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Abstract. Authentication codes with secrecy and with splitting are investi- 
gated. An information-theoretic lower bound for the probability of successful 
deception for a spoofing attack of order r is obtained. The condition necessary 
on authentication codes to achieve the lower bound is determined as a single 
simple requirement. Based on the simplicity of the result a construction, by use 
of so-called partially balanced t-designs, for authentication codes that can 
achieve the lower bound is suggested. 
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I. Introduction 

W e  cons ide r  the  au then t i ca t ion  m o d e l  tha t  involves th ree  par t ic ipants :  a t rans-  
mi t ter ,  a receiver ,  and  an o p p o n e n t .  The  t r ansmi t t e r  and  rece iver  t rust  each  
other ,  but  the  o p p o n e n t  wants  to dece ive  them. The  t r ansmi t t e r  wishes to send a 
sequence  o f  source  s ta tes  (p la in texts)  s ~ , . . . , s  r to the  receiver .  In  o r d e r  to 
enab le  the  rece iver  to verify the  au thent ic i ty  of  these  messages  as well as to 
keep  the in fo rmat ion  secret ,  he encrypts  them into a sequence  o f  e n c o d e d  
messages  (c ipher texts)  m t . . . . .  m r by using one  o f  a finite set of  encod ing  rules  
(keys) which is ag reed  upon  in advance  with the  receiver .  Then  the t r ansmi t t e r  
sends  m 1 . . . .  , rn r t h rough  a publ ic  c ommun ic a t i on  channel .  W e  deno te  by S p 
the  set of  all source  states,  by g~ the set of  all encod ing  rules,  and  by .Zr the  set 
o f  all poss ible  e n c o d e d  messages .  Each  encod ing  rule is a m a p p i n g  f rom S "~ to 

J{. The  range  of  the mapp ing  is usual ly a p r o p e r  subset  of  ~ and genera l ly  
d i f ferent  for  d i f ferent  encod ing  rules. Only  the  messages  in the  subset  cor re-  
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sponding to the agreed-upon encoding rule are acceptable, which is how 
authentication is achieved. 

We assume that the opponent has a complete understanding of the system, 
including all the encoding rules. The only thing he does not know is the 
particular encoding rule agreed upon by the transmitter and receiver. We also 
assume that the opponent  has the ability to introduce a message into the 
channel. After observation of the first r (where r >_ 0) messages m~ . . . . .  m, ,  the 
opponent  places his own message m into the channel, attempting to make the 
receiver accept it as authentic. This is called a spoofing attack of order r [4]. 

In this paper we consider authentication systems with secrecy and splitting. In 
an authentication system without secrecy, called a Cartesian scheme, each 
encoded message in ~ encodes the same source state for all encoding rules for 
which this encoded message is valid. Therefore,  in such a system, once the 
opponent  observes an encoded message, he knows the corresponding source 
state. In a system with secrecy, the opponent  cannot in general determine the 
corresponding source state from its encoded message without knowing the 
encoding rule used. In an authentication system with splitting, any of several 
messages can be used to encode a particular source state for the same encoding 
rule. However, in order for the receiver to be able to determine the source state 
uniquely from the encoded message and knowledge of the encoding rule used, 
there can be at most one source state which is encoded by a particular encoded 
message in ~" under a given encoding rule. 

Define 

~ r  = { S  r = ( S  1 . . . . .  S r )  I si ~ ~ ,  1 < i < r} 

and 

~ / r =  { m ' =  ( m  I . . . . .  m , ) l m i ~ , l  < i  < r } .  

We write E, S, m, S r, and M r for the random variables describing the 
authentication system and taking values e, s, m, s r, and m" in g', ~ ,  ~ ' ,  S ~ 
and ~t "r, respectively. 

