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Abstract. For pseudo-random generators where one or several LFSRs are com- 
bined by a memoryless function, it is known that the output sequences are corre- 
lated to certain LFSR-sequences whose correlation coefficients c~ satisfy the equa- 
tion ~ c  2 = 1. In this paper it is proved that a corresponding result also holds for 
generators whose LFSRs are connected to a combiner with memory. 

If correlation probabilities are conditioned on side information, e.g., on known 
output digits, it is shown that new or stronger correlations may occur. This is 
exemplified for the summation cipher with only two LFSRs where such correlations 
can be exploited in a known plaintext attack. A cryptanalytic algorithm is given 
which is shown to be successful for LFSRs of considerable length and with arbitrary 
feedback connection. 
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1. Introduction 

C r y p t o g r a p h i c  t r ans fo rmat ions  are  usual ly  designed by  a p p r o p r i a t e  compos i t ion  
of  non l inea r  functions.  In  the design of  s t ream ciphers  such funct ions have been 
appl ied  to combine  the ou tpu t  of  l inear  feedback shift registers (LFSRs)  in o rde r  to 
p r oduce  the key s tream. In this design, the combin ing  funct ions should  not  leak 
in format ion  a b o u t  the ind iv idua l  LFSR-sequences  into the key s t ream in order  to 
prevent  d iv ide -and-conquer  cor re la t ion  at tacks.  F o r  this purpose ,  the concept  of  
cor re la t ion  immuni ty  has been in t roduced  in [8]  and  [5].  F o r  non l inear  combiners ,  
there is a t radeoff  between the non l inea r  o rde r  of  the Boolean  funct ion and  its o rde r  
of cor re la t ion  immuni ty .  As has been po in ted  out  in [5],  this t r adeof fcan  be avo ided  
if the funct ion is a l lowed to have memory .  

F o r  a memoryless  combiner ,  the ou tpu t  a lways has cor re la t ion  to cer tain l inear  

1 Date received: September 1, 1990. Date revised: December 19, 1990. A preliminary version of this 
paper was presented at Eurocrypt '90, May 21-24, ./~rhus, Denmark, and has appeared in the proceed- 
ings, pp. 204-213. 
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functions of the inputs, and the "total correlation" is independent of the combining 
function. In fact, it has been shown in [4] that the sum of the squares of the 
correlation coefficients is always 1. If such a combiner is applied to the output of 
LFSRs, there result correlations to sums of certain LFSR-sequences such that the 
correlation coefficients ci satisfy 

E = 1. (1) 
i 

Choosing the combiner to be correlation-immune of some order means that certain 
of these c~'s vanish. In particular, to prevent divide-and-conquer attacks, we ensure 
that there is no correlation to sums of outputs of only a few LFSRs. However, by 
(l) there must be stronger correlation to certain other sums of LFSR-sequences that 
must be considered with regard to the cryptanalytic algorithms described in I-3]. A 
first goal of the present paper is to show that a result similar to (1) remains valid 
for combiners with memory. In fact, the total correlation appears to be independent 
of the combining functions as for memoryless combiners. Therefore memory does 
not reduce the total correlation, but offers more flexibility in handling the individual 
correlation coefficients. 

The summation combiner has been proposed in [5-1 as an example of a combiner 
that avoids the tradeoff between nonlinear order and correlation immunity. This 
combiner is based on integer addition which, when viewed over GF(2), defines a 
nonlinear function with memory whose correlation immunity is maximum. 

In Section 2, all correlations between the output of the basic summation combiner 
and linear functions of the inputs are computed. For inputs a; and b;, the output zj 
is given by z; = a; + b; + a~_ 1 where a~_l denotes the carry bit. If~r = (ao, al ,  a 2 . . . .  ) 

and ~ = (bo, bl, b 2 . . . .  ) are independent and uniformly distributed sequences of 
random variables, the output sequence ~ = (Zo, z~, z 2 . . . .  ) is also uniformly distrib- 
uted. Moreover, zj is independent ofaj, b i, and the sum aj + bj. However, it is shown 
in Section 2.2 tfiat zj is correlated to both aj + bj + a;_~ and aj + bj + bj_~ with 
probability p = P ( z j  = a; + bj + a i _ l )  = P ( z j  = a i + b i + bi_l) = 0.75. The corre- 
sponding correlation coefficients are obtained as c = 2p - 1 = 0.5. More generally, 
in Theorem 1 it is shown that for every i, 1 < i < j, there are correlations to 
N = 2 i§ - 2 linear functions of the form s = ~{=j-i0tkak + flkbk and the corre- 
sponding correlation coefficients c h satisfy 

N 1 
E Ch 2 = 1 2i. (2) 

h = l  

Note that the right side of (2) tends to 1 as i tends to oo. This means that the total 
correlation for the basic summation combiner approaches 1, similar to the case of 
memoryless combiners. It is shown in Section 3 that this property holds for com- 
pletely general combiners with 1 bit memory. Such a combiner is described by two 
balanced functions fo and f l ,  

z~ = f o ( x l j  . . . . .  x .~ ,  a j -1 ) ,  (3) 

0" i = f l ( X l j  . . . . .  Xnj  , a~_l)  , (4) 

where cr i denotes the state of the memory and where the input sequences 
Y', ,  = (X, ,o,  x , ,~ , x,,, z . . . .  ), 1 < m < n, are assumed to be independent and uniformly 
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distributed. (By definition a function is balanced if it takes on the values 0 and 1 
the same number of times.) In Theorem 2, a method is described in order to 
determine all possible correlations of zj to linear functions of the inputs, i.e., to linear 
functions of the form s = ~k-<i~ ,=t  WmkXmk. It is shown that the sum of the squares 
of the correlation coefficients approaches 1 for every choice of the functions fo and 
f l ,  except in a singular case where a similar statement holds for zj =z~ + zj_t. 
Therefore the total correlation is independent of the combiner. 

