
J. Cryptology (1995) 8:189-200 Joumol of

CRYPTOLOGY
�9 1995 International Association for
Cryptologic Research

On Key Storage in Secure Networks

Martin Dyer*
School of Computer Studies, University of Leeds,

Leeds, England

Trevor Fenner
Department of Computer Science, Birkbeck College,

University of London, London, England

Alan Frieze**
Department of Mathematics, Carnegie-Mellon University,

Pittsburgh, U.S.A.

Andrew Thomason
Department of Pure Mathematics and Mathematical Statistics,

University of Cambridge, Cambridge, England

Communicated by Ernest F. Brickell

Received 21 August 1992 and revised 8 November 1994

Abstract. We consider systems where the keys for encrypting messages are
derived from the pairwise intersections of sets of private keys issued to the
users. We give improved bounds on the storage requirements of systems of this
type for secure communication in a large network.

Key words. Keys, Secure networks, Probabilistic construction.

I. Introduction

The problem of secure communication in a network with multiple users
has been considered by Blom [2], [3], Mitchell and Piper [8], Li Gong and
Wheeler [7], and other authors. These papers consider a solution in which a key-
distribution centre (KDC) must, in principle, issue a unique cryptographic key to
each of the pairs of users in a network whenever they choose to begin
communication. Suppose N = {1, 2 , n} is the set of users. Then, since there

/

t n ~ possible pairs, if n is large a direct implementation will involve the aFe
1

*Supported by NATO Grant RG0088/89.
~*Supported by NSF Grant CCR-8900112 and NATO Grant RG0088/89.

189

190 M. Dyer, T. Fenner, A. Frieze, and A. Thomason

storage of about ~ 2 7n keys. In modern computer networks it is, in fact, very likely
that n will be rather large, and current trends seem likely to increase the
number of users attached to such networks.

In [8] Mitchell and Piper, inspired by a proposal of Blom [2], [3], considered a
scheme in which the KDC stores some global set K of keys (IKI = k) and issues
to each user i (i = 1, 2 n) a subset S i _ K of these keys. We assume these
keys are numbered arbitrarily 1, 2 k. There is a directory, which need not be
secure, which lists the numbers of the keys held by each user. Now, if user i
wishes to communicate with user j, the key to be used is constructed from the
set of keys contained in S i f~ S i. (Information about which numbered keys uses i
and j hold can be exchanged without secure communication.) We insist that for
no other user, r, is it true that S i n Sj c_ S r. The required keys are then clearly
available to both users but to no other single user. These keys can then be
transformed, possibly via some one-way function, into the key to be used to
encrypt all communication between users i and j. Mitchell and Piper discuss
various schemes, some of which require only O(n) keys in total, as opposed to
the f~(n 2) required by a direct implementation. Li Gong and Wheeler [7] give a
different scheme, requiring O(n) keys in total, with each user required only to
hold O(x/7) keys.

We call schemes of the type discussed above set intersection schemes. In this
paper, in Section 2, we demonstrate the existence of set intersection schemes
requiring only O(log n) keys in total, and hence a fortiori each user has to hold
only O(log n) keys. We show that this is optimal to within constant factors.
Constant factors are, of course, very important in applications, but we also show
that they are of quite reasonable size in our scheme. Our construction is an
application of the probabilistic method in combinatorics [9]. This is a simple yet
robust method for obtaining combinatorial constructions, which perhaps de-
serves to be more widely known in the cryptography community. In Section 3 we
give some experimental evaluations of our proposals to demonstrate their
practical feasibility. To counter possible objections to the use of random
methods, we further show in Section 4 that, if necessary, the construction can be
"derandomized" by the method of conditional probabilities [9].

A known difficulty with set intersection schemes [8], [7] is the problem of
collusion. If all members of some group W _ N ([W[= w) choose to disclose
their keys to one of their number, this user may then possess the subset of keys
which two others, not in the group, are using to communicate, i.e., for some i, j
and W _c N we have

sinsj _ U
r E I4"

This clearly compromises the network for secure communication between users
i and j. We examine this problem in Section 5 and give upper and lower bounds
on the number of keys required to ensure network security against groups of at
most w colluders, for any given w. In Section 6 we consider a generalization of
the problem to communication between groups of (more than two) users, and in
Section 7 we make some concluding remarks.