Let P, denote the expected probability of successful deception for a spoofing 
attack of order r. We first recall some previous information-theoretic bounds for 
P,. Simmons [12] proved 

P0 > 2t4~EIM)-mE), (1) 

where here and hereafter all logarithms used in entropies are to base 2 and 
where H ( E I M )  denotes conditional entropy. Short proofs of (1) were provided 
by Massey [5] and by Sgarro [10]. Johannesson and Sgarro gave a strengthened 
bound on P0 in [3]. Simmons [12] and Brickell [1] proved 

P1 > 2-H~EIM)" (2) 

Walker [15] proved 

Pr > 2H~EIM'+~)-H(EIM'), r = 0, 1, 2 . . . . .  (3) 

for authentication codes without secrecy and splitting. 
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The main purpose of this paper is to prove that inequality (3) holds for 
general authentication codes, i.e., codes with secrecy and splitting. In Section 2 
we prove our main theory (Theorem 1), which was first presented in the rump 
session at Asiacrypt '91. The proof  of Theorem 1 is based on the method of 
Massey [5]. It can also be proved by the method of Sgarro [10]. (The latter 
approach was used in the original version of this paper, see Appendix 7.3C of 
[8].) Smeets [13], Sgarro [11], and Rosenbaum [7] have all recently given proofs 
of (3) for general authentication codes. Our proof of (3) is simpler, and this in 
turn leads to a simpler formulation of the condition for equality to hold. Our 
approach also suggests a construction, which is based on what we call partially 
balanced t-designs, for codes that achieve equality in (3). 

In Section 3 we discuss some consequences of Theorem 1. In Section 4 we 
prove (Theorem 6) that if an authentication code (without splitting) has the 
property that the probabilities Pr (0 < r < t - 1) achieve their information- 
theoretic lower bounds and if the number of encoding rules is minimum, then 
this code corresponds to a partially balanced t-design. Several known partially 
balanced t-designs are also mentioned. 

2. Main Theorem 

For any m r = ( m l , . . . , m  r) E./Kr r and e ~ ~ ,  let fe(m r) = (fe(m l) . . . . .  r e ( m r ) )  
denote the unique element ( s l  . . . . .  s r) ~ 5 ~r, when it exists, such that s i = f e ( m i )  
(1 < i < r) is encoded by m i under e. 

For simplicity, we abbreviate by omitting the names of random variables in a 
probability distribution when this causes no confusion. For instance, we abbrevi- 
ate p ( S  = s )  to p ( s ) ,  p ( E  = e l M  r = m r) to p ( e l m r ) ,  but p ( M r +  1 = m l M r  = m r )  

to p ( M r +  1 = m l m  r) where Mr+ 1 denotes the random variable that is the 
(r  + 1)th encoded message, etc. 

We assume that E and S r are independent, i.e., that p ( e ,  s r) = p ( e ) p ( s  r) for 
every e ~ g" and s r ~ .jc,~r 

In a system with splitting, the transmitter is free to choose p ( m r l e ,  s r) in any 
manner such that, for any given s r ~ ~or and e ~ ~,  

~_, p ( m q e ,  s r) -- 1 
m r  ~ , ~ f  r 

and 

p ( m r ] e , s  r) = 0  when s r -~ L ( m r ) .  

We consider only impersonation (r  = 0) and plaintext substitution. The latter 
means that the opponent  is considered to be successful only when, after 
observing a sequence of messages m l , . . . ,  mr, he chooses a fradulent ciphertext 
m' that is accepted as authentic by the receiver and f e ( m i )  4 : f e ( m ' )  (1 < i < r) 
where e is the key used. If the receiver gets a particular message twice, he 
cannot decide whether the message was sent twice by the transmitter or was 
repeated by an opponent.  Hence we assume that the transmitter never sends a 
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particular source state twice under same encoding rule. Accordingly we require 
that (for r > 2) 

p ( s  r) > 0 

only if the components  s ~ , . . . ,  s r of s r are pairwise distinct. 
For any m r = (ml  . . . . .  m r) ~ .r "r define 

{ I m i ( l < i < r )  a r e a c c e p t a b l e u n d e r e a n d }  

~ ( m  r) = e ~ ~ f e ( m i )  (1 < i _< r )  are pairwise distinct ' 

i.e., ~ ( m  r is the set of all encoding rules under which m r is valid. The set 
~ ( m  r) may be empty for some m r. 

