
J. Cryptology (1995) 8:189-200 Joumol of 

CRYPTOLOGY 
�9 1995 International Association for 
Cryptologic Research 

On Key Storage in Secure Networks 

Martin Dyer* 
School of Computer Studies, University of Leeds, 

Leeds, England 

Trevor Fenner 
Department of Computer Science, Birkbeck College, 

University of London, London, England 

Alan Frieze** 
Department of Mathematics, Carnegie-Mellon University, 

Pittsburgh, U.S.A. 

Andrew Thomason 
Department of Pure Mathematics and Mathematical Statistics, 

University of Cambridge, Cambridge, England 

Communicated by Ernest F. Brickell 

Received 21 August 1992 and revised 8 November 1994 

Abstract. We consider systems where the keys for encrypting messages are 
derived from the pairwise intersections of sets of private keys issued to the 
users. We give improved bounds on the storage requirements of systems of this 
type for secure communication in a large network. 
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I. Introduction 

The problem of secure communication in a network with multiple users 
has been considered by Blom [2], [3], Mitchell and Piper [8], Li Gong and 
Wheeler [7], and other authors. These papers consider a solution in which a key- 
distribution centre (KDC) must, in principle, issue a unique cryptographic key to 
each of the pairs of users in a network whenever they choose to begin 
communication. Suppose N = {1, 2 . . . .  , n} is the set of users. Then, since there 

/ 

t n ~ possible pairs, if n is large a direct implementation will involve the aFe 
1 
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storage of about ~ 2 7n keys. In modern computer  networks it is, in fact, very likely 
that n will be rather large, and current trends seem likely to increase the 
number of users attached to such networks. 

In [8] Mitchell and Piper, inspired by a proposal of Blom [2], [3], considered a 
scheme in which the KDC stores some global set K of keys (IKI = k) and issues 
to each user i (i = 1, 2 . . . . .  n) a subset S i _ K of these keys. We assume these 
keys are numbered arbitrarily 1, 2 . . . . .  k. There is a directory, which need not be 
secure, which lists the numbers of the keys held by each user. Now, if user i 
wishes to communicate with user j, the key to be used is constructed from the 
set of keys contained in S i f~ S i. (Information about which numbered keys uses i 
and j hold can be exchanged without secure communication.) We insist that for 
no other user, r, is it true that S i n Sj c_ S r. The required keys are then clearly 
available to both users but to no other single user. These keys can then be 
transformed, possibly via some one-way function, into the key to be used to 
encrypt all communication between users i and j. Mitchell and Piper discuss 
various schemes, some of which require only O(n) keys in total, as opposed to 
the f~(n 2) required by a direct implementation. Li Gong and Wheeler [7] give a 
different scheme, requiring O(n) keys in total, with each user required only to 
hold O(x/7) keys. 

We call schemes of the type discussed above set intersection schemes. In this 
paper, in Section 2, we demonstrate the existence of set intersection schemes 
requiring only O(log n) keys in total, and hence a fortiori each user has to hold 
only O(log n) keys. We show that this is optimal to within constant factors. 
Constant factors are, of course, very important in applications, but we also show 
that they are of quite reasonable size in our scheme. Our construction is an 
application of the probabilistic method in combinatorics [9]. This is a simple yet 
robust method for obtaining combinatorial constructions, which perhaps de- 
serves to be more widely known in the cryptography community. In Section 3 we 
give some experimental evaluations of our proposals to demonstrate their 
practical feasibility. To counter possible objections to the use of random 
methods, we further show in Section 4 that, if necessary, the construction can be 
"derandomized" by the method of conditional probabilities [9]. 

A known difficulty with set intersection schemes [8], [7] is the problem of 
collusion. If all members of some group W _  N ([W[ = w) choose to disclose 
their keys to one of their number, this user may then possess the subset of keys 
which two others, not in the group, are using to communicate, i.e., for some i, j 
and W _c N we have 

sinsj _ U 
r E  I4" 

This clearly compromises the network for secure communication between users 
i and j. We examine this problem in Section 5 and give upper and lower bounds 
on the number of keys required to ensure network security against groups of at 
most w colluders, for any given w. In Section 6 we consider a generalization of 
the problem to communication between groups of (more than two) users, and in 
Section 7 we make some concluding remarks. 
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2. A Space-Efficient Key-Storage System 

We use lg n for log2 n. Our first simple result also appears, in a different form, 
in [8]. 

