unique
secrets, i.e., for each t, there is at most one s such that P(t , s) = 1.

The notation from Section 2 is used without further introduction. We also
need some new notation: let f be a function from the natural numbers to the
reals, let K be an infinite set of natural numbers, and let c be a real constant.
Then

f (k) --- c for k ~ K

should be taken to mean that

for any polynomial p, I f (k) - c l < 1 / p (k) for all large enough k.

When defining fairness of an induced exchange protocol (X, Y), we are trying
to capture the intuition that if some (possibly cheating) Y is capable of
computing X's secret after release of, say q (k) bits, then X should also be able
to compute Y's secret. This leads to the following:

Definition A.1. Let (X, Y) be the exchange protocol induced from release
protocol (A, B) for predicate P . Then (X, Y) is said to be fair, if, for each
probabilistic polynomial time Y, there is a probabilistic polynomial-time algo-

220 I.B. Damg~rd

rithm A(17), which gets a view of X as input and tries to compute s r. The
algorithm A(17) should satisfy the following:

For each function q with 0 < q(k) < k, we have that

if Pr(~', q (k)) > 1 / p (k) for a polynomial p and k in some infinite set K
then Pr(A(17), q (k)) = 0 for k ~ K

Here, Pr(17, q(k)) is the probability that 17 stops after release of at most q(k)
bits of s x, and outputs the correct Sx; this probability is taken over the choice
of t x, t v and the coinflips of X and Y. Furthermore, Pr(A(17), q(k)) is the
probability that A(17) fails to extract the correct s v from the input view, and
that at least q(k) bits of s x are released in the view; this probability is taken
over the choice of t x, t v and the coinflips of X, I 7, and A(Y) .

A symmetric condition similar to the above should hold for all probabilistic
polynomial time .~.

We now define what it means for a predicate P to be uniformly hard. Recall
that such hardness intuitively means that the problem of computing from t and
some bits of s (where P(t, s) = 1) all the bits of s is of the same difficulty for
nearly all instances of the same size. We formalize this by saying that if you have
enough information to solve the problem for a nonnegligible fraction of the
instances, then you can in fact solve nearly all instances.

Definition A.2. Let P be a predicate on two variables with properties as
required for a release protocol (see Section 2.1). Let ~r be a probabilistic
polynomial-time algorithm which gets as input a string t and s I q (q bits of s),
where P(t, s) = 1; the algorithm tries to produce s as output.

The predicate P is said to be uniformly hard if, for each k, there is a
distribution ~r~ on k-bit strings, such that:

�9 In probabilistic polynomial time, one can sample a pair (t, s) such that
P(t, s) = 1 and t is distributed according to 7r k.

�9 For any ~r as above, there is another probabilistic polynomial-time algo-
rithm ~'0 with input and output as for ~r Algorithm d 0 satisfies that, for
any function q with 0 < q(k) < f (k) ,

if Prob(sg(t, s [q(k)) = S) >~ 1 / p (k) for a polynomial p and k in some
infinite set K

then Prob(~o(t, s I q<~)) = s) -- 1 for k ~ K

These probabilities are taken over the choice of (t, s) and the coinflips of ~r
(resp. ~r

We are now ready to state the result of this appendix:

Theorem A.1. Let (A, B) be a secure release protocol for the uniformly hard
predicate P. Then the exchange protocol (X, Y) induced from (A, B) is fair.

Practical and Provably Secure Release of a Secret and Exchange of Signatures 221

Proof. Let q be a function satisfying the if-clause of Definition A.1. Note that
we can use the machine]2 to build an algorithm ~r that complies with Definition
A.2. This algorithm takes as input t of length k and s I q(k) (where P(t , s) = 1)
and works as follows:

1. Sample a pair (t r , s r) according to Definition A.2. Give s r as private input
to 12 and use t, t r as the common inputs-- thus t plays the role as t x .

2. Using the simulator guaranteed by Definition 1, simulate the exchange of
the first q bits of s and s r taking place between X and]2.

3. If I? stops before the (q + 1)st bit of s is required and outputs the correct
s, then we copy s to the output and stop. Otherwise output a random string
and stop.

Since the simulation in step 2 is statistically close to a real conversation, it is
clear that when k ~ K, Pr(Y, q (k)) is equal to Prob(sg(t, s [q(k)) = S) except for
a superpolynomially small amount. Hence, if q (k) satisfies the if-clause of
Definition A.1, algorithm 5g just described satisfies the if-clause of Definition
A.2. Therefore, we may assume that we have an algorithm ~0 satisfying that
Prob(~Co(t, s I q(k)) = s) ~- 1 for k ~ K.

We can now build algorithm A(I?) required by Definition A.1. We have as
input X's view of a conversation with Y. We have access to the machine Y, but
of course not to the inputs used by I? when the input view was generated. The
algorithm works as follows:

1. Extract from the input view q (k) - 1 bits released by 12. Call the result of
this y. If less than q (k) - 1 bits were released, we fail and stop.