The probability distributions for E and S r together with the splitting strategy 
p(mrle ,  s r) determine the probability distribution for M r. For  any e ~ g" and 
m r ~ .It "r, if e ~ ~ (mr ) ,  then p(e,  m r) = 0; if e ~ ~(rnr),  then 

p ( e ,  m r) = p ( e ) p ( 5  ar = f e ( m r ) ) p ( m r l e ,  ~,c~r = L ( m r ) ) .  (4) 

Let Pr(mlm r) denote the probability that m would be a valid choice for Mr+ 
given that m r has been observed. Then 

pr (mim r) = ~ p ( e l m r ) ,  
eE ~'(mr* m) 

where m r * m denotes the message sequence ml . . . . .  mr,  m. Given that m r has 
been observed, the opponent ' s  opt imum strategy is to substitute the message rh 
that maximizes Pr(mlmr).  Thus, the unconditional probability of success in an 
opt imum spoofing attack of order  r is just 

Pr = ~ p(rn  r) m a x P r ( m l m r ) .  
mr E.~r  m ~ /  

Theorem 1. For any integer r > 0, the probability o f  success in an opt imum 
spoofing attack o f  order r satisfies 

er  >- 2H(EIMr+I)-H(EIM')  

Equality holds if  and only if, for every m r ~ i r and m ~ o,r162 for which ~ ' (m r * m )  
is not empty, 

p (e [m r) 

p (e lmr  . m )  

is independent o f  m,  m r and e ~ ~ ( m  r * m). When equality holds, the probability Pr 
equals this constant ratio. 

Proof. For a given m r ~ ~,r ,  let 

s u p p ( M r + l , E [ m  r) = { ( m , e )  l p (Mr+ l = m , e l m  r) > 0, m ~ V , e  ~ ~} 

denote the support  of the conditional probability distribution of the pair of  
random variables (Mr+ 1, E)  conditioned on M r = m r. Then underbounding a 
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maximum by an average gives 

maxPr(mlm' )  >__ ~ p(Mr+l = mlmr)Pr(mlm ") 

= ~ p(Mr+ l -~- mlmr)P (elmr) 
(m,e)Esupp(Mr+l , E) 

= ff~( p(  Mr+ l-~-'Mr+'~l= mlmr)p(e]; mr) ml  e~m r ) I/ 

where /~ is the conditional expectation given that .get = m r. By use of Jensen's 
inequality, we obtain 

-[ p(Mr+l = mlmr)p(e lm r) 
log max Pr(mlm') >_ logE/ ) 

" ~ / ~ r  71 m~.K 

( P ( M , + l = m } m r ) p ( e } m r ) )  

_> g log -f(- ir71 
= H(Mr+]EIM r = m r ) - H(Mr+]IM r = m r) 

- H ( E I M  r = mr), 

where 

and 

H(Mr+ IEIM r = m r) 

= _ ~., P(M,+1 = m,e tmr) logp(Mr+]  = m,e lmr) ,  
(m, e)~ supp(Mr + 1 , E) 

H(Mr+ jIM r = m' )  

= _ ~ P(Mr+I = mlmr ) logp (M,+l  = mlmr),  
m : p ( M r +  I = m l m r ) > o  

H(EI  Mr = mr) -- E P(elmr)log P(el mr). 
e E  g ' ( m ' )  

Finally we make another use of Jensen's inequality to obtain 

log Pr = l~ max Pr(mfm r) 
m r m~..CF" 

>_ ~ p ( m  r) log max Pr(mlm r) 
~1 r l'n E . . ~  

>__ H(  Mr+ ~EIM r) - H(  Mr+ 1IM r) - H(  EIM r) 

= H ( E I M  r+~) - H ( E I M ' ) .  