Lemma 1. A ny  set intersection scheme requires each user to hold at least lg n 
keys, and at least 2 lg n keys in total ( n > 4). 

Proof. Any user who has less than lg n keys can form less than n - 1 distinct 
nonempty subsets from their keys. Thus they cannot have a different intersec- 

tion with each of the other n -  1 users. There are ( 2 )  pairs of users, and their 

key intersections must form a set antichain. It follows that we must have 

[+/2J > 2 "  

This implies k >_ 2 lg n for all n >_ 4. [] 

We thus have a very straightforward demonstration that the number of keys 
needed is at least of the order of log n. Using a somewhat more delicate 
argument than the crude proof of Lemma 1, Erd6s et al. [5] showed that at least 
3.1 lg n keys are needed. In fact, set intersection schemes for n users using only 
O(log n) keys do exist. We show how probabilistic arguments can be used to find 
such schemes. However, we note here that, again by an argument similiar to but 
more delicate than that which we employ, Erd6s et al. [5] have shown the 
existence of schemes with only 5.6 lg n keys. Our aim is to show how schemes 
which are not much bigger can be contructed easily. 

We now show: 

Theorem 1. A set intersection scheme requiring only [13 lg n] keys in total exists. 

Proof. Suppose the sets are generated randomly in some way. Let X~s be the 
random variable which is the indicator of the event s ~ S i. A "bad triple" is a 
triple (i, j, r) such that Si r Sj ___ Sr. Thus the expected number of bad triples is 

k ) 
r E FI  (1 - x,,xj (1 - Xrs))  

i = l  j = l  s = l  
i~:r j a r  

(1) 

This is an upper bound on the probability of the existence of any bad triple. 
Thus, if the )(is are independent Bernoulli variables with Pr(Xi~ = 1) = p, then 
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2 This is minimized by choosing p = 7. Then if k = 13 lg n, it is easy to check 
that 

l n 3 (  23/13'gn 1 1 (3) 
Pr (any bad triple) < __ < - - n  -0-007 < --. 

2 1 2 7 ]  - 2  2 

Thus if we generate the sets randomly in this manner, we have a probability of 
more than one-half that the scheme we generate will be "good." [] 

Observe that we may c h e c k  that the generated scheme has the required 
properties. This can be done by an O ( n 3 k )  computation, by checking all triples 
to ensure that they are not bad. This is feasible for small n, and could easily be 
implemented in parallel. In fact, this checking problem is easily seen to be in the 
class NC of efficiently parallelizable problems. It may be observed that the 
whole scheme could be generated and checked by a randomized parallel 
computation. Thus generating and checking is in the parallel complexity class 
RNC. 

3 .  P r a c t i c a l  S c h e m e s  

From a practical point of view, the moral of the previous section is that set 
intersection schemes are best generated at random. For example, it is instructive 
to compare the bound of Theorem 1 with those of [7]. The matrix schemes of [7] 
require at least n keys. Now 13 lg n < n for all n > 83. If n = 1000, say, we 
have [13 lg n] = 130, less than one-seventh of the key requirement. The total 
number of keys stored by all users is at least 3n 3/2 for the method of [7], 
whereas ours is approximately ~ n  lg n. This is smaller for n > 800, say. Lest 
this should appear a disadvantage of our method, it should be observed that 
these comparisons are not entirely fair to our scheme, since those of [7] are only 
proven to be free of bad triples if the total number of keys stored is at least 
4n3/2--in which case our method gives a smaller total for n > 350, say. Also, we 
have based our bound for k on estimates of probabilities which may be 
pessimistic for small n. 