On Key Storage in Secure Networks 191

2. A Space-Efficient Key-Storage System

We use lg n for log2 n. Our first simple result also appears, in a different form,
in [8].

Lemma 1. A ny set intersection scheme requires each user to hold at least lg n
keys, and at least 2 lg n keys in total (n > 4).

Proof. Any user who has less than lg n keys can form less than n - 1 distinct
nonempty subsets from their keys. Thus they cannot have a different intersec-

tion with each of the other n - 1 users. There are (2) pairs of users, and their

key intersections must form a set antichain. It follows that we must have

[+/2J > 2 "

This implies k >_ 2 lg n for all n >_ 4. []

We thus have a very straightforward demonstration that the number of keys
needed is at least of the order of log n. Using a somewhat more delicate
argument than the crude proof of Lemma 1, Erd6s et al. [5] showed that at least
3.1 lg n keys are needed. In fact, set intersection schemes for n users using only
O(log n) keys do exist. We show how probabilistic arguments can be used to find
such schemes. However, we note here that, again by an argument similiar to but
more delicate than that which we employ, Erd6s et al. [5] have shown the
existence of schemes with only 5.6 lg n keys. Our aim is to show how schemes
which are not much bigger can be contructed easily.

We now show:

Theorem 1. A set intersection scheme requiring only [13 lg n] keys in total exists.

Proof. Suppose the sets are generated randomly in some way. Let X~s be the
random variable which is the indicator of the event s ~ S i. A "bad triple" is a
triple (i, j, r) such that Si r Sj ___ Sr. Thus the expected number of bad triples is

k)
r E FI (1 - x,,xj (1 - Xrs))

i = l j = l s = l
i~:r j a r

(1)

This is an upper bound on the probability of the existence of any bad triple.
Thus, if the)(is are independent Bernoulli variables with Pr(Xi~ = 1) = p, then

192 M. Dyer, T. Fenner, A. Frieze, and A. Thomason

2 This is minimized by choosing p = 7. Then if k = 13 lg n, it is easy to check
that

l n 3 (23/13'gn 1 1 (3)
Pr (any bad triple) < __ < - - n -0-007 < --.

2 1 2 7] - 2 2

Thus if we generate the sets randomly in this manner, we have a probability of
more than one-half that the scheme we generate will be "good." []

Observe that we may c h e c k that the generated scheme has the required
properties. This can be done by an O (n 3 k) computation, by checking all triples
to ensure that they are not bad. This is feasible for small n, and could easily be
implemented in parallel. In fact, this checking problem is easily seen to be in the
class NC of efficiently parallelizable problems. It may be observed that the
whole scheme could be generated and checked by a randomized parallel
computation. Thus generating and checking is in the parallel complexity class
RNC.

3 . P r a c t i c a l S c h e m e s

From a practical point of view, the moral of the previous section is that set
intersection schemes are best generated at random. For example, it is instructive
to compare the bound of Theorem 1 with those of [7]. The matrix schemes of [7]
require at least n keys. Now 13 lg n < n for all n > 83. If n = 1000, say, we
have [13 lg n] = 130, less than one-seventh of the key requirement. The total
number of keys stored by all users is at least 3n 3/2 for the method of [7],
whereas ours is approximately ~ n lg n. This is smaller for n > 800, say. Lest
this should appear a disadvantage of our method, it should be observed that
these comparisons are not entirely fair to our scheme, since those of [7] are only
proven to be free of bad triples if the total number of keys stored is at least
4n3/2--in which case our method gives a smaller total for n > 350, say. Also, we
have based our bound for k on estimates of probabilities which may be
pessimistic for small n.

In practice, we can in fact do rather better than Theorem 1 would imply. We
chose a very simple random model to make the theoretical analysis easy; in
practice, it is more efficient to choose other models. In particular, rather than
select, for each user, a random subset of the k keys by selecting each with
probability p, it is better to give each user a random subset of size t, for some
fixed t. The best value of t to choose would seem to be that which minimizes the
probability that a randomly chosen triple is "bad", in the sense of the proof of
Theorem 1. This probability is

P k . t : U \ t -- U]~ t -- U t '
u = 0

u being the size of the intersection S i n S, . Usually the minimum value of Pk. t

is less than t23~k and can be substituted'for (~)k in (3) to demonstrate the
�9 , 2 7 j ,

On Key Storage in Secure Networks

Table 1. The existence ofsetintersection schemes.