2. Run ~0 twice, on inputs (t r , lily) and (t r , 011y) (here, II means concatena-
tion).

3. If one of the two runs of ~0 gives the correct s r , output this, else output
something random.

To see that this algorithm succeeds with the required probability, note that the
structure of the exchange protocol forces 1 "~ to release at least q (k) - 1 bits of
its secret (and have these accepted by X) whenever q (k) or more bits of s x are
released. Moreover, Definition 1 guarantees that in nearly all cases where these
bits are accepted by X, they are in fact correct bits of s v. However, now the
properties of ~r guarantee that in nearly all cases where we get q (k) - 1
correct bits of s r , we will obtain the correct s r in step 2. []

References

[1] W. Alexi, B. Chor, O. Goldreich, and C. P. Schnorr. RSA and Rabin functions: certain parts are
as hard as the whole, Proc. 25th FOCS, 1984, pp. 449-457.

[2] M. Ben-Or, O. Goldreich, S. Micali, and R. Rivest. A fair protocol for signing contracts, IEEE
Trans. Inform. Theory, vol. 36, 1990, pp. 40-46.

[3] M. Blum. Three Applications of the Oblivious Transfer, Dept, of EECS, University of Califor-
nia, Berkeley, 1981.

[4] M. Blum. Coin-flipping by telephone, Proc. IEEE Spring COMPCOI~L 1982.
[5] M. Blum. How to exchange (secret) keys, ACM Trans. Comput. Systems, vol. 1, 1983,

pp. 175-193.

222 I.B. Damg~rd

[6] G. Brassard, D. Chaum, and C. Cr6peau. Minimum disclosure proofs of knowledge, J. Comput.
System Sci., vol. 37, 1988, pp. 156-189.

[7] E. F. Brickell, D. Chaum, I. Damg~rd, and J. van de Graaf. Gradual and verifiable release of a
secret, Proc. C~pto 87, Lecture Notes in Computer Science, vol. 293, Springer-Verlag, Berlin,
1988, pp. 156-166.

[8] J. Cleve. Controlled gradual disclosure schemes for random bits and their applications, Proc.
Crypto 89, Lecture Notes in Computer Science, vol. 435, Springer-Verlag, Berlin, 1990,
pp. 573-588.

[9] I. DamgSrd. Collision free hash functions and public key signature schemes, Proc. EuroCrypt 87,
Lecture Notes in Computer Science, vol. 304, Springer-Verlag, Berlin, 1988, pp. 147-158.

[10] I. Damg~rd. Practical and provably secure release of a secret and exchange of signatures, Proc.
EuroCrypt 93, Lecture Notes in Computer Science, vol. 765, Springer-Verlag, Berlin, 1994,
pp. 200-217.

[11] S. Even, O. Goldreich, and Z. Lempel. A randomized protocol for signing contracts, Proc.
Ctypto 82, Plenum, New York, 1983, pp. 205-210.

[12] S. Even and Y. Jacobi. Relations Among Public Key Signature Systems, Comput. Sci. Dept.,
Technion, Haifa, March 1980.

[13] U. Feige, A. Fiat, and A. Shamir. Zero-knowledge proofs of identity, J. C~ptology, vol. 1, no. 2,
1988, pp. 77-94.

[14] O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their validity and a
methodology of cryptographie protocol design, Proc. 27th FOCS, 1986, pp. 174-187.

[15] S. Goldwasser and L. Levin. Fair computation of general functions in presence of immoral
majority, Proc. Crypto 90, Lecture Notes in Computer Science, vol. 537, Springer-Verlag, Berlin,
1991, pp. 77-93.

[16] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof
systems, SIAM J. Cornput., vol. 18, 1989, pp. 186-208.

[17] J. van de Graaf and R. Peralta. A simple and secure way to show the validity of your public key,
Proc. Co'pro 87, Lecture Notes in Computer Science, vol. 293, Springer-Verlag, Berlin, 1988,
pp. 128-134.

[18] J. H~stad and A. Shamir. The cryptographic security of truncated linearly related variables,
Proc. ACM Syrnp. on Theoo' of Computing, 1983, pp. 356-362.

[19] R. Impagliazzo and M. Yung. Direct minimum knowledge computations, Proc. Cr~pto 87,
Lecture Notes in Computer Science, vol. 293, Springer-Verlag, Berlin, 1988, pp. 40-51.

[20] M. Luby, S. Micali, and C. Rackoff. How to simultaneously exchange a secret bit by flipping a
symmetrically-biased coin, Proc. 24th FOCS, 1983, pp. 11-22.

[21] M. Rabin. How to exchange secrets by oblivious transfer, Tech. Memo TR-81, Aiken Comput.
Lab., Harward University, 1981.

[22] T. Tedrick. Fair exchange of secrets, Proc. Co'pto 84, Lecture Notes in Computer Science,
vol. 196, Springer-Verlag, Berlin, 1985, pp. 434-438.

[23] M. Tompa and H. Woll. Random self-reducibility and zero-knowledge proofs of information
possession, Proc. 28th FOCS, 1987, pp. 472-482.

[24] U. Vazirani and V. Vazirani. Trapdoor pseudorandom number generators with applications to
cryptographic protocol design, Proc. 24th FOCS, 1983, pp. 23-30.

[25] M. Waidner and B. Pfitzmann. The dining cryptographers at the disco: unconditional sender
and recipient untraceability with computational secure serviceability, Proc. EuroCrypt 89,
Lecture Notes in Computer Science, vol. 434, Springer-Verlag, Berlin, 1989, p. 690.

[26] H. C. Williams. A modification of the RSA public key cryptosystem, IEEE Trans. Inform.
Theo .ry, vol. 26, 1980, pp. 417-426.

[27] A. C. Yao. How to generate and exchange secrets, Proc. 27th FOCS, 1986, pp. 162-167.

