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Abstract. The design of S-boxes with minimal mutual information between input 
and output subvectors (considered as random variables) is investigated. First, the 
conditional entropy of the value of a boolean function conditioned on its random 
arguments is expressed as a function of the Walsh transform of the function. The 
entropy profile of a function is then defined; it allows the comparison of functions 
with regard to their (conditional) entropies. An algorithm to construct functions 
with good entropy profiles is then presented. It consists of a stepwise improvement 
of randomly chosen functions and uses the relation between the Walsh transform 
and the (conditional) entropies of a function. The statistical independency of 
boolean functions is investigated in the final section. 
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1. Introduction 

The concept  of  product cipher was introduced by Feistel in [1]. The idea is " to 
combine  two or  more  ciphers in such a way that  the resulting system is stronger 
than either of  the componen t  systems alone." The Da ta  Encrypt ion Standard  (DES) 
block cipher consists, for example, of  16 iterations of a relatively simple function f 
together with two fixed permutat ions.  The so-called substitution boxes (S-boxes) are 
the only nonlinear  components  of  the function f ,  and the strength of  a block cipher 
with a DES-like structure relies heavily on the careful design of  these S-boxes. 
Hereafter, we propose  design instruments based on information theoretical con- 
siderations together  with a heuristic and probabilistic opt imizat ion algorithm. 

2. Boolean Functions with Large Entropies 

2.1. Conditional Entropies of a Boolean Function Expressed by Its Walsh 
Coefficients 

In the design of  cipher systems, the end purpose is to minimize the mutual  informa- 
tion I(X; Y) between the plaintext X and the ciphertext Y (consdered as two r andom 
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A general substitution box (S-box). 

R. Forr6 

variables). We propose to design S-boxes according to a similar principle. An S-box 
(Fig. 1) can be considered as an ordered set ofm boolean functions, each ofn boolean 
random variables X1, X2 . . . . .  X. e {0, 1}: 

fx,fa . . . .  ,fro: GF(2)" --+ { -- 1, 1} 

X~-* Y1, Y2,. . . ,  Y m. 

For computational reasons, we consider + 1-valued instead of O/l-valued boolean 
functions. 

Since an S-box is a deterministic entity, it makes no sense to minimize the mutual 
information I(X; Y) between the random input vector X = ( X I X 2 . . . X , )  and the 
random output vector Y = (Y1 Y2"'" Y,,). But we can minimize mutual informations 
between input and output random subvectors. Let us consider, for example, the 
mutual information I(Xi; Yj) between the random input variable Xi and the random 
output variable Yj. In the worst case, this mutual information could be one, which 
means that the random variable Yj only depends on the input variable Xv In the 
best case, I(Xi; Y~) should be zero, that is, X~ and Yi should be statistically indepen- 
dent. But it is also important to minimize the mutual informations I(X'; Y~) be- 
tween input subvectors X' with n' < n components and the output variable Yj(j = 
1, 2 . . . .  , m), as well as the mutual informations I(Y~; Yj) between output variables 
Yi and Yj, i, j e { 1, 2 . . . . .  m}. Minimizing these mutual informations is equivalent 
to maximizing the (conditional) entropies 

and 

H(Y~), (1) 

H(Y~IX,, "" X,k), (2) 

H(Kr ~""  ~,) (3) 

f o r s =  1,2 . . . . .  m, 1 <_k < _ n - 1 ,  1 <_il '" ik  <n ,  1 <_l <_ m- -  1 , j x . . . j t #  s , and  
Jl ""J~ e {1, 2 . . . . .  m}. The entropies H(Y~), s = 1, 2 . . . . .  m, obviously reach the 
maximum value 1 for balanced functions f s ( X 1 X z ' " X . ) ,  that is, for functions 
mapping half the X e GF(2)" onto 1 and the other half onto - 1. The second 
expression to be maximized can be written as 

H(Y~[X, " "X ,~ )=  - ~ P(ys, xq, . . . .  xi~)log2 p(yslxi, . . . .  ,x,~), (4) 
Ys 

Xil'"Xik 

which can be simplified if we assume that all 2 k input subvectors (xq,.. ,  x~k ) are 
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equally probable,  yielding 