Number of keys required

Users Thm. 1 t-sets Risk 10 -1~ Risk 10 -20

50 73 48
75 80 53

100 86 56
200 99 64 152
500 116 75 163

103 129 83 171
104 172 111 199
105 215 138 226
106 258 165 253
208 344 220 308

254
262
290
317
344
399

193

existence of a scheme of n users with fewer keys than required by Theorem 1.
For small values of n the gain is striking. For 100 users, Theorem 1 (or its proof)
shows the existence of a scheme with 86 keys, the number of keys rising to 116
for 500 users, 129 for 1000 users, and 258 for a million users. This is already
dramatically less than [7], but the method of choosing t-sets allows these figures
to be reduced to 56 keys, 75 keys, 83 keys, and 165 keys, respectively. Table 1
gives further data; in this table the column labelled "Thm. 1" gives the upper
bound on the number of keys required by the proof of Theorem 1, and the
column labelled "t-sets" gives the improved upper bound given by the method of
choosing t-sets.

The method is genuinely practical. For 500 users the schemes generated can
be tested on a SUN SPARCstation 1 in 2 minutes, rising to 16 minutes for 1000
users, with an eightfold increase in time for every doubling of the number of
users. For much larger numbers of users, each user could be asked to check his
own keys, thus performing the checking computation in a "distributed" manner;
with 100,000 users a user can check his own keys in about 5 hours (sequential)
time on the SPARC. (Of course a user need only check his own keys for secure
communication with those other users with whom he anticipates communicating,

1 and he can do this in less than ~ second per user.)
If an astronomically large number of users is envisaged, a value of k can be

chosen to ensure the probability of an incorrect scheme being generated is less
than, say, 10 20. For 100 million users, k = 399 would suffice. This is verified by
checking that, with n = 108 and k = 399, 1 3 20 ~n Pk, t < 10 holds. Values for k
ensuring that a randomly chosen collection of t-sets will give a set intersection
scheme for n users with probability at least 1 - 10 20 are given in the "risk
10 20, column of Table 1; the "risk 10 -~~ column has an analogous meaning.

An efficient way to generate schemes in practice is to select a suitable value of
k, compute the best value of t as above, and then randomly select, one by one,
subsets of size t, stopping when one of them forms a bad triple with two
previous choices. In this way quite large schemes can be found with relatively
few keys. Sometimes a bad choice is made early on; the method can be made
less susceptible to such bad luck by allowing another random choice after a

194

Table 2.

M. Dyer, T. Fenner, A. Frieze, and A. Thomason

Set intersection schemes found by the
"retry" method.

Number of users

Keys Fails Min Mean Max

4O 0 14 33 69
40 1 49 68 89
40 2 84 97 111
40 5 106 137 153

50 0 41 84 155
50 1 115 168 237
50 2 190 248 303
50 5 314 414 489

60 0 92 141 201
60 1 201 470 637
60 2 307 711 962
60 5 1111 1260 1387

70 0 186 392 503
70 1 663 1292 1732
70 2 1481 214l 2571
70 5 3236 3787 4408

failed choice, and another choice again if necessary, up to a specified limit on
the number of successive failures before stopping. This method, which we call
the "retry" method, has been tried in practice and the results are summarized in
Table 2. For each value of k (in the "keys" column), and number of failures
allowed (in the "fails" column), 10 attempts were made to generate schemes by
this method. The table shows the minimum, mean, and maximum number of
users in the final schemes. Note that the number of keys needed for a given
number of users is dramatically less even than that given by Table 1; for
instance a scheme for 3000 users with only 70 keys can be found in just minutes
of computer time.

4. Derandomization

While, in practice, we believe that an efficient randomized scheme is always
practically acceptable (see Section 7 below), from a theoretical point of view we
might wish to dispense with the requirement for randomization. This can easily
be achieved using the method of conditional probabilities [9].

Theorem 2. The set intersection scheme of Theorem 1 can be generated by an
O(n3k)-time deterministic algorithm using O(n 3) storage.