These results can be applied to analyze key stream generators where several 
LFSRs are connected to a combiner with memory. In this analysis, the output of 
an LFSR can be modeled by a sequence of independent and uniformly distributed 
binary random variables. If the input sequences 5fro = (Xmo, x=t, x,~2 . . . .  ) to the 
combiner are generated by LFSRs, correlation of z~ to a linear function leads to 
correlation of the output sequence to a certain sum of phase shifts of the input 
LFSR-sequences, which is again an LFSR-sequence. With regard to these correla- 
tions, Theorem 2 provides a criterion for maximum-order correlation immunity of 
combiners with memory generalizing that obtained in [4] for memoryless com- 
biners. Theorem 2 also generalizes the treatment of maximum-order correlation 
immunity in I-6] as it covers every kind of correlation to LFSR-sequences originating 
from the given LFSRs. Such correlations exist even if the combiner is chosen to be 
maximum-order correlation immune. For  stream cipher design, these correlations 
have to be taken into account not only in view of the cryptanalytic algorithms 
described in [3] but also with regard to the new algorithm introduced in Section 5 
of this paper. 

The correlation coefficients in (2) and in Theorem 2 are derived from uncondi- 
tional probabilities. However, it is often the case that the cryptanalyst has access to 
side information, e.g., he may know portions of the output sequence. In fact, if 
correlation is conditioned on the output, new or much stronger correlations may 
occur. This is exemplified for the basic summation combiner with two inputs where 
knowledge of portions of the output sequence can considerably reduce the uncer- 
tainty about the carry bit. This affects correlation of zj to the input sum a t + b~, 
although zj and a t + bj are uncorrelated in the average. 

It is shown in Section 4, that in a run of s consecutive output digits 1, the carries 
tend to be 0. For  example, assume that zg+l = z j +  2 = . . .  = z j +  s = 1. Then at the end 
of the run the carry bit tri+ ~ is 0 with probability at least 1 - 2 -s. More generally, 
for every t with 1 < t < s, the corresponding conditional probability satisfies 
e(trj+~ = r . . . .  = r = 1) > 1 - 2 -~. As a consequence it is shown in Theo- 
rem 3 that, for given t, 1 < t < s, and for every i with j + t + 1 < i < j + s + 1, the 
equations 

zi = ai + bi (5) 

and zj+s+ 2 = aj+s+ 2 + bj+s+ 2 At- aj+s+ 1 simultaneously hold with probability at least 
1 - 2 -t. A similar statement holds for a run of consecutive output digits 0 where 
the carries tend to be 1. 

This result can be cryptanalytically exploited in a known plaintext attack on the 
basic summation cipher with only two LFSRs, where the key size k is the sum of 
the two LFSR-lengths. A cryptanalytic algorithm is given which is shown to be 
successful for LFSRs of considerable length and with arbitrary feedback connection. 
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As a consequence for the design of summation ciphers, it is recommended to take 
several LFSRs of moderate length rather than just a few long LFSRs. The algorithm 
is based on a general cryptanalytic idea. Observe that satisfaction of (5) for d 
values of i reduces the uncertainty about the key by d bits. Therefore blocks of d 
key bits can be tested simultaneously. The resulting procedure is comparable with 
an exhaustive search over only k/d bits instead of k bits, i.e., it effectively reduces 
the key size by the factor d. 

2. Summation Cipher 

2.1. Basic Summation Principle 

Integer addition has been proposed by R. A. Rueppel and J. L. Massey in [71 for 
use in cryptographic transformations since this operation is nonlinear when consid- 
ered over GF(2). In [2] they formulated the summation principle in order to 
generate cryptographicaUy strong binary sequences out of given (cryptographically 
weak) sequences. To understand this principle, consider two binary sequences 
M = (ao, al ,  a2 . . . .  ) and :~ = (bo, bl, b 2 . . . .  ). For every n, the first n digits are 
viewed as the binary representation of an integer, i.e., a = a,_ 12 "-1 + ... + al 2 + a o 
and b = b,_~2 "-1 + ... + b~2 + bo. Then the integer sum z = a + b defines the first 
n digits of the resulting sequence ~ = (Zo, z~ . . . . .  z,-1 . . . .  ). If ~r and ~ are semi- 
infinite, then Lr is also defined as a semi-infinite sequence. The digit z i is recursively 
computed by 

z i = fo(ai, bj, 61_1) = a t + b i + cri_~, (6) 

Gj = f ,(aj,  bj, a1_1) = a j b j  q-  a j c r j_  1 --k bjcrj_,, (7) 

where in (6) aj_ 1 denotes the carry bit and a_ 1 = 0. The generation of the sequence 
.~ is illustrated in Fig. 1 by a circuit with 1 bit memory. 

2.2. Summation Principle and Correlation 

It has been shown in [5] that (besides nonlinearity) the summation principle effects 
correlation immunity in the following sense. Suppose that ~r and :~ are independent 
and uniformly distributed sequences of random variables. Then the output z i is 

. . . , b j , . . . , b 2 , b l , b o  

. . .  , a j , . . . , a 2 , a l , a o  
fo . ...~Zj~...~Z2~Zl~ZO 

Fig. 1. Summation principle. 
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statistically independent of both aj and bj. Moreover, as the function f l  in (7) is 
balanced, for increasing j the carry aj becomes arbitrarily close to a balanced 
random variable. For  this reason we consider the initial carry t r l  to be a uniformly 
distributed random variable. This implies that all carries trj, j > - 1, are balanced, 
and that z i is independent of the sum aj + bj. However, aj_: depends on ak and bk 
for k < j - 1. In particular, from (7) one sees that trj_x is correlated (with probability 
0.75) to aj-1, bj_~, and aj-2. This implies, e.g., that f l  has a representation as 

trj_~ = f~(aj_ , ,  bj_x, trj_2) = aj_~ + 9(aj-~, b~_x, aj_2), 

where 9is  a function with Prob(o = 0) = 0.75. The computation of zj according to 
(6) yields 

zj = aj + bj + aj-1 + g(aj-1, bj_,, trj_2). 

Hence 
Prob(zj = aj + a~-i + bj) = 0.75, 

which shows that zj is correlated to certain sums of a k and b k for k < j. If the 
sequences ~ and ~ are produced by LFSRs (as suggested in [6]), the output 
sequence ~ is correlated to LFSR-sequences. Therefore we investigate all possible 
correlations between zi and finite sums s of random variables of the form 

S = ~ O~ka k -{- flkbk (8) 
k<_j 

for ~k, fig e GF(2). 
The normalized correlation between two functions f,  g: GF(2)" --, GF(2) is defined 

as 
# {xlf(x) = g(x)} - # {xlf(x) ~ g(x)} 

c( f ,  g) = 2" (9) 

Replacing the arguments of f and g by binary random variables X~ . . . . .  X.; we 
obtain random variables Z r = f ( X ,  . . . . .  X . )  and Zg = g(X1 . . . . .  X . ) .  Suppose that 
the random variables X~ . . . .  , X, are uniformly distributed. Then by (9) the prob- 
ability P ( Z  I = Zg) is related to c( f ,  g) by 

c( f ,  g) = 2P(Zy  = Zg) - 1. 

