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Abstract. Correlation properties of a general binary combiner with an arbitrary num- 
ber M of memory bits are derived and novel design criteria proposed. For any positive 
integer m, the sum of the squares of the correlation coefficients between all nonzero 
linear functions of m successive output bits and all linear functions of the corresponding 
m successive inputs is shown to be dependent upon a particular combiner, unlike the 
memoryless combiners. The minimum and maximum values of the correlation sum as 
well as the necessary and sufficient conditions for them to be achieved are determined. 
It turns out that the security of combiners with memory can be considerably improved 
if M is not small. 

An efficient linear sequential circuit approximation (LSCA) method is developed for 
obtaining output and input linear functions with comparatively large correlation coef- 
ficients which is feasible for large M and works for any practical scheme. The method 
consists in deriving and solving a linear sequential circuit with additional nonbalanced 
inputs that is based on linear approximations of the output and the component next-state 
functions. The corresponding correlation attack on combiners with linear feedback shift 
registers is analyzed and it is shown that every such combiner with or without memory 
is essentially zero-order correlation immune. 
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1. Introduction 

Linear feedback shift registers (LFSRs) in binary keystream generators for cryptographic 
applications are commonly combined by memoryless functions. It is shown in [9] and 
[10] that such structures are vulnerable to divide-and-conquer correlation attacks based 
on the termwise correlation between the keystream sequence and a set of  the LFSR se- 
quences. In [9] the corresponding concept of correlation immunity of  Boolean functions 
is introduced and the tradeoff between the linear complexity and the correlation immu- 
nity is pointed out. According to [ I 1 ], it follows that the output of  any Boolean function 
is correlated to at least one linear function of  its inputs. Once such a linear function has 
been determined, it is in principle possible to apply either the basic [10] or the fast [4] 
correlation attack in order to reconstruct the initial states of the LFSRs. The attacks are 
successful only if the corresponding correlation coefficient is large enough in magnitude. 
Furthermore, it is shown in [5] that the sum of the squares of the correlation coefficients 
to all the linear functions of  the inputs is equal to one for every Boolean function. This 
implies that for a memoryless combiner with N inputs the largest magnitude of  the cor- 
relation coefficients cannot be made smaller than 2 -N/2, which provides an upper bound 
on the security of  such schemes against the correlation attacks. 

The use of  functions with memory in shift-register-based keystream generators is sug- 
gested in [8] and [7] in order to overcome the tradeoff between the linear complexity and 
the correlation immunity. The notion of correlation immunity is extended to combiners 
with memory and it is shown that it is possible to achieve the maximum-order correlation 
immunity, regardless of  the linear complexity, by using only one bit of  memory. Cor- 
relation properties of combiners with one bit of  memory are further investigated in [6] 
where the sum of the squares of  the correlation coefficients between any output bit and 
all the linear functions of  successive inputs is derived. As a consequence, it is shown that 
there are combiners with one bit of memory for which each bit of output is statistically 
independent of  all the input sequences. However, it is proved that for such combiners 
the sum of two successive output bits is a memoryless function of  two successive inputs 
which implies that the corresponding sum of the squares of the correlation coefficients is 
equal to one. Still, this sum is not determined in the general case when individual output 
bits need not be statistically independent of  the input sequences. 

In this paper we study the correlation properties of  a general binary combiner with an 
arbitrary number M of memory bits. We prove that there is a nontrivial (nonzero) linear 
function of  at most M + I successive output bits that is correlated to a certain linear 
function of at most M + 1 successive inputs. Moreover, for any positive integer m, the 
sum of the squares of  the correlation coefficients between all nontrivial linear functions 
of  m successive output bits and all linear functions of  the corresponding m successive 
inputs is shown to be dependent upon the particular function with memory, unlike the 
memoryless combiners. It is proved that the minimum value of  this sum for all m is 
achieved if and only if M successive output bits are balanced and statistically independent 
of the corresponding M successive inputs, which is a new design criterion. For example, 
the maximum-order correlation immune combiners with one bit of memory defined in 
[8] satisfy this condition. The minimum correlation sum is equal to zero for m _< M and 
to 2 'n-M _ 1 for m > M. In particular, for m = M + 1 the minimum correlation sum 
is equal to one. Consequently, for a combiner with N inputs and M bits of  memory, it 
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turns out that the largest magnitude of the correlation coefficients cannot be smaller than 
2 -~MN+M+Nt/2, which pertains to the case when m = M + I. This clearly shows the gain 
in security that could be obtained by using memory. Namely, the total correlation can 
remain the same as for the memoryless combiners while the number of linear functions 
among which the correlation is distributed increases exponentially with M N .  

When both N and M are relatively small, all the mutually correlated input and output 
linear functions can be obtained by exhaustive search possibly by employing the Walsh 
transform technique [7] for Boolean functions. However, when N or M are large this 
is no longer possible. We develop an efficent procedure for finding input and output 
linear functions with comparatively large correlation coefficients which is based on 
the so-called linear sequential circuit approximation of functions with memory. The 
corresponding divide-and-conquer correlation attack is then examined in more detail and 
it is shown that the notion of correlation immunity is somewhat artificial for combiners 
with or without memory based on linear feedback shift registers. More precisely, such 
combiners essentially prove to be zero-order correlation immune. 

A general binary combiner with memory is defined in Section 2, correlation properties 
of vector Boolean functions are derived in Section 3, and the correlation properties 
of a general binary combiner with memory are established in Section 4. The linear 
sequential circuit approximation method is developed in Section 5 and the correlation 
attack is discussed in Section 6. Conclusions, design criteria, and some open problems 
are presented in Section 7. 