Proof. Suppose we construct the sets by fixing one Xis at a time in major order
i = 1,2 n and minor order s = 1,2 k. We ensure that initially the
probability of a bad triple, as given by (2), is less than 1. When we come to Xis
the "previous" X's will have been fixed (at 0 or 1) in (1). The following

On Key Storage in Secure Networks 195

2 "unknown" X ' s will still be Bernoulli random variables with probability p (=
here). Assume the value of (1) at this stage is E < 1. We now, try in turn, both
cases for)(is = 0, 1 in (1) and evaluate the expected value. The reader may
check that this can be accomplished by an O(n 2) computation of E and the
0(/ ' /3) products of which it is the sum are stored and updated whenever an Xi~
"changes" from p to 0 or 1. Let the two expected values calculated in this way
b e E 0, El. Then clearly

E = (1 - p) E o + p E 1.

Thus if E < 1, then either E 0 < 1 or E~ < 1. We fix X~ = 0 if E 0 < 1,)(is = 1
if E 1 < 1, and proceed to the next variable. (If both E 0 < 1 and E 1 < 1, we may
choose arbitrarily.) Obviously we must terminate with E = 0, and hence we will
have constructed the desired scheme. The algorithm takes nk x O(n 2) = O (n 3 k)

time. []

It may be observed that this is only of the same complexity as checking the
randomized construction. However, there is an important difference from a
practical point of view. The derandomized algorithm does not appear to be
efficiently parallelizable.

5. The Problem of Collusion

We consider here the collusion problem mentioned in Section 1. Let us first
establish a lower bound on k in this context.

Theorem 3. An), set intersection scheme which is secure against w colluders must
hare at least w(2 lg n - lg w - 1) k~s .

Proof.
possible w colluding sets. Then we must have

A A B ~ C 1 u C 2 U "'" U C w.

Let A, B be any two communicating sets, and let C1, C2 C,~ be any

(4)

intersections pairs of sets S i n Sj. Then all (M) unions of these possible

intersections must form a set antichain. Otherwise for some sets

(A 1 N B I) u . - . U (A w A B w) c (C ~ A D l) u . - . u (C w n D w) .

However, this contradicts (4). Note that some of the pairs on the left could be
the same as some on the right, and there is no contradiction for such pairs.
Nevertheless, for some i, the pair A i, Bi is not one of the pairs on the right side.
For this pair we may select, f rom each pair Cj, D/, one which is neither A~ nor

Suppose we take all

196 M. Dyer, T. Fenner, A. Frieze, and A. Thomason

B i. This set of choices allows us to construct the contradiction of (4) required.
Thus we must have

The bound follows from this by easy manipulations. []

We note that set families in which no set is contained in the union of w
others have been studied in much greater depth is Erd6s et al. [6]. Nevertheless
even from our simple argument we can see that we must have k growing at least
linearly with the number of potential colluders. However, it seems difficult to
achieve this. By a randomized construction we can achieve:

Theorem 4. A set intersection scheme exists which is secure against w colluders

and has [((w + 2)w+3/4wW)ln nl keys.

Proof. Suppose we choose the sets randomly as before with probabilities p. In
the notation of the proof of Theorem 3, the probability of a successful collusion
by fixed sets Ca C,, against A, B is

P r (A n B _c C~ U -.- u C w) = (1 - p 2 (1 _p)W)k.

This is minimized by putting p = 2 / (w + 2), giving (4ww)
P r (A A B c C 1 u . . . u C w) = 1 (w + 2) w§

() _< exp (w +.2) w+2 "

Thus the expected number of successful collusions is less than

< - -
2w!nW§ (w + 2) w§ 2w!

i f k > ((w + 2) w + 3 / 4 w '] l n n . []

Corollary 1. A set intersection scheme exists which is secure against w colluders
and has less than [2(w + 2) 3 In n] keys.

Proof.

(w + 2) w+3 e2(w + 2) 3
< < 2(w + 2) 3. []

4w w 4

The method of Theorem 4 can be derandomized as in Section 4.
From Theorem 4 we can obtain a scheme guaranteed secure against any five

colluders, in a network of 5000 users, with 3928 keys. Each user would have

On Key Storage in Secure Networks 197

about 1123 keys on average. To be guaranteed secure for large n against five
colluders, the multiline scheme of [7] requires n keys, with each user holding at
least 16r keys. For n = 5000 this would be 5000 keys in total, with each user
holding at least 1131. The multimap scheme of [7] only requires each user to
have 12q~- keys but requires 6n keys in total. For n = 5000 this gives 30,000
keys with each user having at least 848. For n = 10,000 our scheme and the
multimap scheme both require about 1200 keys per user, but our scheme needs
just 4248 keys against 60,000 keys for multimap. For n = 100,000 the corre-
sponding figures would be 5310 with each user holding an average of 1517 keys
for our scheme, 100,000 keys with each user holding at least 5059 for the
multiline scheme, and 600,000 keys with each user holding at least 3794 for the
multimap scheme.