Moreover, for balanced functions f and 9 the random variables Z I and Zg are 
uniformly distributed. 

In general, the correlation coefficient between two random variables X and Y is 
defined by cor(X, Y) = coy(X, Y ) / x / v a r ( X )  var(Y). If X and Y are uniformly dis- 
tributed binary random variables, their correlation coefficients can be computed by 
the following steps: 

var(X) = E(X 2) - E ( X )  1 = 0.5 - 0.25 = 0.25, 

cov(X, Y) = E ( X Y )  -- E ( X ) E ( Y )  = P ( X  = 1, Y = 1) - 0.25 = P ( X  = Y)/2 - 0.25, 

cor(X, Y) = 4 cov(X, Y) = 2 P ( X  = Y) -- 1. 

This implies 
cor(Zy, Z,) = 2P(Zy  = Zg) - 1 = c( f ,  9), (10) 
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Table 1. Correlation ofz~ to linear functions (Step 1). 

Correlation of Resulting correlation Correlation 
aj_l to of z~ to coefficient 

~-~ ~ + ~ + ~ - 1  0.5 
~-, ~ + ~ + ~ - 1  0.5 
~-2 ~ + ~ + ~ - z  0.5 

~ - , + ~ - l + ~ - z  ~ + ~ + ~ - 1 + ~ - , + ~ - ~  -0.5 

which means that c(f ,  g) as defined in (9) agrees with cor(Z I, Zg) as defined in 
statistics. 

The recursions (6) and (7) can be applied to compute the correlation coefficients 
c(zj, s) where s is a sum of the form (8). In a first step, we use the fact that the function 
a~-x = fl(a~-l,  bj-1, aj-2) of (7) has correlation to exactly the following four linear 
functions: aj-l,  b~-x, aj-2 and aj_~ + bj-1 + aj-2. Substituting aj_~ in (6) as above, 
these correlations lead to correlations ofzj to sums of certain ak, bk, and Ok as shown 
in Table 1. 

The first two sums in Table 1 are already of the form (8) whereas a~-2, which 
appears in the other two sums, is again correlated to the four linear functions ai_ 2, 
bj_2, O'j_ 3 and aj_ 2 + bj_ 2 + aj_ 3. This in turn leads to correlation of zj to sums as 
shown in Table 2. 

The correlation coefficients can be obtained by a product formula, e.g., 
c(zj, aj + b~ + aj-2) = c(z i, aj + bj + a~_2)c(a~_2, aj-2) = 0.52 = 0.25, as specified in 
the following lemma. 

Lemma 1. Let A ~ , A2, A3,  and X be binary random variables. Suppose that A1, A3,  

X ,  A 2 +  A3 ,  and A 2 + X are uniformly distributed. I f  A 1 is correlated to A 2 + X 
and X is correlated to A 3, then A 1 is correlated to A2 + A3 with correlation coefficient 

c ( A  1, A 2 + A 3 )  = c ( A 1 ,  A 2 + X ) c ( X ,  A3).  (11)  

Table 2. Correlation of z~ to linear function (Step 2). 

Correlation of Resulting correlation Correlation 
aj-2 to of zj to coefficient 

aj + bj + aj._ 2 0.25 
aj-2 a~ + bj + aj_ 1 + bj_ 1 + a j _  2 -0 .25  

bj_2 aj + bj + bj-2 0.25 
a~ + b~ + aj_ 1 + bj_ 1 + bj z -0 .25  

aj + bj + aj-3 0.25 
a~-3 a~ + b~ + ai_ 1 + b~-i + aj-a -0 .25  

aj + bj + ai_ z + bj_ 2 + or l_ 3 --0.25 
aj-2 + bJ-2 + aJ-a a~ + bj + aj_ 1 + bj_ l + aj_ 2 + bj_ 2 + aj_ 3 0.25 
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P r o o f .  Let c = c(A 1, A 2 + A3), c' = c(A1, A 2 + X), and c" = c(X,  A3). 
introduce the probabilities p = P(A~ = A 2 + A3), p'  = P(A 1 = A 2 + X),  
p " =  P ( X  = A3). By hypothesis and from (10), we have p ' =  (1 + c')/2 
p" = (1 + c")/2. Therefore 

p = P(A 1 = A 2 + X ) P ( X  = A3) + P(A1 r A 2 + X ) P ( X  # A3) 

= p'p" + (1 - -  p')(m - -  p")  

1 + c'c" 

This implies c = 2p - 1 = c'c", which proves the lemma. 

W e  

and 
and 

[]  

The computat ion of the correlation coefficients in Table 2 according to Lemma 
1 is based on the assumption that the random variables invoked in (11) are uniformly 
distributed. The random variables in Tables 1 and 2 are of the form 

o r  

J 
s =  ~ ( ~ k a k + ~ b k )  (12) 

k=j - i  

J 

s' = ~ (Otka k + flkbk) + trj-i-1. (13) 
k=j - i  

The sums of type (12) are uniformly distributed, provided only that they are nonzero, 
whereas the sums of type (13) are also uniformly distributed since ~- i -1  is balanced 
and independent of Z{=j_i Ctka k + flkbk. Thus the hypothesis of Lemma 1 is satisfied. 

From Table 2, we get four additional sums of the form (8), all correlated to zj with 
I cl = 0.25. This process can be iterated. By induction, in step i we get 2 ~ sums of the 
form (12) with Icl = 2 -~. Hence, for i < ], we have obtained N sums sl ,  s2 . . . . .  SN of 
the form (12) where N is given as 

i 
N = N ( i ) =  ~ 2 k = 2  i + 1 - 2 .  

k=l 

The sum of the squares of the corresponding correlation coefficients c~, c2 . . . . .  
CN satisfies an invariance property similar to that for memoryless combiners in [4], 
namely 

h=X k=l k=l ~ 1 2i. 

This proves the following theorem. 