2. General Binary Combiner with Memory 

A general binary combiner with M bits of memory and N inputs is a nonautonomous 
sequential circuit or finite-state machine defined by 

St+l = F ( X , ,  St), t > O, (1) 

yt = f ( X , ,  St), t > 0, (2) 

where F: GF(2) N x GF(2) M ~ GF(2) M is a next-state vector Boolean function, 
f :  GF(2) N x GF(2) M ~ GF(2) is an output Boolean function, St = (sit . . . . .  sMt) 
is a state vector at time t, So is an initial state, Xt = (xl,  . . . . .  XNt) is an input vector at 
time t, and Yt is the output bit at time t. We use the notation F ( X ,  S) and f ( X ,  S) for 
the next-state and output functions, respectively. In the correlation analysis we consider 
a probabilistic model in which the inputs are assumed to be mutually independent, bal- 
anced (uniformly distributed), and independent sequences of binary random variables 
X oc { it }t=O' 1 < i < N. For simplicity, the initial state is also assumed to be a balanced 

random variable independent of all the inputs which is especially appropriate if it is con- 
trolled by a secret key. As usual, throughout the paper we use the same notation for the 
random variables and their values. Consequently, the output {yt }~o is also a sequence 
of binary random variables. Our objective is to investigate the statistical dependence 
between the output and input sequences. 

A basic condition to be satisfied for cryptographic applications is that the output 
sequence is balanced and independent. For memoryless combiners this is true if and 
only if the output function is balanced. For combiners with memory the situation is 
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more complicated because memory can introduce statistical dependence. It is easy to see 
that regardless of  the next-state function F(X, S) and for each initial state So, the output 
sequence is balanced and independent if the output function f (X, S) is balanced for each 
S, that is, balanced and statistically independent of  S. For example, the maximum-order 
correlation immune combiners with one bit of  memory from [8] satisfy this condition. 
The condition is not necessary except when the initial state is not regarded as a random 
variable, because some of the state sequences can also be balanced and independent. 
More precisely, let both the input and state variables be divided into two disjoint groups 
X = (X', X") and S = (S', S"), respectively, and let F'(X, S) denote the part of 
the next-state function corresponding to S'. Then the output sequence is balanced and 
independent if F '  is balanced for each X" and S and if f is balanced for each X' and S". 
Both the sufficient conditions are general and easy to control. Note that in both cases the 
output function f should be balanced. 

Another condition which is important for theoretical correlation analysis is that the 
next-state function F is balanced. Then the state vector St is balanced for every t > 0 
provided that the initial state vector is balanced, because Xt and St are independent for 
every t > 0. Note that our results essentially remain correct even if So is regarded as a 
fixed rather than a random variable as long as S, rapidly converges to a balanced random 
variable as t increases, provided that the Markov chain for the corresponding next-state 
probability distribution is ergodic. In particular, if F(X, S) is balanced for each S, then 
S, is balanced for every t > 1. 

3. Correlation Properties of Vector Boolean Functions 

In this section we study the correlation properties of vector Boolean functions which 
are needed for the correlation analysis of  a general binary combiner with memory in the 
next section. Let F:  GF(2) ~' x GF(2) "-' --~ GF(2)" denote an arbitrary vector Boolean 
function ofn = n I +n2 variables. We use the notation Z = F(X, Y), where X ~ GF(2)"' 
and Y e GF(2) ~2. Assume that X and Y are independent and balanced random variables. 
Our aim is to analyze the statistical dependence between the random variables Z and X. 
To this end, first define 

and 

It follows that 

Nxz = #{Y: Z = F(X, Y)} (3) 

Nz = ~ ,  Nxz. (4) 
XEGF(2Y'I 

Z Nxz = 2 "2 , X 6 GF(2)" ' .  (5) 
Z~GF(2W 

It is clear that Z is statistically independent of  X if and only if Nxz = 2-"' Nz for every 
X and Z, and that Z is functionally dependent on X if and only if for each X a value of  
Z exists for which Nxz = 2 "2. In order to express the degree of  statistical dependence 
of Z upon X between these two extreme cases, we now consider the correlation of linear 
functions of  the output to linear functions of the input. Let the dot product L w (X) = W. X 
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denote a linear function of  X determined by W 6 GF(2) n' and let Lv(F) = V. F denote 
a linear combination of  the component functions of  F determined by V c G F ( 2 ) ' .  The 
correlation coefficient [5] between the Boolean functions L v (F)  and L w is defined by 

1 
cvw = ~-z---z#{(X, Y): V �9 F(X, Y) = W.  X} - I. (6) Z " - '  

Interestingly enough, the following lemma shows that the total correlation between 
the considered output and input linear functions can be expressed only in terms of  the 
numbers Nxz which are proportional to the corresponding joint probabilities. The lemma 
can be proved after certain algebraic manipulations with the Walsh transforms of  the 
output linear functions. Note that 0 denotes the all zero vector of  appropriate dimension. 

L e m m a  3.1. 

Co d~ 4 0  = - 

v~0 
(7) 

c, fEE 2 , (Nxz Nz) 2 
C V W - - z n , + ' E Z \ 2 n 2 - m  2 n - "  

v~o w~o x z 

(8) 

1 V,~-.~ ( N x z ' ~  2 
= = cvw C2 def Co _.}_ Ci ~ Ew 2 --  X Z -- 1. (9) 

A direct consequence of Lemma 3.1 is the following property which covers the extreme 
cases. 