In practice, we can in fact do rather better than Theorem 1 would imply. We 
chose a very simple random model to make the theoretical analysis easy; in 
practice, it is more efficient to choose other models. In particular, rather than 
select, for each user, a random subset of the k keys by selecting each with 
probability p, it is better to give each user a random subset of size t, for some 
fixed t. The best value of t to choose would seem to be that which minimizes the 
probability that a randomly chosen triple is "bad",  in the sense of the proof of 
Theorem 1. This probability is 

P k . t  : U \ t  -- U ]~ t --  U t ' 
u = 0  

u being the size of the intersection S i n S, .  Usually the minimum value of Pk. t  

is less than t23~k and can be substituted'for (~)k in (3) to demonstrate the 
�9 , 2 7  j , 
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Table 1. The existence ofsetintersection schemes. 

Number of keys required 

Users Thm. 1 t-sets Risk 10 -1~ Risk 10 -20 

50 73 48 
75 80 53 

100 86 56 
200 99 64 152 
500 116 75 163 

103 129 83 171 
104 172 111 199 
105 215 138 226 
106 258 165 253 
208 344 220 308 

254 
262 
290 
317 
344 
399 

193 

existence of a scheme of n users with fewer keys than required by Theorem 1. 
For small values of n the gain is striking. For 100 users, Theorem 1 (or its proof) 
shows the existence of a scheme with 86 keys, the number of keys rising to 116 
for 500 users, 129 for 1000 users, and 258 for a million users. This is already 
dramatically less than [7], but the method of choosing t-sets allows these figures 
to be reduced to 56 keys, 75 keys, 83 keys, and 165 keys, respectively. Table 1 
gives further data; in this table the column labelled "Thm. 1" gives the upper 
bound on the number of keys required by the proof of Theorem 1, and the 
column labelled "t-sets" gives the improved upper bound given by the method of 
choosing t-sets. 

The method is genuinely practical. For 500 users the schemes generated can 
be tested on a SUN SPARCstation 1 in 2 minutes, rising to 16 minutes for 1000 
users, with an eightfold increase in time for every doubling of the number of 
users. For much larger numbers of users, each user could be asked to check his 
own keys, thus performing the checking computation in a "distributed" manner; 
with 100,000 users a user can check his own keys in about 5 hours (sequential) 
time on the SPARC. (Of course a user need only check his own keys for secure 
communication with those other users with whom he anticipates communicating, 

1 and he can do this in less than ~ second per user.) 
If an astronomically large number of users is envisaged, a value of k can be 

chosen to ensure the probability of an incorrect scheme being generated is less 
than, say, 10 20. For 100 million users, k = 399 would suffice. This is verified by 
checking that, with n = 108 and k = 399, 1 3 20 ~n Pk, t < 10 holds. Values for k 
ensuring that a randomly chosen collection of t-sets will give a set intersection 
scheme for n users with probability at least 1 - 10 20 are given in the "risk 
10 20, column of Table 1; the "risk 10 -~~ column has an analogous meaning. 

An efficient way to generate schemes in practice is to select a suitable value of 
k, compute the best value of t as above, and then randomly select, one by one, 
subsets of size t, stopping when one of them forms a bad triple with two 
previous choices. In this way quite large schemes can be found with relatively 
few keys. Sometimes a bad choice is made early on; the method can be made 
less susceptible to such bad luck by allowing another random choice after a 
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Set intersection schemes found by the 
"retry" method. 

Number of users 

Keys Fails Min Mean Max 

4O 0 14 33 69 
40 1 49 68 89 
40 2 84 97 111 
40 5 106 137 153 

50 0 41 84 155 
50 1 115 168 237 
50 2 190 248 303 
50 5 314 414 489 

60 0 92 141 201 
60 1 201 470 637 
60 2 307 711 962 
60 5 1111 1260 1387 

70 0 186 392 503 
70 1 663 1292 1732 
70 2 1481 214l 2571 
70 5 3236 3787 4408 

failed choice, and another choice again if necessary, up to a specified limit on 
the number of successive failures before stopping. This method, which we call 
the "retry" method, has been tried in practice and the results are summarized in 
Table 2. For each value of k (in the "keys" column), and number of failures 
allowed (in the "fails" column), 10 attempts were made to generate schemes by 
this method. The table shows the minimum, mean, and maximum number of 
users in the final schemes. Note that the number of keys needed for a given 
number of users is dramatically less even than that given by Table 1; for 
instance a scheme for 3000 users with only 70 keys can be found in just minutes 
of computer time. 