T h e o r e m  1. Let  I < i < j. Then the output digit zj o f  the basic summation combiner 
is correlated to linear functions s 1, s 2 . . . . .  SN o f  the form (12) where N = N(i)  = 
2 I+1 - 2, and the corresponding correlation coefficients Ch satisfy 

N 1 
Z c2 = 1 -- 2- ~. (14) 

h=l 
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Moreover,  for  every k, 1 <_ k <_ i, there are exactly  2 k functions Sh with correlation 
coefficient ch = 2 -k. 

Note that the right side of (14) tends to 1 as i (or j) ~ ~ .  This result will be 
generalized to arbitrary combiners with 1 bit memory�9 

3. General Combiner with 1 Bit Memory 

3.1. Main Theorem on Correlation Coefficients 

A general combiner with 1 bit memory is described by two functions fo and f l  as 
follows: 

zj = fo(xlj . . . .  , x,j, aj_l), (15) 

aj = f l ( X l j ,  . . . ,  Xnj , O'j_l). (16) 

It is assumed that 5fr~ = (Xm0, Xml, X,,2 . . . .  ), 1 < m < n, are independent and uni- 
formly distributed sequences of random variables. Furthermore, it is supposed that 
the functions fo and f l  are balanced and that a_l is uniformly distributed. Then, for 
every j, aj and zj as defined in (15) and (16) are also uniformly distributed. The 
generation of the sequence .~ = (Zo, zt, z2 . . . .  ) is illustrated in Fig. 2. 

In order to study the correlation properties of this combiner, we investigate 
correlations of the combining functions fo, f l :  GF(2) ~§ --* GF(2) to linear func- 
tions. The correlation of an arbitrary function f :  GF(2) "§ ~ GF(2) to the linear 
function Lw(x) = w.x  (w, x ~ GF(2) ~+~) is readily found from the Walsh coefficient 

F(w) = ~ f(x)(-- 1)w" x. (17) 
xeGF(2) n+x 

where f(x) = ( -  1) f(x) is the Boolean function with values in the multiplicative group 
{1, - 1}. The correlation coefficient c( f ,  L, )  is thus 

f(w) 
c(f ,  Lw) - ~ 4 ~ .  (18) 

For the combining functions fo(X, a) and fl(x, a), x e GF(2)", we distinguish be- 

�9 . . ~ X n j ~  �9 . . , X n 2 , X n l ~ X n O  

�9 �9 �9 ~ X 2 j  ~ �9 �9 �9 ~ : :g22  ~ X 2 1 ,  X 2 0  

�9 - � 9  X l j  ~ �9 �9 �9 ~ X 1 2  ~ X l l  ~ X l O  

fo � 9  ~ Z j ~ . .  . ~ Z 2 ~ Z l ~ Z O  

Fig. 2. General combiner with 1 bit memory. 
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tween correlation to linear functions of the form 

L(x, a) = w.x  (19) 
and 

L(x, a) = w ' x  + a. (20) 

For the function fo, the corresponding correlation coefficients are given by Co(W) = 
/~o(W, 0)/2 "+1 and cl(w) =/~o(W, 1)/2 "+1, where Fo denotes the Walsh transform of 
fo. In order to distinguish between functions of the form (19) and (20), we introduce 

Co z = ~ Co(W) 2, C 2 = Z Cl(W) 2. (21) 
w ~ GF(2)"  w ~ GF(2)  ~ 

In a similar way, for the function ./'1, we introduce do(w ) = ~01(w, 0)/2 "+1, dx(w ) = 
Fl(W, 1)/2 "+1, and 

D E = ~ do (w) 2, D 2 = ~ d l (w) 2. (22) 
w~GF(2 )  n wEGF(2)  n 

Then, by Parseval's theorem, 

C 2 + C  2 = 1  and Do 2 + D  2 = 1 .  (23) 

For a generalization of Theorem 1, we compute the correlation of the output zj of 
the general combiner (15), (16) to linear functions of the form 

J 
s =  E ~, WmkXmk. (24) 

k=j-i ra=l  

In total there are N = 2 ti+l)" such functions. 

Theorem 2. Let 1 <_ i <_ j. Then the output dioit z i of the 9eneral combiner with 1 
bit memory is correlated to linear functions sl, s 2 . . . . .  sN of the form (24) and the 
corresponding correlation coefficients Ch satisfy 

N 
Z = Co + c (l - IDa)'), (25) 

h= l  

where Co, C1, and D 1 are defined in (21) and (22) above. 

ProoL Let xj = (xli . . . . .  x,j) and wj = (wij . . . . .  w,j). Then (24) can be expressed as 

J 
S = ~ Wk'Xk, (26) 

k=j--i 

and similarly 
= fo(x , %1), = L(xj,  % 0 .  

Then, for every wj e GF(2)", the output z~ = fo(x i, a~-1) is correlated to the linear 
functions wj. xj and wj. xj + aj-1. The corresponding correlation coefficients are 

c(zj, wj. x i) = Co(Wj), (27) 

C(Zj, Wj'Xj "~ O' j_ l )  : C l ( W j ) .  (28) 

The linear functions in (27) are already of the form (24). The correlation to the 
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Table 3. Exploiting the correlation of z~ to w/x~ + a~_t. 

Correlation of Correlation Resulting correlation Correlation 
crj_ 1 to coefficient of zj to coeff• 

wj-1 "xj-1 do(wj-1) wFx j + wj-i "x~- t  ct(wj)do(w~-l) 
Wj_ I "Xj_ 1 + 0)_ 2 dl(Wj_l) wj'xj + wj_ I "xj_ 1 "4" O'j_ 2 c1(wj)d1(wj_1) 

functions in (28) can be exploited as in Theorem I, since trj_ 1 = fl(x~_l, 0)_2) is 
correlated to the linear functions wj-l"xj-1 and wj_l.x~_l + at_ 2. This leads to 
correlation of  zj to the functions 

w~" xj + wj-1 "x j - l ,  (29) 

wj.x~ + Wj_l "x~-i + ~j-2, (30) 

where in (29) Wj_l is assumed to be n o n z e r o - - t h e  functions (29) with wj_ 1 = 0 are 
already covered in (27). The correlat ion coefficients are computed  according to the 
product  formula (11) and are listed in Table 3. The hypotheses of  Lemma 1 are 
satisfied as all r andom variables involved in the product  formula are uniformly 
distributed. In particular, wj_~'xi_ ~ and wj.xj + w/_~ �9 xj_~ in the first row of Table 
3 are balanced since wj_a is assumed to be nonzero.  (Note, however, that  wj_~ in the 
second row is allowed to be zero.) 