From the above derivation, we see that equality holds in this bound if and 
only if the following two conditions are satisfied: 

(i) The probability Pr(mJm r) is independent of those m and m r with 
p(Mr+ l = mlm r) > 0 so that its average and maximum values coincide. 
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(ii) For  every (m r * m)  e A "r§ ~, if ~-~(m r * m )  is not  empty, then 

p(Mr+ l = rn l rnr )p(e lm r) p ( e l m  r) 

p (  Mr + l = m , e lm r) p (  e lm r* m )  

is independent  of  m, m r and e ~ g ' ( m  r * m). 

Condi t ion (i) can be deduced  f rom condi t ion (ii) since, if P(Mr+ 1 
then 

Pr (mlm  r) = y" p ( e l m  r) 
e ~  ~ ( m  r* m )  

p ( e l m  r) 
- ~ p ( e l m r * m )  

p ( e l m  r * m )  e e  g ' ( m ' *  m) 

p (  e lm r) 

-- p (  e[m r - m ) "  

This completes  the p roof  of  T h e o r e m  1. 

= m l m  r) > O, 

[] 

3. Some Consequences 

In this section we discuss some consequences  of  T h e o r e m  1. Let k = I~[, 
v = {~,'[, and b = I~l. F rom now on we consider only authent icat ion codes 
without  splitting. For  s r e . f p r ,  let 

A ' ( s ' )  = {m '  e :~"  [for  some e e ~ ,  f e ( m " )  = sr} '~  

for m r e A "r, let 

. .~(m r) = {m ~ ..K [ ~ ( m  r * m )  is not  empty} 

and 

l / ( s ,  rn r) = {m e A ' ( s )  l ~ ( r n r  * m )  is not  empty}. 

F o r e e  ~ , l e t  

~" (e )  = {m e ~tr l for some s e 5 ~', r e (m)  = s}. 

Finally, for an integer r > 0, let 

~ , r  = {m r e ~ / r  I 8"(m r) is not  empty}. 

By (4), if e e ,T(m r �9 m), we have 

p ( e l m  r) p ( e ,  m " ) p ( m "  * m )  

p ( e l m  r * m )  p ( e ,  m r * m ) p ( m  r) 

= " , m r p ( f ~ ( m  ))~-'e'~ g(m'* re)P( e )P( f e ' (  * m ) )  (5) 

p(  f e ( m  r * m))Ee,~  ~(m, )p (e ' )p (  L , ( m r ) )  

The following result was first proved by Walker  [15]. 
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Corollary 2. I f  an authentication code is Cartesian, then the equality 

P, = 2 merM'§ (6) 

holds if  and only if, for  every m r = (m 1 . . . . .  m r) ~ At "r, the sum ~ ~ ~.~,.r , , . )p(e)  
is independent o f  m E ./t '(m'),  and the number I-~"(s, mr)l is constant for all mr 
and s where s ~ f~(m~) (1 < i <_ r). Furthermore, in this case P, = I ~ ( x ,  m')l -~. 

Proof. Since the code is Cartesian, for every s ~ S p with s ~ fe (mi)  (1 < i < r), 
we have 

~,  p ( e ) =  ~,  ~ p ( e ) .  
e ~  ~'(m r) rn~.,dt(s,m r) e E  o~'(m r* m)  

For a fixed m ' ~ .r the source sequence fe (m r) is the same for all e ~ ~(mr). 
By Theorem 1 and (5), we know that 

P(e] mr) Y"~e'~- ~(m'* m)P (e ' )  

p ( e l m  r* m )  Y'-de ~(m')P(e') 

is independent of  m" and m. Therefore  the sum Y:e ~ ~ , , ' .  m)P (e)  is indepen- 
dent of m ~ ..~(m r) and 

p ( e l m  ~) 

p ( e l m  r * m )  
I~[(s,  mr)l - l  . 