4. Derandomization 

While, in practice, we believe that an efficient randomized scheme is always 
practically acceptable (see Section 7 below), from a theoretical point of view we 
might wish to dispense with the requirement for randomization. This can easily 
be achieved using the method of conditional probabilities [9]. 

Theorem 2. The set intersection scheme of Theorem 1 can be generated by an 
O(n3k )-time deterministic algorithm using O(n 3) storage. 

Proof. Suppose we construct the sets by fixing one Xis at a time in major order 
i = 1,2 . . . . .  n and minor order s = 1,2 . . . . .  k. We ensure that initially the 
probability of a bad triple, as given by (2), is less than 1. When we come to Xis 
the "previous" X's will have been fixed (at 0 or 1) in (1). The following 
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2 "unknown" X ' s  will still be Bernoulli random variables with probability p ( =  
here). Assume the value of (1) at this stage is E < 1. We now, try in turn, both 
cases for )(is = 0, 1 in (1) and evaluate the expected value. The reader may 
check that this can be accomplished by an O(n 2) computation of E and the 
0(/ ' /3)  products of which it is the sum are stored and updated whenever an Xi~ 
"changes" from p to 0 or 1. Let the two expected values calculated in this way 
b e E  0, El. Then clearly 

E = ( 1 - p ) E  o + p E  1. 

Thus if E < 1, then either E 0 < 1 or E~ < 1. We fix X~ = 0 if E 0 < 1, )(is = 1 
if E 1 < 1, and proceed to the next variable. (If  both E 0 < 1 and E 1 < 1, we may 
choose arbitrarily.) Obviously we must terminate with E = 0, and hence we will 
have constructed the desired scheme. The algorithm takes nk  x O(n  2) = O ( n 3 k )  

time. [] 

It may be observed that this is only of  the same complexity as checking the 
randomized construction. However, there is an important difference from a 
practical point of view. The derandomized algorithm does not appear  to be 
efficiently parallelizable. 

5. The Problem of  Collusion 

We consider here the collusion problem mentioned in Section 1. Let us first 
establish a lower bound on k in this context. 

Theorem 3. An), set intersection scheme which is secure against w colluders must  
hare at least w(2 lg n - lg w - 1) k~s .  

Proof. 
possible w colluding sets. Then we must have 

A A B  ~ C 1 u C 2 U "'" U C w. 

Let A, B be any two communicating sets, and let C1, C2 . . . . .  C,~ be any 

(4) 

intersections pairs of sets S i n Sj. Then all ( M )  unions of these possible 

intersections must form a set antichain. Otherwise for some sets 

(A 1 N B I )  u . - .  U (A  w A B  w) c ( C ~  A D  l) u . - .  u (C w n D w ) .  

However, this contradicts (4). Note that some of the pairs on the left could be 
the same as some on the right, and there is no contradiction for such pairs. 
Nevertheless, for some i, the pair A i, Bi is not one of the pairs on the right side. 
For this pair we may select, f rom each pair Cj, D/, one which is neither A~ nor 

Suppose we take all 
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B i. This set of choices allows us to construct the contradiction of (4) required. 
Thus we must have 

The bound follows from this by easy manipulations. [] 

We note that set families in which no set is contained in the union of w 
others have been studied in much greater depth is Erd6s et al. [6]. Nevertheless 
even from our simple argument we can see that we must have k growing at least 
linearly with the number of potential colluders. However, it seems difficult to 
achieve this. By a randomized construction we can achieve: 

Theorem 4. A set intersection scheme exists which is secure against w colluders 

and has [((w + 2)w+3/4wW)ln nl keys. 

Proof. Suppose we choose the sets randomly as before with probabilities p. In 
the notation of the proof of Theorem 3, the probability of a successful collusion 
by fixed sets Ca . . . . .  C,, against A, B is 

P r ( A  n B _c C~ U -.- u C w) = (1 - p 2 ( 1  _p)W)k.  