Furthermore,  the correlat ion of  aj_ 2 to w/_2"Xi_ 2 and wj_2"xj_2 + ai_ 3 leads 
to correlation of  z i to wj.x j  + wj_~.xj_ 1 + wj_2"xj_ 2, where wi_ 2 # 0, and to 
wj.xj + wi_v x j_ 1 + wj_2"xi_ 2 + aj_ 3. The corresponding correlation coefficients 
are Cl(Wj)dl(wj_l)do(wi_2) and cl(wj)dl(wj_l)dl(wj_2), respectively. By induction, 
after i steps, we obtain all linear functions of  the form (24) correlated to zj. As a 
summary,  all these functions and their correlat ion coefficients are listed in Table 4. 

Denote  by S o the set of functions in the first row of  Table 4, by $1 the set of  
functions in the second row, etc., and by Si the set of functions in the last row of  
Table 4. Then S o, S~ . . . . .  Si is a parti t ion of the set of functions of the form (24). For  
the evaluation of  (25), we first compute  ~ ~ s, c(zj, S) 2 for each value of p, 0 < p < i. 
F o r p  = O , ~ s o C ( Z j ,  S) 2 = C g and, for 1 < p < i, 

p-1 
c(zj, s) 2 = ~ c~(wj)2do(wj-p) 2 I-I d,(Wj-k) 2 = C2D2D2tp-1). 

s~Sp {wj_klO<_k<_p, wj p#0} k=l 

Table 4. Correlation of zj to linear functions. 

Correlation of zj to Correlation coefficient 

wj.xj 
wj. xj + wj_l. x#_l, wi_ 1 ~ o 

Wj'Xj-F Wj - I 'X j - I  -F Wj-2"Xj-  2 , Wj-2 ~ 0 

wF xj + wj_, .xj_~ + ... + wj_~.xj_~, wj_~ # 0 

Co(W j) 
cdwi)do(wj-O 

cl(wj)dl(wi-Odo(wi- 2) 

e,(wj)e,(wj_~)..-~/,(wj_,,)ao(Wj_3 
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To explain the last equality, we note that do(w) = 0 for w = 0 as f l  is balanced, and 
therefore D 2 = ~ , , t o  do(w) 2. Thus 

N i 2 2 1 - D 2 i  
E c~ = C~ + E C~D~D~ 'p-l)= CZo + C, Oo 1 O~ - C2~ + C~(1 - D~i), 

h = l  p=X 

which completes the proof of the theorem. []  

3.2. Applications to Stream Ciphers Using LFSRs Components 

In stream ciphers, LFSRs are commonly used for pseudo-random sequence genera- 
tion since their output typically has good statistical properties. In particular, this 
holds for maximum-length LFSRs. Therefore, in the analysis of stream ciphers, the 
output of an LFSR can be modeled by a sequence of independent and uniformly 
distributed binary random variables. In this framework we can apply our results to 
key stream generators where several LFSRs are connected to a combiner with 
memory. 

If the input sequences ~r, = (Xmo, xmx, x,2 . . . .  ), 1 < m < n, to a combiner with 
memory are generated by LFSRs, then the correlation of zj to linear functions, as 
described in Theorem 2, leads to correlation to sums of LFSRs-sequences and their 
phase shifts. By (23) and (25), the sum of the squares of the corresponding correlation 
coefficients converges to 1 as i tends to ~ ,  except in the (singular) case D x -- 1 (i.e., 
when D O = 0). Therefore we make a distinction between the two cases Do ~ 0 and 
D o = 0 .  

3.2.1. The Case D O r O. 
by 

m = l  k=j-i  

Then, for each m, the inner sum 
J 

Sra = E WrakXrak (32) 
k=j-i  

is a phase of the ruth LFSR-sequence. If certain of these sin's vanish, a divide-and- 
conquer correlation attack is possible. To prevent such divide-and-conquer attacks 
maximum-order correlation immunity has been postulated in [4], [5], and [6]. 
According to Theorem 2, the combiner is maximum-order correlation immune if 
for every linear function in Table 4 with nonvanishing correlation coefficient and 
for every m, 1 _< m _< n, there is at least one index k with Wink V L O. Note that this 
coincides with condition MCI as introduced in [4]. 

In this framework, Theorem 2 extends Rueppels's treatment of maximum-order 
correlation immunity in [5] as it covers every kind of correlation to LFSR- 
sequences originating from the given LFSRs. Such correlations exist even if the 
combiner is chosen to be maximum-order correlation immune. In fact, in the case 
D O :~ 0, the "total correlation" is independent of the combiners fo and fx as (25) 
converges to 1. This generalizes a corresponding result in [4] for memoryless 
combiners. 

According to (24), the linear functions in Table 4 are given 

(31) 
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3.2.2. The  Case Do = 0. Mot ivated  by the results for D o ~ 0, we might be tempted 
to choose a maximum-order  correlat ion immune combiner  in (15) and (16) satisfying 
Do = 0. Maximum order correlat ion immuni ty  implies in particular, that the func- 
tion z = fo(X, a) is not  correlated to linear functions L(x) = w. x for w ~ 1 = 
(1 . . . . .  1). By (18) this means that Fo(w, 0) = 0 for w ~ 1. Then  the formula for the 
inverse of the Walsh transform of the function fo(X, o) = ( -  1) e~ decomposes as 

f(x,  = Po(W, o ) ( -  1) + fo(W, 1 ) ( -  

= go(X) + ( -  1)'/~o(X). (33) 

The first term in (33) is of the form 

go(X) = d ( -  1) l'~ (34) 

where d = 2-("+1)ffo(1, 0) is a constant.  Since fo is + 1-valued, we have Ifo(X, 0)1 = 
[fo(X, 1)1 = 1, i.e., 

I o(X) = 10o(X) 