The proof  of the "if" part  is just the inverse of  above argument.  [] 

We define the following property of  the probability distribution for s~r: 

m 

Property (*) .  For any given m r ~ ~ r  the probability p( fe (mr) )  is constant for 
all e E ~(mr ) .  

We call the source r-uniform if p ( s ' )  is constant for all s '  with nonzero 
probability. Property (* )  is weaker than requiring p( fe (mr) )  to be the uniform 
distribution, since p( fe (mr) )  may have different values for different m r in the 
former  case. 

Corollary 3. Suppose that the source has property ( * ) for  r and r + 1 (only for 1 
i f  r = 0), then equality (6) holds i f  and only if  the probability Pr(m]m r) is constant 
for (m  r * m)  ~ At "r§ i. 

Proof. Using property ( * ) for r and r + 1 in (5), for e ~ ~ ( m  r * m), we have 

P(e] mr) ~e'~ g(m'*m)P (e ' )  

p ( e lm"  * m )  Ee* ~ ~(m,)p(e')  



184 Dingyi Pei 

O n  the  o t h e r  h a n d ,  

p ( e ,  m r) E e ~ ~ , ( m r .  m)p(e)  
P , ( m l m ' )  = ~., p ( e l m ' )  = ~ P ( m r )  - -  ~-'e ~.(~,)p(e) 

e ~  ~'(m" * m)  e E  ~'(m" * ra) 

T h e  c o r o l l a r y  n o w  fo l lows  f r o m  T h e o r e m  1. [] 

Corollary 4. I f  P r : 2 H ( E I M r + I ) - H ( E I M r )  f o r r  = O, 1 . . . . .  t - 1 (t <_ k), then: 

(i)  Property ( * )  holds for 1 < r <_ t. 
(ii)  For any given m" ~ ./[" (1 < r _< t) ,  

Y'. p ( e )  = PoP1 ... Pr-1,  
eE  ~ ' (m r) 

where 

P, = 
~ee  8"(mr*m)P ( e )  

Eee ~(m')P(e) 

when (m" * m)  ~ r162 + 1 

(ii i)  Po = k / v  and for any given 
(k  - r)Pr -1. 

(iv) I-Z"'I = r a n d  IMq = [ k l ( P o p l  "'" Pr 1)- '  
r ] 

m r ~ ..~r (1 < r < t -- 1), I ~ / ( m r ) l  = 

Proof. F o r  ( m  r * m )  ~ . .~r+ 1 a n d  e ~ ~'(m" * m)  we have ,  by T h e o r e m  1, 

p (  fe(mr))Ee,  ~ ~(mr, m ) p ( e ' ) p (  f~,(m r * m ) )  

p(  f e (m  r * m))Y'.e, ~ ~<m,)p(e')p( f e , ( m ' ) )  
Pr 

p ( e l m ' )  

p ( e l m  r * m )  

fo r  0 < r < t - 1. By the  a b o v e  e q u a l i t y  fo r  r = 0, we  see  t h a t  (i) a n d  (ii)  h o l d  
fo r  r = 1. T h e n  (i) a n d  (ii)  c an  be  p r o v e d  by  i n d u c t i o n  o n  r. 

T o  s h o w  (iii), we  have  

Y'~ Y'~ p ( e ) = k  ~_, p(e) =k, 
m e J f  e ~  ~ ( m )  e E  ~" 

a n d  

~_, ~ p(e) = ( k - r )  ~_, p(e). 
m ~.,~'(m r) e'~ N'(m r * m) e ~  $'(m') 

T h u s  (iii)  fo l lows  f r o m  (ii). 
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Finally, it is trivial that  I~fml = v. By (iii), when  r > 2, we have 

1 (k - r -4- 1 ) l A r - l l  
I ~ 1  = - ~ I. ,X"(m t -  ~)1 = 

r rPr_ 1 
i ? l r -  l ~ ~ r -  I 

Thus (iv) follows by induction on r. [] 

4. Construct ions of  Authentication Codes that Achieve the 
Information-Theoretic  Lower Bounds  

Besides the informat ion- theore t ic  lower bound  discussed above, Massey [4] 
proved that  

k - r  
p > m .  