There is one drawback of the randomized construction here (and of its
derandomization). If we wish to .check that the scheme meets its security
specification, the computational burden will grow like f~(nW+2k). This would
clearly be infeasible for large n, if w is not very small. From a practical point of
view, the answer is to make the probabilities sufficiently small. However, we can
show that, at the expense of more keys, we can construct schemes which are
checkable (or derandomizable) in time little more than required by the basic
scheme of Section 2.

Theorem 5. A set intersection scheme, secure against w colluders, requiring less
than [500w 3 In n] keys in total, exists which can be checked, or constructed
deterministically, in O(n3 k) time.

Proof. Choose n sets from k = 500w 3 In n with probability p = 1/(5w). If
A, B are the communicating sets, it is sufficient to ensure that, for any set C,

IC o A n B[< - -
IA n BI

W
(5)

Clearly, this implies (4) for any collection C1 Cw (i = 1 w). We bound
the probability of (5) as follows, using a version of Chernoff's bound for the tails
of the binomial distribution. (See, for example, [1].)

_ _ ~(0.32)-(0.2)-500w In n) Pr([A r~ B] < 0.68pZk) < e x p (- i. ~ "

__< n -2"048 (w > 2) .

Hence,

P r (a n y s u c h A , B e x i s t) < (n) 2 n-2~ < 2" (6)

198

Now, for fixed C,

Pr(IA A B A C I >_
\

M. Dyer, T, Fenner, A. Frieze, and A. Thomason

0"68p2kw) = Pr(IA (~ B n CI >_ 3.4p3k)

(e) 3Ap3k

< n-3-04,

(For a proof of (7) see, e.g., Theorem 1.7(ii) of [4].)
Hence,

Pr(any such A, B, C exist) < n(2)n

(7)

l (8) -3.04 < 2"

From (6) and (8) it follows that the scheme exists with nonzero probability. The
checking or derandomization of the scheme involves establishing the conditions
(5) for all triples. This can be achieved by a similar method to that discussed in
Theorem 2. []

More practical versions of the schemes suggested here could be developed, as
in Section 3, but we do not do so here.

6. Groups of Users

Mitchell and Piper [8] also consider a generalization of the problem considered
here, where every subset of users of size at most g, for some given g, needs to
have a key known only to the members of the group. The key is constructed by
using intersections of sets taken g at a time, rather than in pairs as we have
done so far. Let us call such schemes g-intersection schemes. (Thus a set
intersection scheme is a 2-intersection scheme.) Our methods readily generalize
to this situation. Thus we may prove a lower bound analogous to Theorem 3.

Theorem 6. Any g-intersection scheme which is secure against w colluders must
have k > w(g lg n - lg w - g lg g).

Proof. We use the same method as for Theorem 3, but consider all intersec-
tions of sets taken g at a time, and let

To avoid cumbersome notation, we introduce some temporary terminology. The
word block means a set of keys assigned to one of the n users, and a group an
intersection of some g blocks. We use the term collusion to mean a set of w

Now the [M~ sets, formed by taking the unions of groups in each
f

groups. \ W /
possible collusion, are an antichain. Otherwise, the union of some collusion is
contained in some other. To show that this implies a contradiction to the

On Key Storage in Secure Networks 199

security assumption, suppose the union of collusion A is contained in that of
collusion B. Now some group in A clearly does not appear in B. Let the blocks
forming this group be C~ Cg, the group being f3/g= 1 Cr Now, for each group
in B, we can select a block which is not one of the C i. The union of these w
blocks now contains the intersection of the Ci, giving the contradiction. Thus we
have

l k /2 l >- '

which implies 2 k _> (M/w) ~ > ((n/g)g/w) w, giving the bound. []

Corresponding to Theorem 4 we have:

Theorem 7. A g-intersection scheme exists which is secure against w colluders and
has [((w + g)~+g+ 1/ggwW))ln n] keys.