Hence, for any x, either go(X) = 0 or rio(X) = 0. If the coefficient d in (34) is nonzero,  
then/~o = 0. This implies/o(X) = d ( -  1) l'x. Therefore fo(X, a) = x 1 + -.. + xn + c 
with d = ( -  1) c, which means that  fo is linear or affine. In the case d = 0 we have 
/o(X, tr) = ( - 1)*fio(X), or in additive nota t ion 

fo(X, a) = ho(x ) + a, (35) 

where/~o(X) = ( -  1) h~ The case of a linear or affine fo is not  interesting, so we 
concentrate  on functions fo of the form (35). A similar decomposi t ion as in (33), 
applied to the function f l ,  yields 

f l (x ,  tr) = ~l(x) + ( -1 ) ' /~ l (x  ). (36) 

Since D O is assumed to be zero (i.e., Fl(W, 0) = 0 for all w), the first term ~l(x) in (36) 
vanishes for all x. Hence f l (x ,  a) = ( -  1)'/~l(X), i.e., 

f l (x ,  a) = hi(x) + o, (37) 

where ~ l (X)= ( - - 1 )  hi(x). Thus by (35) and (37), zj = ho(x j )+  o'j_ 1 and oj_ 1 = 
hl(Xj_l) + oj_ 2, and therefore z i = ho(xj) + hl(Xj_~) + aj_2. On the other  hand, 
zj_ 1 = ho(Xj_l) + aj_ 2, which implies 

zj + zj_ 1 = ho(xj) + ho(xj_ l )  + hl(Xj_x). (38) 

This means that  the sequence zj = zj + zj_~ is generated by a memoryless combiner. 
Hence by a result in [4], zj is correlated to LFSR-sequences with correlat ion 
coefficients c i with the proper ty  that 

X c ~  -- 1. 
i 

Thus, by choosing the combiner  according to (35) and (37), we can cause all the 
correlat ion coefficients in Theorem 2 to vanish. However,  the sequence ~e,, which 
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is easily obtained from ~,  has correlation to LFSR-sequences as in the case where 
D O 5 0 .  

4. Correlation Conditioned on Known Output Sequence 

4.1. Basic  Summat ion  Combiner  

The basic summation combiner (see (6) and (7)) 

zj = fo(ai,  b i, ai_x) = aj + b i + ai_ , 

a i = f~(aj,  bi, oj_l) : aib j q- aiGi_ 1 + bjaj_t,  

is maximum-order correlation immune in the sense of the previous section. In 
addition, on average, the output z i and the sum aj + bj are uncorrelated as the carry 
aj_~ is balanced. However, it is shown in this section that, under certain conditions, 
knowledge of portions of the output sequence can considerably reduce the uncer- 
tainty about the carry bit. This affects correlation of zj to a 1 + bj (or to other sums 
of input digits). These correlations may be much stronger than those described in 
Theorems 1 and 2. 

Denote by 1 i --- a i + b i the integer sum of a i and bj. Then the probability distribu- 
tion of 1 i is given by 

1 i 0 1 2 

p 0.25 0.5 0.25 
(39) 

The carry a i as a function of aj-t and Ij is shown in Table 5, where the entries for trj 
in the frames indicate that the corresponding output zj is 0. 

For j = 0, 1, 2, . . . ,  denote by qj(O) and qj(1) the probability that the carry bit a i 
is in state 0 and state 1, respectively. From Table 5 and (39), we conclude that the 
carry bit changes with probability 0.25 and remains unchanged with probability 
0.75, and therefore 

( qi(0)'] = (~ ~) {qJ-x (0)'~ (40) 
qi(1) / \ q j_ , (1 )  ] '  

The transition matrix A in (40) can be written in the form A = S - 1 D S  where D is a 

Table 5. The carry aj as function of aj-i and I t. 

a.j-1 0 1 2 

o []  o []  
1 0 [ ]  1 
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diagonal matrix, namely 

(~ ~)  ( l /x / /2  1/x/~ "~(1 0"~(1/x/~ 1/x//2"~ 
A =  = ~ l / x / ~  _ l / x / ~ f l \  0 �89 _1/,4/2]. 

The probabil i ty distribution c b = (qj(0), qs(1)) of aj is related to the probabil i ty 
distribution qo = (qo(0), qo(1)) of a o by the equat ion qi = AJqo = S-xDJSqo �9 Thus q1 
is easily obtained as 

1 1 
qs(0) = ~ + 23~(qo(0) -- qo(1)), 

1 1 
qj(1) -- 2 2 j+~(q~  q~ 

Therefore,  for 
inequalities 

which shows that, for any initial value qo, the probabil i ty distribution qj converges 
to the uniform distribution. 

Now suppose that  the output  zj is known to be 0. Then the input Ij and the carry 
crj_~ are restricted to the values as indicated by the frames in Table 5. Therefore the 
carry bit changes with probabil i ty 0.5 ifej_ 1 = 0 and remains unchanged if aj_l = 1. 
Thus, instead of (40), the relation between the probabilities qs and qj_~ (conditioned 
on zj = 0) is given by 

( qj(0)'~ = (~  ~ )  (qj_l (0)'~ (41) 
qj(1),/ \q j_ t (1) /"  

Assume that  a run of s consecutive output  digits 0 has been observed, e.g., zi+ 1 = 
z~+ 2 = ".. = zj+, = O. Then  the (conditional) probabilities q/+s and qj are related by 
~+s = ASqi, where the transit ion matrix A' is obtained as 

A s = = . (42) 
1 - 1 / 2 '  

any value of qj, the probabil i ty distribution qj+, satisfies the 

1 1 
qs+,(O) < ~ and qj+s(1) > 1 - 2q. (43) 

Moreover ,  for 1 < t < s, we have P(aj+, = aj+,-1 = "'" = as+t+1 = 1 laj+t = 1) = 1 
since ej+, . . ,  aj+t+l remain unchanged if aj+t = 1. By (43), P(aj+, = 1) > 1 - 2-'. This 
implies 

1 
P(aj+~ = as+,_ , . . . . .  ej+, = 1) > 1 -- 2"  (44) 

Similarly, assume that  in the output  of the basic summat ion  combiner  a run of s 
consecutive digits zj+ 1 = zj+ 2 . . . . .  zj+, = 1 has been observed. Then  the carries 
tend to be zero; more  precisely, for every t with 1 < t < s, the condit ional  probabil i ty 
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P(aj+, = ai+~_ 1 . . . .  = aj+t = 0) satisfies 

P(~rj+, = crj+~_l = ' = at+, = O) _> 1 - - 
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1 
2'" (45) 

Since by (44) and (45) the carries are biased, the output  zj+ t is correlated to sums of 
inputs ai+ t + b~+ t and to other sums of  inputs as shown in the following theorem. 