U - - F  

We call this lower bound  the combinatorial lower bound. It was proved that 
if Pt (0 < r < t -  1) achieve their  combinatorial  lower bounds,  then  the 
number  Ig ' (m0] is constant  for  all m r ~ - d  "t with pairwise different  compon-  
ents. An authent icat ion code that  achieves combinatorial  lower bounds for  
Pt (0 < r < t - 1) with equiprobable  source states corresponds  to a t-design (see 
[9] and [2]). In this section we discuss the same problem for  the information- 
theore t ic  bound.  

Definition 5. Let  v, k, A, t be positive integers with t ___ k. A t - (v,  k; A, 0) 
design is a pair  (.d', ~ ) ,  where  Jr" is a set of  v points and ~" is a family of  
k-subsets (called blocks) of  ~t" such that any t-subset of  r e i ther  occurs in 
exactly A blocks or  does not  occur  in any block. 

If every t-subset of  ~ always occurs in exactly A blocks, then a t - (v,  k; A, 0) 
design is just a t - (v, k, A) design. That  is, the concept  of  a t - (v, k; A, 0) 
design is a general izat ion of  the well-known concept  of  a t-design. We call a 
t - (v, k; A, 0) design a partially balanced t-design. 

Theorem 6. Suppose an authentication code has the property that 

Pt = 2HCEIM'+I)-H(EIm') (0 < r < t -- 1, t < k) .  

Then b > (PoPl  ... P t_ l )  -1, where equality holds i f  and only i f  the sets {cOt'(e)} 
(e ~ g') form an r - (v,  k; A r, O) design for  2 <_ r <_ t and a 1 - (v,  k,  h 1) design 
simultaneously where A t = 1, h t = ( PrPr + l "'" Pt_ l )  -1 (1 < r _< t - 1), the encod- 
ing rules are equally probable, and the probability distributions for  S t (1 < r < t) 
satisfy property ( * ). 
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Proof. We have 

[ ~ ( m t - 1 ) l = b ( t - l k )  
m t I ~ r 1 

and 

( k - t +  1) ~ I~ (m' -  L)I : ~ ~ I~(m'- '*m) l  
m t - t ~ _ , , ~ t - i  m t - l ~ _ d f t ,  t t m E . / ~ C ( m  t - I )  

>_ lJt't-'l l.~r (mr- '  ~.~,,t-,). (7) 

By using (iii) and (iv) of Corollary 4, we get 

b>_ 
]A"-  II 

t k ) i t  - 1  1 

_ ) - 1  
- (POP1 ""Pt I �9 

Suppose equality holds in the above bound, then [~(mt)[ = 1 for any m e ~ r162162 
from (7). By (ii) of Corollary 4, we know p(e) is constant for all e c ~' and 

I~(rn" * m)l 
g =  I~ ' (m' ) l  ' l < r < t -  1, 

for any (mr*  m) ~ ~t "~+l. Therefore  the sets {./r form an r - ( v , k ; ) l r , 0 )  
design (1 < r < t) with A t = 1 and 

Ar = I~(mr)]  = (PrP~+I "'" Pt-1) -1 (1 < r < t - 1). 

By (i) of Corollary 4, property ( * ) holds for 1 _< r _< t. The proof  of the "if" part  
is easy and is omitted. [] 

Theorem 6 suggests a way of constructing authentication codes that achieve 
the information-theoretic lower bounds, i.e., to find partially balanced t-designs. 