This is minimized by putting p = 2 / ( w  + 2), giving ( 4ww)  
P r ( A  A B c C  1 u . . .  u C  w) = 1 ( w + 2 )  w§ 

( ) _< exp (w +.2) w+2 " 

Thus the expected number of successful collusions is less than 

< - -  
2w!nW§ ( w + 2 )  w§ 2w! 

i f k  > ((w + 2 ) w + 3 / 4 w ' ] l n n .  [] 

Corollary 1. A set intersection scheme exists which is secure against w colluders 
and has less than [2(w + 2) 3 In n] keys. 

Proof. 

(w + 2) w+3 e2(w + 2) 3 
< < 2(w + 2) 3. [] 

4w w 4 

The method of Theorem 4 can be derandomized as in Section 4. 
From Theorem 4 we can obtain a scheme guaranteed secure against any five 

colluders, in a network of 5000 users, with 3928 keys. Each user would have 
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about 1123 keys on average. To be guaranteed secure for large n against five 
colluders, the multiline scheme of [7] requires n keys, with each user holding at 
least 16r keys. For n = 5000 this would be 5000 keys in total, with each user 
holding at least 1131. The multimap scheme of [7] only requires each user to 
have 12q~- keys but requires 6n keys in total. For n = 5000 this gives 30,000 
keys with each user having at least 848. For n = 10,000 our scheme and the 
multimap scheme both require about 1200 keys per user, but our scheme needs 
just 4248 keys against 60,000 keys for multimap. For n = 100,000 the corre- 
sponding figures would be 5310 with each user holding an average of 1517 keys 
for our scheme, 100,000 keys with each user holding at least 5059 for the 
multiline scheme, and 600,000 keys with each user holding at least 3794 for the 
multimap scheme. 

There is one drawback of the randomized construction here (and of its 
derandomization). If we wish to .check  that the scheme meets its security 
specification, the computational burden will grow like f~(nW+2k). This would 
clearly be infeasible for large n, if w is not very small. From a practical point of 
view, the answer is to make the probabilities sufficiently small. However, we can 
show that, at the expense of more keys, we can construct schemes which are 
checkable (or derandomizable) in time little more than required by the basic 
scheme of Section 2. 

Theorem 5. A set intersection scheme, secure against w colluders, requiring less 
than [500w 3 In n] keys in total, exists which can be checked, or constructed 
deterministically, in O( n3 k ) time. 

Proof. Choose n sets from k = 500w 3 In n with probability p = 1/(5w). If 
A, B are the communicating sets, it is sufficient to ensure that, for any set C, 

IC o A n B[ < - -  
IA n BI 

W 
(5) 

Clearly, this implies (4) for any collection C1 . . . . .  Cw (i = 1 . . . . .  w). We bound 
the probability of (5) as follows, using a version of Chernoff's bound for the tails 
of the binomial distribution. (See, for example, [1].) 

_ _ ~(0.32)-(0.2)-500w In n) Pr([A r~ B] < 0.68pZk) < e x p ( -  i. ~ " 

__< n -2"048 ( w  > 2) .  

Hence, 

P r ( a n y s u c h A , B e x i s t ) < ( n )  2 n-2~ < 2" (6) 
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Now, for fixed C, 

Pr(IA A B A C I  >_ 
\ 
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0"68p2kw ) = Pr(IA (~ B n CI >_ 3.4p3k) 

( e ) 3Ap3k 

< n-3-04, 

(For a proof of (7) see, e.g., Theorem 1.7(ii) of [4].) 
Hence, 

Pr(any such A,  B, C exist) < n( 2 )n 

(7) 

l ( 8 )  -3.04 < 2" 

From (6) and (8) it follows that the scheme exists with nonzero probability. The 
checking or derandomization of the scheme involves establishing the conditions 
(5) for all triples. This can be achieved by a similar method to that discussed in 
Theorem 2. [] 

More practical versions of the schemes suggested here could be developed, as 
in Section 3, but we do not do so here. 

6. Groups of Users 

Mitchell and Piper [8] also consider a generalization of the problem considered 
here, where every subset of users of size at most g, for some given g, needs to 
have a key known only to the members of the group. The key is constructed by 
using intersections of sets taken g at a time, rather than in pairs as we have 
done so far. Let us call such schemes g-intersection schemes. (Thus a set 
intersection scheme is a 2-intersection scheme.) Our methods readily generalize 
to this situation. Thus we may prove a lower bound analogous to Theorem 3. 