H ( Y ~ I X q ' "  Xi k) = - 
Y s  

X i  I " " " X i k  

= 2-k  
x i  I " "  " X i k  

= 2-k  
X i l  � 9  . x i k  

2-*P(y,  lxl, . . . . .  xik) log2 P(y~lxi, . . . . .  x,,) (5) 

h[P(Y~ = 1 Ix~, . . . . .  x,k)] (6) 

h[2 k-". # {X: X' -- x',f~(X) = 1}1 (7) 

where h(p) = - p  log 2 p - (1 - p) log2(1 - p)denotes  the binary en t ropy function, 
# {.} denotes the cardinali ty of the enclosed set, and X ' =  (Xi,Xi2""X~k), x ' =  
( x q x h " "  xik). First, we consider the case k = 1: 

H(Y~IX,) = �89 [h(2 ' - ""  # {X e GF(2)" : X, = 0,fs(X) = 1}) 

+ h(21-".  # {X e GF(2)" : X~ = 1,fs(X) = 1})]. (8) 

In t roducing the nota t ion  

N~(y) = # {X e GF(2)" 'X~ = c,f~(X) = y}, c e {0, 1}, y e {1, - 1}, (9) 

equat ion (8) becomes 

H(Y~IX~) = �89 + h(2'-"N~(1))].  (10) 

The Walsh t ransform Fs(w ) of a boolean function f~: GF(2)" ~ { 1, - 1 } is defined by 

F~(w) = ~ w 1 x. .  f ,(  ) ( -  ) , (11) 
x r G F ( 2 ) n  

with x ' w  = xx w 1 ~ x2w 2 (~''" (~ XnW n. In part icular  

F~(0) = ~ f~(x) (12) 
x e G F ( 2 )  n 

= N~(1) + NI(1 ) - N ~ ( -  1) - N I ( -  1), i = 1 . . . . .  n, (13) 

and, if we denote  by c~ the vector  with a one at the ith posit ion and zeros at all o ther  
positions, 

Fs(ci) = ~ f~ (x ) ( -  1) ~' (14) 
x r G F ( 2 ) "  

= N~(1)  - N~(1) - N ~ ( -  1) + N ~ ( -  1). (15) 

Adding (resp. subtracting) (13) and (15) yields 

N~(1) - N ~ ( -  1) = �89 + F,(ci) ] (16) 

and 
NI(1 ) - N I ( - 1 )  = �89 - F~(e,)]. (17) 

Using the fact that  N~(1)  + N ~ ( - -  1) = N~(1 )  + N ~ ( -  1) = 2 "-1 we get 

N~(1 )  = 2 "-2 + �88 ) + Fs(ei)], (18) 

N~(-- 1) = 2 "-2 - �88 + F~(c,)], (19) 

NI(1 ) = 2 "-2 + �88 -- F~(ei)], (20) 

N I ( -  1) = 2 "-2 - �88 - F~(c,)]. (21) 
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Equation (10) becomes 

n(Y~lXi) = ~ h + + h + , (22) 

which expresses the conditional entropy of Y~ given Xi as a function of the Walsh 
coefficients Fs(0 ) and F,(ei). We see that the conditional entropies of Y~ given one 
single input bit only depend on the values F,(w) for w's with Hamming weights < 1. 

The conditional entropy of Y~ given two input bits X~ and Xj can be computed 
in a similar way: 

H(Y~IX, Xj) = 2 -2. {hi�89 + 2 -"-x .(F=(0) + F~(e,) + F:(ej) + F~(%))] 

+ h[�89 + 2 -~-x .(F~(0) + F~(ei) - F~(ej) - F # o ) ) ]  

"{- hi-�89 -4- 2 - n - x "  (Fs (O)  - -  ~'7s(ei) 71- F s ( e j )  - -  F s ( e i j ) )  ] 

+ hi�89 + 2 -"-x .(F~(0) - F~(e,) - F~(ej) + F~(eo))]}, (23) 

where e~j denotes the vector with Hamming weight 2 and ones at the / th  and j th  
positions. We see that the conditional entropy of Y~ given two input bits only 
depends on Walsh coefficients F~(w) with H(w) < 2. We give the general formula 
without proof: 

H(Y~IXq, X h .... , X i k  ) ~- 2 -k ~ h + 2,+~ ~ F , ( O , , ( w ' ) ) ( -  1) w' 'x '  , 
x' ~ GF(2) k w' E GF(2) k 

(24) 

where O,(w') denotes the n-dimensional vector w obtained by completing the 
k-dimensional subvector w' with zeros. For example, if n = 6, k = 3, ix = 2, i2 = 3, 
i3 = 5, w' = (1, 1, 1), we get O6(w') = (0, 1, 1, 0, 1, 0). 