Theorem 3. 

(1) Suppose that  the output  o f  the basic summation combiner satisfies zj+ 1 = zj+ 2 = 
. . . .  zj+~ = 0 and zj+~§ x = 1. Then,  fo r  every t with 1 < t < s, the s - t + 2 

equations 

zj+t+l = aj+t+l + bj+,+l + 1 = O, 

zj+,+ 2 = aj+t+ 2 + bj+t+ 2 + 1 = O, 

: (46) 

Zj+s+ 1 ~ -  a~+,+l + bj+,+l + 1 = 1, 

Zj+s+ 2 = aj+s+ 2 + bj+s+2 + ai+~+x, 

are s imultaneously satisfied with probabil i ty  at least 1 - 2 -t. 

(2) Suppose that the output  o f  the basic summation combiner satisfies zj+ 1 = zj+ 2 = 
�9 .. = z~+~ = 1 and zj+~+~ = O. Then,  fo r  every t with 1 < t < s, the s -  t + 2 

equations 

zj+,+l = aj+t+x + bj+,+a = 1, 

zj+t+ z = aj+,+ z + bj+t+ 2 = 1, 

: (47) 

zj+s+x = aj+s+l + bj+~+l = O, 

zj+~+2 = aj+~+2 + bj+~+2 + aj+s+x, 

are simultaneously satisfied with probabil i ty  at least 1 - 2 -r. 

Proof. The first s - t + 1 equat ions in (46) and (47) follow from (44) and (45). For  
the verification of the last equat ion in (46), recall the assumption zj+s+ 1 = 1 and 
zj+~ = 0. Then by (44), with probabil i ty at least 1 - 2 -t, we have aj+~ = 1. Under  
this hypothesis, 1 = zj+s+l = lj+,+l + 1 (mod 2). Thus either lj+~+l = 0 and trj+s+ 1 = 
0, o r  I j + s + l  = 2 and o'j+s+ 1 = 1. In either case, oj+s+ 1 : aj+s+ 1 (or o'j+s+ 1 : bj+~+l). 
Hence, with probabil i ty at least 1 - 2 -~, we have zj+~+2 = aj+s+2 + bj+~+2 + aj+~+l. 
The relations (47) are proved similarly. [ ]  

Observe that  Theorem 3, which states that  (46) and (47) are simultaneously 
satisfied with a certain probability, is much stronger than the statement that  these 
equat ions are individually satisfied with the same probability. This fact can be 
cryptanalytically exploited as described in Section 5. Note  also that  the last relation 
in (46) or  (47) has already been encountered in Table 1. However,  stronger (as well 
as new) correlations may  result when the output  is known. 
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4.2. Summation Combiner with More than Two Inputs 

For  a summation combiner with n > 3 inputs, the carry can take on the values 0, 
1 . . . . .  n - 1. Therefore this combiner has more than 1 bit memory. With regard to 
Section 4.1, we are led to investigate the probability distribution of the carry in this 
more general setting. If the carries turn out to be biased, there will be correlation 
between the output and the sum of the inputs. 

The computat ion of the probability distribution of the carry in the general case 
is beyond the scope of the present paper. This is the subject of a subsequent 
publication [9]. In particular, it is shown in [9] that the weakness, as found in 
Theorem 3, does not appear  if n > 2 inputs are added. However, there remains a 
bias of the carry if n is odd and a bias for even n if the probabilities are conditioned 
on the output. Furthermore,  it is shown in [9] that this bias diminishes as n 
increases. 

5. Cryptanalysis of the Summation Cipher with Two LFSRs 

5.1. A Cryptanalytic Algorithm 

In an implementation of the basic summation cipher, the two input sequences to 
the adder are produced by LFSRs. Then the systems of equations in Theorem 3 can 
be cryptanalytically exploited in a known plaintext attack. 

Suppose that a run Zj+l . . . . .  zj+s of s consecutive O's or l 's has been observed in 
the key stream sequence. Then, by considering the digits z~+t+l . . . . .  z~+~+ 2, we obtain 
s - t + 2 equations of the form (46) or (47) that are simultaneously satisfied with 
probability at least 1 - 2 -t. The actual value of t, which is a parameter  for the 
reliability of the equations, may be chosen depending on the length of the known 
portion of the key stream. Since the digits aj and bj in (46) and (47) are linearly 
expressed in terms of the initial state of the two LFSRs, we obtain a system of 
s - t + 2 linear equations for the initial digits of the LFSRs. Our  aim is to find 
sufficiently many such systems with highest reliability that can be suitably combined 
to a system of linear equations for the initial digits. 

For  a more precise description of our analysis, we introduce the following 
notation. Let N be the length of the known key stream sequence and let k be the 
key size (which is the sum of the LFSR-lengths). The key stream is scanned for runs 
of at least s consecutive O's or l's. Suppose that a total number n of such runs have 
been found. According to the desired reliability, we choose the parameter  t and we 
obtain, as described above, a "block" of d = s - t + 2 equations for each run. Thus 
we get at least nd equations for the initial digits. We assume that nd > k, i.e., that 
nd= ctk where c( > 1. To solve for the key, we need only m = [k/d] ~ or-in "correct" 
blocks of equations. In order to find m correct blocks, we proceed as follows. 

1. Randomly choose m out of the n available blocks and solve the resulting system 
of linear equations for the k unknowns. 

2. Test all possible solutions obtained in Step 1 to see whether they produce the 
correct key stream. If there is a correct solution terminate, else go to Step I. 



Correlation Properties of Combiners with Memory in Stream Ciphers 83 

The complexity of this cryptanalytic algorithm is dominated by the total number 
of trials. To get an estimate of this number, we observe that each block has 
probability p of being incorrect where p < 2 -t. Then the expected number of trials 
needed is the reciprocal value of the probability q that, by sampling without 
replacement, m randomly chosen blocks are correct. We estimate this probability 
in a typical situation where pn blocks are incorrect. (Assume here for simplicity that 
pn is an integer.) Then q is estimated as 

q = ( 1 - ~ ) ( 1  pn_ ) . . . (  pn ))  
n -  1 1 (48) n - ( m -  1 

As an illustration, we consider the following example. 