Now we consider a Cartesian scheme. We represent  a code by a b • k matrix, 
where the rows are indexed by encoding rules, the columns are indexed by 
source states, and the entry in row e and column s is the encoded message m. 
We call this matrix an encoding matrix. The rows (taken as unordered sets) of 
the encoding matrix form a block design for the v elements of ./g. 

Definition 7. An orthogonal array OAt(n ,  k)  is an n t • k array of n symbols, 
such that in any t (t _< k) columns of the array, any t ordered symbols occur in 
exactly one row. 
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Corol lary  8. Suppose a Cartesian authentication code has the property that 

P, = 2 H(EIM'+')-H(EIMr) ( 0  <_ r < t - 1, t <_ k ) .  

Then Po = P, . . . . .  Pt-1 = k / v  = 1 / n ,  and  b >__ n t where n is an integer. 
Equality holds i f  and only i f  the encoding matrix is an orthogonal array and the 
encoding rules are equally probable. 

Proof. 
such that mg f~ M ( s j )  (1 < i < r). We have 

and 

Let S = {s 1 . . . .  , s,}. Fix sj, take m r = (m I . . . .  , m~) ~ J r ' r (1  < r < t - 1 )  

E ~ p ( e )  = 1 
m ~ ( s j )  eE ~ ( m )  

~ p ( e ) =  Y'. p ( e ) .  
m ~.JC'(sj) e ~  g ' (mr*  m) e ~  ~ ( m  r) 

By (ii) of  Corol lary 4, we obtain 

P0 = PI . . . . .  Pt - i  = [-J~'(sj)] -1 = n - I -  

Therefore  b > n t by T h e o r e m  6. Fur the rmore  if b = n t, then E has the uni form 
distribution and I~(mr) l  = n t-r  for  any m r ~ .A~ r (1 _~ r < t). 

For  any sj, we have 

I~ t ' ( s j ) ln ' - I  __ ~ Ig ' (m)l  = n t 
m cr 

(from (ii) o f  Corol lary 4); hence I~'(sj)[ = n (1 < j < k). Fix an e lement  m 
.dC(sj), for any i ~ j we have 

Ig ' (m * m')l  -- Ig ' (m)l  --- n t - I  
mt ~.ff[(si ) 

It follows that [ ~ ( m  * m')[ = n t-2 for any m ' ~  A'(si).  By induction, for any 
integers 1 < j~ < J2 < "'" < Jt < k and any messages mi ~ ag'(s, ) (1 < i < t), 
we have Ig ' (ml  . . . . .  m,)l = 1. 

Let  .r = {mjl  . . . . .  mjn} (1 < j < k)  and $" = {e 1 . . . . .  en,}. Put 

aij = r if ei(sy) = mjr .  

Then  A = (a~j) is an or thogonal  array O A t ( n ,  k). [] 

The result o f  Corol lary 8 was proved by Stinson [14, Theo rems  5.2 and 5.3]. 
The  or thogonal  array O A t ( n , k )  is equivalent  to the transversal design 
TDI(t ,  k, n)  discussed there. It is easy to see that the or thogonal  array O A t ( n ,  k)  
is an r - (kn ,  k; n ' -r ,O)  design for 2 < r < t and a 1 - (kn,  k , n  t - l )  design 
simultaneously. 
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So far we have seen that a t-design and an or thogonal  array are also partially 
balanced t-designs with the proper ty  me n t i one d  above. A partially ba lanced 

incomple te  block design (PBIB) with two associate classes, in which one  of the 
parameters  A~ and A: is zero, is also a 2 - (v, k; A,0) design and a 1 - (v, k, r)  
design as well. The  reader  is referred to [6] or [16] for the defini t ion of a PBIB. 

Recent ly  the au thor  has found  a new class of partially ba lanced t-design for any 

positive integer  t which will be described in a lat ter  paper.  
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