P roper ty  3.1. The correlation sum Co is equal to its minimum value zero if and only 
if F is balanced and is equal to its maximum value 2 m -- I if and only if F is constant. 
The correlation sum Ci is equal to its minimum value zero if and only if F(X, Y) is 
statistically independent of  X and is equal to its maximum value 2" - 1 - Co, given Co, 
if and only if F(X, Y) is functionally dependent on X. The correlation sum Cz is equal to 
its minimum value zero if and only if F(X, Y) is balanced and statistically independent 
of  X and is equal to its maximum value 2" - 1 if and only if F(X, Y) is functionally 
dependent on X. 

Lemma 3.1 together with Property 3.1 essentially means that the sum C~ of  the 
squares of  the correlation coefficients between all nontrivial (nonzero) linear functions of  
F(X, Y) and X, respectively, represents the quadratic measure of  statistical dependence 
between F(X, Y) and X. On the other hand, the sum Co of  the squares of  the correlation 
coefficients between all nontrivial linear functions of F(X, Y) and the constant zero 
function represents the quadratic measure of  the distribution nonuniformity of  F(X, Y). 
The well-known result [5] on the sum of the squares of  the correlation coefficients for 
Boolean functions is a special case of (9) when m = 1 and n2 = 0. 

The statistical independence case in Property 3.1 can be further developed by using the 
following two facts regarding the correlation coefficients. First, the correlation coefficient 
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between a Boolean function and the constant zero function is equal to zero if and only 
if the function is balanced. Second, the correlation coefficient between two Boolean 
functions, one of  which is balanced, is equal to zero if and only if they are statistically 
independent and also if and only if their sum is balanced. Accordingly, Lemma 3.1 and 
Property 3.1 result in the following two properties, the first of which is well known, 
whereas the second one extends the well-known lemma from [ I 1 ]. 

P roper ty  3.2. A vector Boolean function is balanced if and only if all nontrivial linear 
combinations of  its component Boolean functions are balanced. 

Property 3.3. A vector Boolean function F(X ,  Y) is statistically independent of  X if 
and only if each nontrivial linear combination of  its component Boolean functions is 
statistically independent of  each nontrivial linear function of X. 

Note that nontrivial linear functions are all balanced whereas the vector Boolean function 
from Property 3.3 need not be balanced. 

Property 3.1 shows the conditions under which the correlation sums achieve their 
minimum or maximum values. While the maximum values are achievable for any n i, 
n2, and m, it may be impossible to attain the minimum values if n2 is smaller than m. 
For example, a balanced vector Boolean function F ( X ,  Y) cannot be balanced for each 
X if n2 < m. This is exactly the case which proves to be important for the correlation 
analysis of  combiners with memory. It follows that in this case the correlation sum C~, 
which is equal to C2 because Co = 0, is necessarily greater than zero. The problem to be 
considered is to determine the minimum achievable value of C2 as well as the conditions 
under which it is obtained. 

Lemma 3.2. Let F (X ,  Y) be an m-dimensional vectorBooleanfunction ofn t variables 

in X and n2 variables in Y. Let n2 = m - k where 0 < k < m. Then the correlation sum 
C2 is equal to its minimum value 2 k - I i f  and only i f  F ( X ,  Y) is an injective function 

o f  Y f o r  each X. 

Proof. The correlation sum C2 is given by (9) in Lemma 3. !. For a nonnegative integer 
N x z  we have N 2 z  > N x z  where the equality holds if and only if N x z  is equal either to 
zero or to one. From (9) in view of  (5) we then obtain 

1 N x z  2 k 
C2 > 2,,,+,---- 7 y ]  ~ 22,,2_2,,, 1 = -- l (10) 

x z 

with equality if and only if, for every X, Z,  N x z  is equal either to zero or to one. 
Equivalently, the equality holds if and only if for each X and every achievable Z there 
is exactly one value of Y such that F ( X ,  Y) = Z. [] 

4. Correlation Properties of Combiners with Memory 

Consider a general binary combiner with M bits of  memory and N inputs defined in 
Section 2. Let, for any positive integer m and every t > m - 1, y;" = 0', . . . . .  Y,-,,.+I) 
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and X~" = (Xt . . . . .  Xt-m+l ) denote blocks o fm successive output bits and m successive 
input binary vectors at time t, respectively. From ( 1 ) and (2) it follows that 

y~" -----.~m(X'rn, Sr_m+l), t > m  -- 1, (11) 

where, for each m > 1, .F,, is a time-independent vector Boolean function GF(2) mN x 
GF(2) M ~ GF(2)" which can be expressed in terms of the output function f and a 
self-composition of  the next-state function F. We use the notation ~ , , ( X  m, S). Recall 
that in the assumed probabilistic model the input {X,}r~=0 is a sequence of  balanced 
and independent vector random variables and the initial state So is a balanced vector 
random variable independent of the input. The output sequence {)r }r=0 is balanced and 
independent if and only if the function ~'m is balanced for each m > I. Sufficient 
conditions in terms of  f and F for this to hold are given in Section 2. On the other 
hand, as explained in Section 2, if F is balanced, then the state vector St is balanced 
for every t > 0. Also, X~" and Sr-,,,+l are independent for each m and t. Therefore, for 
each m > 1 and t > m - I, the function .T,,(X~', St-,,,+l) is of the type analyzed in 
Section 3. By using the correlation properties of vector Boolean functions established in 
Section 3, we now prove two correlation theorems, the first of which is of  the existence 
type, while the second one determines the total correlation between the output and input 
sequences of  combiners with memory. Note that the special case of  combiners without 
inputs (autonomous finite-state machines) is analyzed in [3]. 