Example. Consider a basic summation cipher with two LFSRs of length approxi- 
mately 200, i.e., k = 400. Suppose that we have N = 50,000 digits of the key stream 
sequence. If this sequence is scanned for runs then, on average, 

N 
n ~ --  (50) 

2 ~ 

runs of length at least s are to be expected (see [1, p. 322ff.]). If we choose s = 7, we 
obtain n = 390 runs of length at least 7. Take t = 4. Then d = s - t + 2 = 5 is the 
length of a block and p = 2 -4 = 1/16 is the probability of a block being incorrect. 
Moreover, m = k/d = 80 blocks of equations are needed to solve for the key. The 
value of at is obtained as ct = n/m = 390/80 = 4.88. Thus 

( 488 
q > 1 3.88" 1-6,] = 0.0014 and q-X < 699. 

Therefore, less than 700 trials are sumcient in this typical situation. 

This example shows that the summation cipher with only two LFSRs can be 
successfully cryptanalyzed for LFSRs of considerable length with arbitrary feedback 
connection. For  given N and k, the parameters s and t can be chosen to minimize 
the number of trials. If, in the above example, N is larger, the average number of 
trials can be decreased by choosing longer runs (i.e., larger s and t) in order to get 
blocks with higher reliability. Note that our algorithm also works if the known 
portion of the key stream has some (but not too many) gaps. 

5.2. Comments on the Cryptanalytic Algorithm 

The success of our algorithm rests on the property of the basic summation combiner 
as observed in Theorem 3. It is shown in [9] that a similar cryptanalysis is no longer 
possible for a summation cipher with more than two LFSRs. From this point of 
view, it is recommended to take several LFSRs of moderate length rather than just 
a few long LFSRs. 



84 W. Meier and O. Staffelbach 

The method of our algorithm can be described in more general terms. Basically, 
the cryptanalytic problem consists in finding a k-bit key. Observing that this key is 
determined by a number m = k / d  of (correct) blocks of equations, we search for 
m = k / d  such blocks instead of the k unknown bits. Since a block is correct, with 
probability at least 1 - 2 -~ > 0.5, this procedure may be compared with an exhaus- 
tive search over only k i d  bits instead of k bits. This is similar to the effect of a 
reduction of the key size by the factor d. However, if certain blocks are incorrect 
they cannot be corrected like a single bit. Therefore a set S of more than m blocks 
is required in order to find m correct blocks. 

Let n denote the total number of available blocks and p the probability of a block 
being incorrect. Then n - p n  blocks are expected to be correct. Hence it is necessary 
that n - p n  is larger than m. Therefore it is favorable to have p small and ~ = n / m  

large. In fact, already for �9 ~ 5 and p only slightly smaller than 0.5, our cryptanalytic 
algorithm is much faster than an exhaustive search even if the blocks consist of 
single bits, i.e., if d = 1 and k = m. 

In the case d = 1, our method leads to a procedure to find k correct bits out of a 
set of n bits, where each bit in the set is assumed to be incorrect with probability p. 
This is exactly the situation one is faced with in the general correlation problem in 
cryptanalysis. In this direction, our method applies to increase the efficiency of a 
cryptanalytic algorithm described in [3]. 

Algorithm A in [3] addresses the problem of determining the initial digits of a 
k-bit LFSR (with few feedback taps) from a disturbed output sequence of the LFSR. 
The algorithm describes a method to find k digits with the highest probability of 
being undisturbed. These digits are taken as an estimate of the LFSR-sequence at 
the corresponding positions. Then the correct sequence is found by testing modifica- 
tions of this estimate. Again, denote by p the probability of a selected bit to be 
incorrect. It is shown in [3] that, on average, 

W 0 = 2 h(p)k (51) 

trials are necessary where h ( p )  denotes the binary entropy function. 
We can improve algorithm A by applying the method as introduced in Section 

5.1. According to this method, we start with a set S of more than k digits having a 
high probability of being undisturbed. Then we choose k digits from this set 
randomly and test these whether they are correct, i.e., whether they determine the 
correct LFSR-sequence. This process is repeated until k correct digits have been 
found. 

We express the cardinality of the set S as a multiple of k, i.e., [SI = ~k where �9 > 1. 
According to (49) it is favorable to choose S (or ~) as large as possible. On the other 
hand, for increasing cardinality of S, the reliability of the selected digits will decrease 
(see [3]). However, for moderate ~ (e.g., ~ = 4 or 5), the error probability p turns 
out to be roughly the same as for ~ = 1. Therefore, according to (49), in a typical 
situation the average number of trials is less than 

W1 = 1 ot 2_Jog2(l_(,,/(~,_l))o)k" (52) 
~ _ 1  p = 

For  a comparison of the two work factors W 0 and W1, we may assume that the 
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1.0 - ~  

0.5 

0.0 0.25 0.5 

Fig. 3. Comparison ofh(p) and l(p). 
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fraction ~/(~ - 1) in (52) is close to 1. Thus (52) can be replaced by 

W1 = 2 lt~ (53) 

where l(p) = -log2(1 - p). Formulas (51) and (53) show that both methods have 
exponential complexity. However, the exponent in (53) is smaller than that in (51), 
as is illustrated in Fig. 3. In particular, for small p, the value l(p) is a small fraction 
of h(p). In fact, 

lim h(p) p - o / ~  = ~"  (54) 

Thus the method of Section 5.1 leads to a substantial improvement of algorithm A, 
as is also illustrated in the following example. (A similar improvement has indepen- 
dently been found by R. Haefelin.) 

Example. Consider an LFSR of length k = 200 with few feedback taps. Then, with 
the method of algorithm A, it is feasible to find, e.g., a set S of 1000 digits with error 
probability lower than 0.1, i.e., with ~ = 5 and p _< 0.1. Then, in order to find the 
LFSR-sequence with a search as in the original algorithm A, (51) shows that 294 
trials would be necessary on the average. However, if the improved algorithm A is 
applied, the number of trials according to (48) can be estimated as 234 . 

In order to find sufficiently many digits with small p, it has to be assumed (as in 
[3-]) that the number of feedback taps is small. In fact, for LFSRs with more than 
ten feedback taps, the feasibility of the improved algorithm is roughly limited to the 
same conditions as the original algorithm A. 
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