Equation (24) confirms what we already observed for k = 1 and k = 2: the 
conditional entropy of f,(x) given k input bits Xq, Xi2, . . . .  X~k only depends on the 
Walsh transform F,(w) calculated for vectors w with Hamming weights H(w) < k 
(0 < k < n - 1). The special case where H(Y] Xq.. .  X~k) reaches its maximum value 
1 for all choices of ix, i2 . . . . .  ik ~ [1""  n], that is, where the output Y~ is statistically 
independent of every set of k input bits X~I ... Xik, is called correlation immunity of 
order k [7] and its spectral characterization was studied in [10]. 

Figure 2 shows H(Y~IX3 versus F~(ei) (for a particular i E {1, 2 . . . . .  n}) for a 
function f~ of n = 6 bits. The 33 curves correspond to the 33 possible values of IF,(0) I 
(0 < IF,(0) < 26, F,(0) even). The presence of two empty areas below the line 
H(Y~IX~) = 0.5 is due to the fact that, for a given F,(0), not all values of Fs(ei) are 
possible. The restrictions arise from the conditions N~(1), N~(-- 1), N~ (1), N~(-- 1) > 
0. Equations (18)-(21) thus imply 

IF,(0) + F,(c,)l < 2" (25) 

and 
IF,(0) - F,(e,)I < 2", Ve, e GF(2)": H(e3 = 1. (26) 

Moreover, we know that only even values can appear in the Walsh transform of a 
boolean function [8, p. 168]. The curves of Fig. 2 show that, for a given Fs(0 ), the 
conditional entropy H(YI Xi) monotonically increases when IF~(ci)l decreases. The 
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Fig. 2. The conditional entropy H(Y~IXi) versus F~(ei) (Vi E {1, 2 . . . . .  n}) for a function f~ o fn  = 6 bits. 
The uppermost  curve corresponds to the case F~(0) = 0. 

maximum H(YI X~) = 1 is only reached when Fs(0) = 0 (i.e., f~ is balanced, see (12)) 
and Fs(c~) = 0, as pointed out  in 1-10]. 

Figure 3 shows three collections of curves H(Y~I Xi, X i) versus F~(eo), correspond- 
ing to the three cases IFs(ei)l = IF~(cj)l = 0, IF~(el)l = IF~(cj)l = 12, and IFs(ei)l = 
IFs(cj)l = 24. Each curve corresponds to a given value of IF~(0)l: zero for the upper- 
most  curve, larger values for lower curves. As for F~(c~), there are restrictions on  the 
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Fig. 3. The conditional entropy H(Y~ t X~, Xj) versus  Fs(cjj ) for a function f~ of n = 6 bits. The upper left 
graph corresponds to the case IFs(e~)l = IF,(e~)l = 0, the upper right graph corresponds to the case  
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possible values of Fs(cij) that can be derived in a similar way. These restrictions are 
given by 

IFs(0) + F~(ei) + F~(ej) + Fe(eu)l _< 2", (27) 

lEA0) - Fs(e~) + F s ( e j )  - Fe(eu)l  < 2", (28)  

lEA0) + Fe(ez) - Fe(cj) - F~(eu)l _< 2", (29) 

lEe(0) - Fe(c3 - Fe(cj) + FAcu)l _< 2". (30) 

The curves of Fig. 2 show that, for given values of Fs(0), Fs(ei), and F~(cj), H(YI XiXj) 
monotonically increases when F,(co) decreases. To attain the maximum H(Yt X~Xj) = 
1, Fe(0), F~(ci), FAc~), and F,(%) must all be zero. If this requirement is judged too 
strong, we know from the curves of Figs. 2 and 3 that small values of F~(0), F~(c~), 
Fs(c~), and F,(cu) also yield relatively high values of H(YI X~Xj). This observation is 
important because it will allow us to construct "good" functions (i.e., functions with 
high values of H(YI X~), H(YI XzX i) . . . .  ) without restricting us to the small class of 
correlation-immune functions of order 1, 2 . . . . .  