Theorem 4.1. Let the next-state function o f  a binary combiner with M memoD' bits 
and N inputs be balanced. Then for  any m > 1, an)' linear function Lv  of  m binar)' 
variables, and an 3' linear function L w of  N m binary variables, the correlation coefficient 
between the linear functions L v (Y7 ~) of  at most m successive output bits and L w ( X~" ) o f  
at most m successive input binary vectors is the same for  each t > m - I. For any m > 1, 
if the correlation coefficient is nonzero and L v is degenerate in the first variable, then 
L w must be degenerate in thefirst N variables. I f  the output sequence is balanced and 
independent, then for  m = M + 1 there is a linear function L v nondegenerate in the first 
variable and a nontrivial linear function Lw such that the corresponding correlation 
coefficient is different from zero. In a special case when the output fimction f ( X, S) is 
balanced for  each S, if the correlation coefficient is nonzero and L v is nondegenerate in 
the first variable, then L w must be nondegenerate in at least one of  the first N variables. 

Proof. For an arbitrary binary combiner with memory, a succession y~" of  output bits 
should be generally considered as a function of  all the corresponding inputs x "t+j and the "~t  
initial state So. It can also be expressed by ( 11 ) in terms of  the function ~ ,  (X~ n , St_,,,+l ) 
where X~ is balanced and independent of  St-m+l. If the next-state function is balanced 
and So is a balanced random variable independent of  all the inputs, then St is balanced 

- -  - .  171 ) for every t _> 0 as well. The correlation coefficient between the functions LvLV t 
and L w (X~") is therefore equal to the time-independent correlation coefficient between 
the Boolean functions Lv(~ , , , (X" ,  S)) and Lw(Xm), where (X",  S) is assumed to be 
balanced. If Lv is degenerate in the first variable whereas Lw is nondegenerate in at 
least one of  the first N variables, then clearly the linear function L w (X 'n) is statistically 
independent of  L v (~,~ (X m , S)) and hence the correlation coefficient must be equal to 
z e r o .  



I 18 J. Dj. Goli6 

If  the output sequence is balanced and independent, then .T',, (X m, S) is balanced for 
each m > 1. However, for m = M + 1 it cannot be balanced for each S because the 
dimension M of S is less than M + 1. Therefore )t-M+I(XM+I, S) is not statistically 
independent of  X M+l. By virtue of Property 3.3 it then follows that nontrivial linear 
functions Lv and Lw exist such the corresponding correlation coefficient is different 
from zero. Furthermore, as proved above, if Lv is degenerate in the first k - 1 variables 
and nondegenerate in the kth one, then Lw must be degenerate in the first (k - 1)N 
variables. Accordingly, since the correlation coefficient is time-independent, it follows 
that by discarding the first k - 1 variables of  Lv and the first (k - 1 )N variables of Lw 
the desired linear functions are obtained. In particular, if the output function f ( X ,  S) is 
balanced for each S and L v is nondegenerate in the first variable while L w is degenerate in 
the first N variables, then clearly the function L v (~,~ (X m, S)) is statistically independent 
of the linear function Lw(X  m) and hence the correlation coefficient must be equal to 
zero. [] 

Theorem 4.2. Let the next-state function of a binary combiner with M memot3' bits 
be balanced. Then, for any m > I, the sum C(m) of the squares of the correlation 
coefficients between all nontrivial linear functions of m successive output bits ym and all 
linear functions of m successive input binary vectors X t is the same for every t > m - 1 
and satisfies 

C(m) < C(m) < C(m), m > 1, (12) 

[0,  I < m < M, (13) _C(m) 
2m-m - !, m > M + l ,  / 

C(m) = 2" - !, m > 1. (14) 

The minimum value C(m) is achieved for all m > 1 if and onb' if, for any t >_ M - I, 
M successive output bits y y  are balanced and statistically independent of M successive 
input binary vectors X y ,  that is, if and only if ~M (X M, S) is a balanced function of S 
for each X M. The maximum value -C(m) is achieved for any m >_ I if and only if the 
output function is degenerate in all the state variables. 

Proof. For any m > I, by the same argument as in the proof of  Theorem 4.1, it follows 
that the considered sum of the correlation coefficients is equal to the time-independent 
correlation sum Cz for the m-dimensional vector Boolean function .~m (X m, S) with 
respect to the binary vector variable X".  From Property 3.1 it then follows that C(m) 
2 m - ! for every m > 1 where for any m the maximum is achieved if and only if 
~m (X m, S) is degenerate in S, which is clearly true if and only if the output function 
f ( X ,  S) is degenerate in S. 