Proof.
with probability p, now the probability of successful collusion is

Pr (A I A ... NAg c_ C 1 () ... A Cw) = (1 - p g (1 - p) W) k .

This is minimized by putting p = g/(w + g). Then

((w ggwW) k + g)W+g (1 - p g (1 - p) W k) = 1

< exp (w + g)'+g "

The expected number of successful collusions is at most

1
1 n W+g exp , _<

g!w! (w + g)"+g g[w!
i f k _> ((w +g)w+g+l/ggw')ln n.

The proof is similar to that of Theorem 4. Selecting the sets randomly

[]

Again we can derandomize the construction if required.

7. Concluding Remarks

The basic scheme we propose is within a small factor (i.e., less than 6.5 times) of
optimal. In practice, using the method of Section 3, we can do even better than
this. It would be exceedingly difficult to find deterministic combinatorial con-
structions having the required property which are as small. However, collusion-
proof schemes seem much harder to produce. Note that the order of growth in
w of the upper bound of Corollary 1 is ~(w3), as opposed to l) (w) in the lower
bound of Theorem 3. Establishing the correct order of growth remains an open

200 M. Dyer, T. Fenner, A. Frieze, and A. Thomason

question. This is a crucial question since the bound of Theorem 4 is rather large
if w is appreciable (and the bound of Theorem 5 is larger). When we consider
groups, as in Section 6, the situation is even worse.

A possible criticism of our scheme, by comparison with those based on block
designs [8], might be that the set intersections will vary in size. This is not really
a practical difficulty, however, since if required we can always "pad out" all
intersections to a standard length using "dummy" keys known to all users.

We have given methods for checking and derandomization, but these are
clearly practicable only for relatively small n, unless massive parallelism is
available. In practice, the schemes we propose would be generated randomly if
n is large, ensuring that the failure probabilities remain very small. This may
raise questions about the practical production of large numbers of random bits.
However, the same question could be raised for the myriad other successful
applications of random numbers. It is usual practice to employ a suitably
guaranteed pseudorandom source, and at present this seems the path one must
follow. However, pseudorandomness seems to be an unnecessary device when
(at least according to the quantum theory) nature itself is subject to continual
and unavoidable random fluctuation. Randomized algorithms and constructions
are becoming widely used, in addition to the already widespread use of random
simulations. Consequently, there seems a clear need for the development of
cheap physical devices for generating truly random bits, rather than cleverer
ways of generating pseudorandom bits. As a modest example, such devices
would allow the schemes proposed here to be generated simply and conve-
niently, and easily extended whenever desired.

Acknowledgement

The authors thank Dr. Y. Kohayakawa for helpful discussions.

References

[ll D. Angluin and L. (3. Valiant, Fast probabilistic algorithms for Hamiltonian circuits and
matchings, Journal of Computer and System Sciences 18 (1979), 155-193.

[2] R. Blom, Non-public key distribution, in Advances in C~.ptology: Proceedings of Euroco,pt 82,
Plenum, New York, 1983, pp. 231-236.

[3] R. Biota, An optimal class of symmetric key generation systems, in Advances in Cryptology."
Proceedings of Eurocrypt 84, Lecture Notes in Computer Science, Vol. 209, Springer-Verlag,
Berlin, 1984, pp. 335-338.

[4] B. Bollobfis, Random Graphs, Academic Press, London, 1985.
[5] P. Erd6s, P. Frankl, and Z. Fiiredi, Families of finite sets in which no set is covered by the union

of two others, Journal of Comb!natorial Theo~, Series A 33 (1982), 158-166.
[6] P. Erd6s, P. Franld, and Z. Fi~redi, Families of finite sets in which no set is covered by the union

of r others, Israel Journal of Mathematics 51 (1985), 79-89.
[7] Li Gong and D. H. Wheeler, A matrix key distribution scheme, Journal of Cryptology 2 (1990),

51-59.
[8] C. J. Mitchell and F. C. Piper, Key storage in secure networks, Discrete Applied Mathematics 21

(1988), 215-228.
[9] J. Spencer, Ten Lectures on the Probabilistic Method, SIAM, Philadelphia, PA, 1987.