It should be clear that, even if we only treated the minimization of H(YI Xi) and 
H(YI XiXj), the results obtained can be extended to H(Y[ XilXiz...gitc). The formal 
proof can be made by computing the partial derivatives of (24) with respect to F,(0), 
F,(ei), Fe(cu)'"Fs(ci~...i~), but it is laborious and does not give any new interesting 
insight into the problem. 

2.2. An Algorithm To Construct Bollean Functions with Large Entropies 

We propose a probabilistic algorithm to construct boolean functions having good 
information theoretical properties, i.e., large (conditional) entropies. As a reference 
for "good" functions, we take the 8-4 = 32 boolean functions of 6 bits of the DES 
S-boxes. In order to make comparisons between different functions, we introduce 
the entropy profile of a function. It is a graph (see Fig. 4) showing, on the vertical 
axis, the values of H(Y~), H(Y~IXi), H(Y~IXiXj),..., H(Y~IX~,'"Xi,_,), where each 
block of values H(Y~IXi,'"X~)is sorted in descending order. In Fig. 4 the blocks 
are separated by dotted lines. 
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Fig. 4. Entropy profiles of the four functions of the DES S-box No. 1. 
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Minimal and maximal entropies of the 32 functions of the eight DES S-boxes. 

The graph of Fig. 5 shows the minima and the maxima of the entropies of the 
DES functions. Notice that the curve of minima, for example, is not characteristic 
of o n e  function among the 32 DES functions, but each of its points is the lowermost 
point of all 32 entropy profile curves. The same is true for the curve of maxima on 
Fig. 5. Our design purpose will be to get functions whose entropy profiles lie as 
high as possible, without having any point below the DES minima curve. When 
constructing balanced boolean functions at random, we see that this criterion has 
a negligible probability of being fulfilled. 

The method used in our algorithm is one of successive refinement of a randomly 
chosen start function fo, until some given criteria are fulfilled. Its steps are briefly 
described hereafter. 

1. Set i = 0. Choose a function fo of n bits completely at random (or randomly 
among a given class of functions, i.e., the class of bent functions I-61, I-5-1). 

2. Randomly flip one bit in the truth table of f~ to get a new function g(x) = 
f~(x) - 2"6(x ~ e)fi(x). Compute the Walsh spectra Fi and G of respectively f~ 
and g. 

3. Compute the value a ( f ,  g), which denotes the quantitative improvement of g 
with respect to f~. Roughly speaking, a(f~, g) grows when Walsh coefficients 
G(w) are smaller in amplitude than the corresponding Walsh coefficients Fi(w), 
for w's with Hamming weights 1, 2 . . . . .  

4. The modified function g replaces f~ with a probability p depending on the 
quantitative improvement a(f~, g): 

i := i q- 1 

t Execute these steps with 
fi(x) := g(x), VX e GF(2) n f probability p. 

Fi(w) := a(w), Vx e GF(2) n J 

If g was kept go to step 5, else go back to step 2. 
5. Check whether the new f~ fulfills the following requirement: 

tFi(w)l -< max ~ IFDrs,(w)l (31) 
w ~ G F ( 2 ) n :  i w �9 G F ( 2 ) n :  

H ( w )  = k H ( w )  = k 

for k = 1, 2 . . . . .  l, i = 1, . . . ,  32. It is judicious to test whether (31) holds, because 
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it does not require as many computations as the determination of the whole 
entropy profile, and it allows us to avoid further testing of "bad" functions. If 
f~ passes the test go to step 6, else go back to step 2. 

6. Flip the necessary number of bits in the truth table off~ in such a way that f~ 
gets balanced and still keeps its large conditional entropies. Check whether 
the function obtained entirely lies above the DES minimal curve (of Fig. 5) 
and whether the distance off~ to affine functions is large enough (see Section 
2.3). If not, f~ is rejected and the algorithm failed. 

This algorithm is quite heuristic: there is much freedom in defining the formula 
for the quantitative improvement of a(f~, g) in step 3, as well as for choosing the 
probability p as a function of a in step 4. In steps 4 and 5 we are free to decide up 
to which Hamming weight of w Walsh coefficients are to be taken into account. In 
step 6 we must choose a criterion to select which bits are to be flipped. We give 
hereafter a combination of parameters which yielded relatively good results, but 
there might be quite a few of other combinations leading to equivalent or even to 
better performances. In step 6 a lower limit for the distance 6(f~) to affine functions 
must be set. For the S-boxes of the DES, the distances to affine functions lie between 
14 and 22. For numbers n # 6 of arguments, the minimal allowed 6(f~) could be 
typically chosen as some value close to 2 n-2. But this choice, again, is rather 
arbitrary and might be adapted according to the specific requirements of the 
designer. The essential characteristics of the algorithm are 

�9 its probabilistic nature (allowing one given start function fo to lead to different 
end functions), 

�9 the quantitative determination of the improvement of a function compared 
with another one looking at their respective Walsh spectra, and 

�9 the (computationally) economic way of prechecking the "goodness" of the 
function in step 5 using sums over absolute values of its Walsh coefficients. 