On the other hand, from Property 3.1 it also follows that C(m) > 0 for every I < m < 
M where for any such m the minimum is achieved if and only if the function U,n (X m , S) is 
balanced for each X".  This is satisfied for every 1 < m < M if it is satisfied for m = M, 
because of  the following fundamental property of the family of  functions {.T'm }m_>l- For 
any m'  < m and any fixed X m', the function 9~m,(X m', S) is identical to a subfunction 
Of~m(X",  S) for any fixed X m such that X m is an appropriate subvector of  X ' .  Apart 
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from that, from Lemma 3.2 we directly obtain that C(m) > 2 m-M - 1 for every m > M 
where for any such m the minimum is achieved if and only if ~'m (X m, S) is an injective 
function of  S for each X m. This is true for all m > M if it is true for m = M, because 
of  the fundamental property of  the family of  functions {~',, }m>_~ given above. [] 

Corol lary  4.1. If  the output sequence is balanced and independent, then Theorem 4.2 
holds for the sum of the squares of the correlation coefficients between all nontrivial linear 
functions of m successive outputs and all nontrivial linear functions of the corresponding 
m successive inputs. If  the output sequence is statistically independent of the input 
sequences, that is, if the probability distribution of the set of all achievable (at most 2 M) 
output sequences is the same for all the input sequences, then Theorem 4.2 holds for the 
sum of the squares of the correlation coefficients between all nontrivial linear functions 
of m successive outputs and the constant zero function. 

Proof. If the output sequence is balanced and independent, then for each m > 1 the 
function Y',, is balanced and hence, in view of  Property 3.1, the correlation sum Co is 
zero so that C2 reduces to Ci, and the boundary cases are both achievable. If  the output 
sequence is statistically independent of  the input sequences, then for each m > 1 the 
correlation sum Cl is zero so that C2 reduces to Co, and both the boundary cases are 
also achievable. Note that the maximum correlation is attained if and only if the output 
function is constant. [] 

Theorem 4.2 together with Corollary 4.1 is a generalization of  the result from [5] 
yielding the total correlation for memoryless combiners. Unlike the memoryless com- 
biners, the total correlation for combiners with memory turns out to be dependent on the 
choice of  the output and next-state functions. Its value is between 2 ' ' -M - 1 and 2" - i 
and is divided among (2 m - 1)2 mN pairs of  output and input linear functions, for each 
m > M. In a special case when M = 1 and m = 2 the total correlation is not smaller 
than one and is not greater than three and both the bounds are achievable, which com- 
pletes the analysis from [6]. Accordingly, the maximum absolute value of  the correlation 
coefficients cannot be smaller than 2 -(raN+M)~2 for each m > M which pertains to the 
uniform distribution. The largest lower bound is obtained for m --- M + !, when the min- 
imum correlation sum is one, and is equal to 2 -CMN+u+N~/2. For a memoryless combiner 
with the same number of  inputs this bound is equal to 2 -N/2. The potential advantage 
of  combiners with memory is significant and can be realized if the distribution of  the 
correlation among all possible pairs of  linear functions is approximately uniform. In this 
calculation the fact that some correlations are not possible by Theorem 4. I is neglected 
for simplicity. Of course, it is not proved whether approximately uniform distribution of  
correlations is achievable at all. In any case, it appears that even if the number of  inputs 
N is very small, which may be the case for high-speed stream cipher applications with 
LFSR input sequences, the security of  combiners with memory against the correlation 
attacks can be considerable if the memory size M is not small. 

Another interesting design criterion is the necessary and sufficient condition for the 
minimum total correlation provided in Theorem 4.2. Whether a nice and general char- 
acterization of  this condition in terms of  the output and next-state functions can be 
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determined is still an open question. It follows that a necessary condition to be satisfied 
is that the output function f ( X ,  S) is balanced for each X. Note that by virtue of  Prop- 
erty 3.3 it follows that in this case there is no termwise correlation between the output 
and input sequences. This condition is also sufficient if M = 1. In this case the output 
function must be of the form f ( X ,  s) = s + g(X). If it is also required that the output 
function be balanced for each s, which is a sufficient condition for the output sequence 
to be balanced and independent, then the function g(X) should be balanced. This is 
satisfied for the maximum-order correlation immune combiners with one bit of  memory 
suggested in [8] where g(X) is linear. As for the next-state function for M = l, the only 
desired property is that it is balanced. In general, for M > l, the choice of a balanced 
next-state function F(X, S) that is also balanced for each X seems to be appropriate. 

5. Linear Sequential Circuit Approximation Method 

For cryptographic purposes it is important to determine the correlation coefficient with the 
largest absolute value, given a binary combiner with memory, and all the corresponding 
pairs of mutually correlated input and output linear functions. For cryptanalytic purposes 
it is desirable to find one or more pairs of correlated linear functions with sufficiently 
large correlation coefficients. A systematic method to achieve both the goals is the 
exhaustive search over all possible input and output linear functions. Given an output 
linear function, the correlation coefficients to all the input linear functions can be obtained 
by using the Walsh transform technique [7], which for a Boolean function of n variables 
has O (n 2 ~) computational complexity, If we consider successions of m -- M + 1 outputs 
and inputs, then according to Theorem 4.1 we deal with at most 2 M Boolean functions 
of M N  + N + M variables. Hence, the computational complexity of the basic method 
is O((MN + N + M)2~tN+N+2M). This is not feasible for relatively large MN, which 
according to Theorem 4.2 is needed in order to obtain a sufficiently small value of the 
largest correlation coefficient. 

We now describe the so-called linear sequential circuit approximation (LSCA) of bi- 
nary combiners with memory, which is a feasible procedure that, with high probability, 
results in pairs of  mutually correlated linear functions of at most M + 1 successive output 
bits and at most M + 1 successive input binary vectors, respectively, with comparatively 
large correlation coefficients. The LSCA method consists in determining and solving a 
linear sequential circuit (LSC) that approximates a binary combiner with memory. The 
LSC has additional nonbalanced inputs and is based on linear approximations of the out- 
put function and of all the component next-state functions, where a linear approximation 
of a Boolean function is any linear function to which the Boolean function is correlated. 
The method generally applies to arbitrary binary combiners with memory without any 
restrictions regarding the output and next-state functions. 