Theorem 6. Any g-intersection scheme which is secure against w colluders must 
have k > w(g lg n - lg w - g lg g). 

Proof. We use the same method as for Theorem 3, but consider all intersec- 
tions of sets taken g at a time, and let 

To avoid cumbersome notation, we introduce some temporary terminology. The 
word block means a set of keys assigned to one of the n users, and a group an 
intersection of some g blocks. We use the term collusion to mean a set of w 

Now the [ M~ sets, formed by taking the unions of groups in each 
f 

groups. \ W / 
possible collusion, are an antichain. Otherwise, the union of some collusion is 
contained in some other. To show that this implies a contradiction to the 
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security assumption, suppose the union of collusion A is contained in that of 
collusion B. Now some group in A clearly does not appear in B. Let the blocks 
forming this group be C~ . . . . .  Cg, the group being f3/g= 1 Cr Now, for each group 
in B, we can select a block which is not one of the C i. The union of these w 
blocks now contains the intersection of the Ci, giving the contradiction. Thus we 
have 

l k /2 l  >- ' 

which implies 2 k _> (M/w) ~ > ((n/g)g/w) w, giving the bound. [] 

Corresponding to Theorem 4 we have: 

Theorem 7. A g-intersection scheme exists which is secure against w colluders and 
has [((w + g)~+g+ 1/ggwW))ln n] keys. 

Proof. 
with probability p, now the probability of successful collusion is 

Pr (A I A ... NAg c_ C 1 () ... A Cw) = (1 - p g ( 1  - p ) W ) k .  

This is minimized by putting p = g/(w + g). Then 

( (w ggwW ) k +  g)W+g ( 1 - p g ( 1 - p ) W  k) = 1 

< exp (w + g)'+g " 

The expected number of successful collusions is at most 

1 
1 n W+g exp , _< 

g!w! (w + g)"+g g[w! 
i f k  _> ((w +g)w+g+l/ggw')ln n. 

The proof  is similar to that of Theorem 4. Selecting the sets randomly 

[] 

Again we can derandomize the construction if required. 

7. Concluding Remarks 

The basic scheme we propose is within a small factor (i.e., less than 6.5 times) of 
optimal. In practice, using the method of Section 3, we can do even better than 
this. It would be exceedingly difficult to find deterministic combinatorial con- 
structions having the required property which are as small. However, collusion- 
proof schemes seem much harder to produce. Note that the order of growth in 
w of the upper bound of Corollary 1 is ~(w3), as opposed to l ) (w) in the lower 
bound of Theorem 3. Establishing the correct order of growth remains an open 
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question. This is a crucial question since the bound of Theorem 4 is rather large 
if w is appreciable (and the bound of Theorem 5 is larger). When we consider 
groups, as in Section 6, the situation is even worse. 

A possible criticism of our scheme, by comparison with those based on block 
designs [8], might be that the set intersections will vary in size. This is not really 
a practical difficulty, however, since if required we can always "pad  out" all 
intersections to a standard length using "dummy" keys known to all users. 

We have given methods for checking and derandomization, but these are 
clearly practicable only for relatively small n, unless massive parallelism is 
available. In practice, the schemes we propose would be generated randomly if 
n is large, ensuring that the failure probabilities remain very small. This may 
raise questions about the practical production of large numbers of random bits. 
However, the same question could be raised for the myriad other successful 
applications of random numbers. It is usual practice to employ a suitably 
guaranteed pseudorandom source, and at present this seems the path one must 
follow. However, pseudorandomness seems to be an unnecessary device when 
(at least according to the quantum theory) nature itself is subject to continual 
and unavoidable random fluctuation. Randomized algorithms and constructions 
are becoming widely used, in addition to the already widespread use of random 
simulations. Consequently, there seems a clear need for the development of 
cheap physical devices for generating truly random bits, rather than cleverer 
ways of generating pseudorandom bits. As a modest  example, such devices 
would allow the schemes proposed here to be generated simply and conve- 
niently, and easily extended whenever desired. 
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