First, find a linear approximation of the'output function f and of each of the component 
functions of the next-state function F. This is equivalent to expressing each of these 
M + 1 functions as a sum of a linear function and a nonbalanced function. If the function 
being decomposed is already nonbalanced, then the constant zero linear function may 
be chosen. If the function being decomposed is statistically independent of  a subset 
of  variables, then every linear approximation must necessarily involve at least one of 
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the variables out of  this subset, see Property 3.3. So, the basic requirement is that the 
corresponding correlation coefficients are different from zero. It will be shown that it is 
also desirable to choose linear approximations with the correlation coefficients whose 
absolute values are close to maximum. Of course, one can determine by the Walsh 
transform technique the correlation coefficients to all the linear functions for each of 
the considered M + 1 Boolean functions of  M + N variables, which in general requires 
O((M + I ) (M + N)2 M+N) computational complexity. Even if M is large, in practical 
realizations both the output and all the component next-state functions must themselves 
effectively depend on relatively small numbers of variables or can be expressed in terms 
of such Boolean functions. In both cases the Walsh transform technique is feasible, 
although in the latter one it may lead to approximate solutions. 

Second, given the linear approximations, put the basic equations (1) and (2) for a 
combiner with memory into the matrix form 

S,+l = AS, + BXt + A(X,,  St), t > 0, (15) 

y t = C S t + D X t + e ( X t ,  St), t > 0 ,  (16) 

where the vectors are regarded as one-column matrices, A, B, C, and D are binary 
matrices, and e and each component of  A = (~l . . . . .  ~M) are nonbalanced Boolean 
functions, called the noise functions. The main idea now is to regard {e(Xt, S,)},~162 0 
and {~i(Xt, S t)}t=0, 1 < i < M, as the input sequences so that (15) and (16) define a 
nonautonomous linear finite-state machine or LSC, called the LSCA of a combiner with 
memory. Then solve this LSC by using the generating function (D-transform) technique, 
see [ 1 ], for example. Precisely, let S, X, A,  e, and y denote the generating functions in 
variable z of  the sequences {St}, {X,}, {A(Xt, S,)}, {e(X,, St)}, and {yt}, respectively. 
Then (15) and (16) result in 

S = zAS + zBX + zA + So, 

y = C S + D X + e .  

The solution to (17) and (18) is clearly 

y =  [ / D -  Cadj (zA I ) B ' ) x  + S 0 ) + e ,  - C adj(zA - I) (~A 
I) } ~tet---~zAZii " \ 

(17) 

(18) 

where I is the identity matrix, det(zA - I) de..~_.f ~0(Z), ~(0)  = I, is the reciprocal of  the 
characteristic polynomial of  the state-transition matrix A of degree at most rank A < M, 
and the elements of the matrix adj (zA - I )  are polynomials in z of  degree at most M - 1. 
The computational complexity of obtaining (19) is O(M3(N + I)). Accordingly, (19) 
can be put into the form 

M 

N 1 E h J ( Z ) ( Z 6 )  + sjo) + e. ! E g i ( z ) x i  + _ _  
Y = ~o(z) i=l ~o(z) j=l 

(20) 

where xi and 6j denote the generating functions of  {xit } and {3j (X,, St)}, and the degrees 
of  the polynomials gg(z) and hi(z) are at most M and M - I, I < i < N, I < j < M, 

(19), 
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respectively. Letting ~0(z) = ~--~Y=0 ~ ~ gi (z) = Y~Y=0 gik zk, and hj (z) = y~M_~l hjkz k, 
(20) in the time domain reduces to 

M N M 

Z ~Ok Yt_k = ~"]~ ~-~gik xi,t_k + e(XM+l, S,_M), 
k=O i=1 k=O 

t > M, (21) 

M M-I M 

e(X M+l, St-M) = E ~ hjk ~ j ( X t - l - k ,  St-l-k)"71- E qgk g(Xt-k' St-k) '  t > M, 
j = l  k=0 k=0 

(22) 
where it is assumed that the state vector S,-k is a function of ( x ~ k l ,  St-M) for each 
0 < k < M - I. Interestingly enough, (21) is of the type dealt with in Theorem 4.1. The 
output and input linear functions in (21 ) are correlated if and only if the noise function e 
is nonbalanced. The correlation coefficient is time-independent if the next-state function 
is balanced. If this is not satisfied, then the correlation coefficient may be time-dependent 
because St need not be a balanced function for every t > 0 any more. The noise function 
e in (22) is defined as a sum of individual noise functions that are nonbalanced provided 
that the next-state function is balanced. Since the individual noise functions need not 
be independent, it is in principle not impossible that the correlation coefficient of e to 
the constant zero function is equal to zero or is close to zero. However, it is intuitively 
clear that this situation is highly unlikely. This is justified by the following probabilistic 
argument which can be proved by some combinatorial and asymptotic analysis, see [2]. 

Lemma 5.1. Consider m Boolean functions of the same n variables with the correlation 
coefficients ci to the constant zero function, 1 < i < m. If the functions are chosen 
uniformly and independently at random, then for large 2" the probability distribution of 
the correlation coefficient of their sum is asymptotically normal with the expected value 
l-'Itinl Ci and the variance O(m/2n). 

In our case the individual noise functions can be regarded as Boolean functions of 
n = MN + N + M variables in (X~ +l , St-u) .  Consequently, except in some special 
cases, it may generally be expected with high probability that the overall correlation 
coefficient is very close to the product of the individual ones and hence different from 
zero as well. Accordingly, not only does the LSCA method with high probability yield 
the mutually correlated input and output linear functions, but it also enables estimation 
of the value of the corresponding correlation coefficient by using the independence or 
other appropriate probabilistic assumptions. Since ideally we would like to obtain the 
LSCAs with the correlation coefficients whose absolute values are close to maximum, the 
individual correlation coefficients should be large in magnitude and the number of noise 
terms in (22) should be small, Of course, these requirements might be contradictory. 
Therefore, a good approach is to repeat the LSCA procedure several times, starting from 
the best linear approximations of the output andcomponent next-state functions. The 
procedure may also be performed for all possible linear approximations, which seems 
to be the only systematic way to check all the correlations that might result from the 
LSCA method. In general, there are at most (M + I)2 M+N such linear approximations. 
However, it is in principle always feasible to examine all possible linear approximations 
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even if M is large, because in practical realizations the output and the component next- 
state functions depend on relatively small numbers of variables or are composed of such 
Boolean functions. It is not difficult to see that the LSCA method can be generalized 
to deal with the linear approximations of the linear combinations of the component 
next-state functions as long as the set of the linear combinations is invertible [3]. This 
means that the best or good linear approximations of such linear combinations could 
also be checked. For practical combiners with memory this is feasibl[, but increases the 
computational complexity. 

The output linear function determined by the characteristic polynomial of the state- 
transition matrix of the corresponding LSC involves at most M + 1 successive output 
bits. Sometimes, it may happen that all the polynomials from (20) contain a common 
factor. It can be removed, which results in output and input linear functions of necessarily 
less than M + 1 successive outputs and inputs, respectively. Note that the magnitude 
of the correlation coefficient may thus increase or decrease. On the other hand, all 
the polynomials from (20) can also be multiplied by an appropriate polynomial and 
correlated output and input linear functions of more than M + 1 successive outputs and 
inputs, respectively, are thus obtained with a possibly increased correlation coefficient 
because the number of noise terms may decrease. 

The LSCA method works for arbitrary binary combiners with memory, and the output 
and input linear functions obtained are determined by the matrices A, B, C, and D r 
the corresponding LSC. In the light of Property 3.3, we now examine how the choice 
of the output and component next-state functions affects these matrices. If the output 
function f ( X ,  S) is balanced for each S, then D must be nonzero so that at least one of 
the coefficients gi0, 1 < i < N, is nonzero, which is in accordance with Theorem 4.1. If 
and only if the output function is not balanced for at least one value of X, then at least one 
linear approximation exists such that C is zero, which is the memoryless case. Similar 
arguments hold for the component next-state functions and rows of the matrices A and 
B. Accordingly, if the output function and all the component next-state functions are 
balanced for each X and S, respectively, then C, D, each row of A, and each row of B are 
all nonzero. This may lead to a large number of noise terms in (22), which is desirable 
for cryptographic purposes. Apart from that, it appears that for immunity against the 
described LSCA attack on combiners with memory, it is generally good if the memory 
size is large and if the output function and all the component next-state functions or their 
nontrivial linear combinations have large distance from affine functions and effectively 
depend on relatively large sets of variables. 

6. Correlation Attack 

Consider a binary combiner with M memory bits and N input sequences produced 
by linear feedback shift registers. Let ~i (z) denote the feedback polynomial, possibly 
irreducible or primitive, of the input sequence {xit}, I < i < N .  Assume that the 
secret key controls only the initial contents of the shift registers and possibly the intitial 
memory state as well. Given a segment of the keystream sequence, the objective is 
to reconstruct the shift register initial contents based on the correlation between the 
keystream sequence and the shift register sequences which, according to the correlation 
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properties of combiners with memory established in Section 4, necessarily exists if 
the keystream sequence is balanced and independent. A pair of mutually correlated 
output and input linear functions can be found either by exhaustive search if M N  is not 
large or by the linear sequential circuit approximation method described in Section 5. 
The correlation coefficient can be computed exactly if M N  is not large or determined 
approximately by using the LSCA method. Another possibility is to obtain an empirical 
estimate from the.keystream sequence of the given length. In any case, the basis of the 
correlation attack is a correlation equation of the form (21 ) in the time domain or (20) in 
the generating functions domain. In principle, the attack can be performed only on the 
LFSR sequences that appear in (21), that is, for which the polynomial gi (Z) is nonzero. 
More precisely, the initial state reconstruction is possible only for those LFSR sequences 

�9 for which the polynomials 1/f i (Z) and gi (z) are relatively prime. Otherwise, the common 
factors cancel and the complete reconstruction is not possible. In the degenerate case 
when ~i (z) is a factor of gi (z) the ith LFSR sequence effectively disappears from (21). 
On the other hand, if the feedback polynomials are not pairwise coprime, then the full 
initial state reconstruction is not possible, which is natural because in this case equivalent 
secret keys may exist. Assume for simplicity that the feedback polynomials are pairwise 
coprime. Then the complete reconstruction of all the corresponding LFSR sequences is 
possible provided that the observed segment of the keystream sequence is sufficiently 
long. The minimum necessary length for the successful reconstruction is proportional to 
the sum of the involved shift register lengths and inversely proportional to the square of 
the correlation coefficient. With the blind search over all possible initial states, the divide- 
and-conquer effect is achieved only if the number of the involved LFSR sequences is less 
than N. However, the fast correlation attacks [4] based on iterative probabilistic decoding 
algorithms may also be performed if the correlation coefficient is sufficiently large. If the 
combiner is maximum-order correlation immune, then the number of LFSR sequences 
in (21) for which gi(z) is nonzero is always N, provided that the correlation coefficient 
is nonzero. Note that even in this case the basic divide-and-conquer effect is possible 
if ~z~ (z) divides g, (z) for some i. It is an interesting theoretical problem to derive the 
conditions under which any particular input LFSR sequence does not effectively appear 
in any nontrivial input linear function that is correlated to the output. This would mean 
that the corresponding LFSR is resistant against the correlation attack. For memoryless 
combiners, this is possible if and only if the output function is degenerate in the input 
variable considered. Unlike memoryless combiners, in a combiner with memory, multiple 
linear correlations between the keystream sequence and the same subset of the input 
LFSR sequences may exist. When exploited, they increase the strength of the correlation 
attack on the same keystream sequence. Also, correlation conditioned on the output [6] is 
another possibility to be investigated in more detail for a general combiner with memory. 

We proceed by showing that every LFSR-based combiner with or without memory is 
essentially zero-order correlation immune. This is not very surprising because the notion 
of correlation immunity [8] is defined for balanced and independent input sequences. It 
is clear that every such combiner with N inputs can be regarded as a combiner with an 
arbitrarily chosen single input and enlarged memory that encompasses all the other input 
LFSRs. The correlation theprems from Section 4 which show that each input sequence is 
correlated to the output one can then be applied. Of course, it is in principle possible that 
every polynomial specifying the input linear function correlated to the output contains the 
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considered LFSR feedback polynomial as a factor. The LSCA attack on the single input 
combiner can be performed as follows. First find the LSCA of the original combiner with 
N inputs, that is, the correlation equations (20) and (21 ). Pick any input that effectively 
appears in (21 ). Then multiply all the polynomials in (20) by the least common multiple 
of the feedback polynomials of the other inputs that also effectively appear in (21). 
This will clearly cause all these inputs to disappear from the corresponding (21), and 
the new noise function will with high probability remain nonbalanced. The initial state 
reconstruction of the chosen LFSR is then possible if its feedback polynomial is relatively 
prime to all the others. Furthermore, proceeding in the same manner all the polynomials 
in (20) can be multiplied by the product of the feedback polynomials of all the inputs 
that effectively appear in (21) which then yields a nonbalanced linear function of the 
successive output bits. 

7. Conclusion 

Correlation properties of a general binary combiner with an arbitrary number M of 
memory bits are analyzed, novel design criteria are established, and a so-called LSCA 
correlation attack on keystream generators is developed. Sufficient conditions for the 
output sequence to be balanced and independent are first pointed out. Fundamental 
correlation properties of vector Boolean functions are then derived and used for the 
correlation analysis of combiners with memory. It is proved that a pair of certain mutually 
correlated linear functions of at most M + 1 successive outputs and inputs, respectively, 
exists. The correlation coefficient turns out to be time-independent if the next-state 
function is balanced. Moreover, for any positive integer m, the sum of the squares of 
the correlation coefficients between all nonzero linear functions of m successive output 
bits and all linear functions of the corresponding m successive inputs is shown to be 
dependent upon the output and next-state functions, unlike the memoryless combiners. 
It is proved that the minimum value of this sum is achieved for all m if and only if any M 
successive output bits are balanced and statistically independent of the corresponding M 
successive inputs, which is a new design criterion. A necessary condition for this to hold 
is that the output function is balanced for each memory state. The minimum correlation 
sum is equal to zero for m _< M and to 2 m-M - 1 for m > M. It is also proved that 
the maximum value of the correlation sum is equal to 2 m - 1 and is achieved for any 
m if and only if the output function is degenerate in all the state variables, which is 
essentially the memoryless case. The results show a significant impact of the memory 
size upon the security of combiners with memory. As a consequence, it follows that for 
high-speed stream cipher applications any large memory size realizable by look-up tables 
is appropriate. An open problem is to examine the conditions under which uniform or 
approximately uniform distribution of the correlation among all possible pairs of output 
and input linear functions is achievable. Another interesting problem is to investigate 
whether similar results can be obtained for the correlation conditioned on the output [6]. 

When M is not large, all the mutually correlated output and input linear functions 
along with the corresponding correlation coefficients can be found by exhaustive search 
and the Walsh transform technique. An efficient LSCA method is developed for obtaining 
output and input linear functions with comparatively large correlation coefficients which 
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is feasible for large M and, in fact, works for any practical scheme. The method consists in 
deriving and solving a linear sequential circuit, with additional nonbalanced inputs, that 
is based on linear approximations of the output and the component next-state functions. 
Regarding the immunity against the LSCA attack on combiners with memory, it follows 
that apart from relatively large memory size it is generally good that the output function 
and all the component next-state functions or their nontrivial linear combinations have 
a large distance from affine functions and effectively depend on relatively large sets of 
variables. It also appears desirable that all these functions be balanced for each value 
of the memory state and each value of the input, respectively. Whether there are other 
efficient procedures like the LSCA one remains an open question. 

The corresponding correlation attack on combiners with linear feedback shift registers 
is analyzed and it is shown thai every such combiner with or without memory is essentially 
zero-order correlation immune. Since the LSCA method is in principle applicable to 
arbitrary finite-state machines, it is an interesting research problem to investigate how it 
works on arbitrary keystream generators, for example, based on clock-controlled shift 
registers, see [21 and [3]. 
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