We experimented with this algorithm for functions ofn = 6 bits, in order to compare 
the obtained functions with the DES functions. For different numbers of arguments, 
it would be necessary to modify step 5 of the algorithm, setting some well-chosen 
fixed lower limits for the entropy values (minimum entropy profile). One possibility 
of determining such a threshold entropy profile would be to use the above algorithm 
with the following modifications: 

1. Execute steps 2-4 many times, so that the optimized function has a good 
chance of having a nice entropy profile. 

2. Make the function balanced (as in step 6). 
3. Keep the function only if it does not exhibit too deep "entropy canyons." A 

way of doing this is to check whether every point of the entropy profile does 
lie above a threshold of (for instance) 0.75 times the ordinate of the previous 
point. 

A set of functions with possibly good entropy profiles is determined by means of 
the above procedure. The threshold entropy profile could then be taken as an 
average of the entropy profiles of the set, as the best entropy profile of the set, or 
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even as the curve consisting of the uppermost points of all the entropy profiles of 
the set. Only experiment is able to decide which one of these three choices is most 
adequate. 

We computed the quantitative improvement a(fi, g) ofg compared with fi accord- 
ing to 

H(w) =1 

<' L t ,2)  
H(w) =2 

where Fi(w) and G(w) denote respectively the Walsh transforms of f~ and g. The 
multiplicative and additive constants in (32) were chosen in such a way that a(f~, g) 
takes values between 0 and 1, and that the first term has twice the weight of the 
second one. More importance is put on the first term because, as can be seen from 
Fig. 3, the best entropy values can only be reached if Ig~(w)l is small (or vanishes) 
for w's with Hamming weight 1. If some values of [Fs(w)[ are large for w's with 
Hamming weight 1, small values of [Fs(w)[ at positions w with Hamming weight 2 
do not permit us to obtain very good values of H(Y~IXi, Xj). Of course, this does 
not justify the double weight of the first term in (32). To assign exact weights in (32), 
a sensitivity analysis of the conditional entropy H(Y~I X~.-. Xik ) with respect to the 
absolute values ofF(w) for w's with Hamming weights 1 and 2 should be performed. 
However, such an analysis is rather complex and its impact on the efficiency of the 
algorithm is difficult to foresee. Thus, we content ourselves with an arbitrary choice 
of parameters as in (32). Notice that the name of "improvement" is not particularly 
judicious for designating a( f ,  g), since even a function g with poorer properties than 
f/will be characterized by a positive (or zero) a(f/, g). 

The probability p of acceptance in step 4 was taken as 

fa2(f ,  g) if a(fi, g) < 0.75, (33) 
P ) , ~ g )  if a ( f ,  g) > 0.75. 

Tests showed that too many "bad" modifications were accepted in step 4 if p was 
just taken equal to a(f~, g). The efficiency of the algorithm turned out to be better 
if, as in (33), the probability p of acceptance remains very small for small values of 
a(f/, g) (i.e., a(fi, g) < 0.75) and gets large for large values of a(f/, g). In other words, 
the choice of formula (33) is based on experiments. 

In step 5, sums over w's with Hamming weights 1 up to n were compared with 
the corresponding maximal sums of DES functions. To balance a function in step 
6, we compared the functions ec(x) obtained by flipping the output of f~ at each 
possible position e: 

ec(x) := f/(x) - 2.6(x 0) e)f~(x), c E GF(2) n. (34) 

We then computed 

T(r ~, IE~(w)l+] F~ Ig~(w)l+~ ~ IE~(w)l (35) 
w ~ GF(2)n: w r GF(2)n: w ~ GF(2)n: 

Hiw) ~1 H(w) =2 H(w) =3 
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Fig. 6. Entropy profile of a function f determined by our algorithm compared with the minimal and 
maximal entropies of the 32 DES functions. The function f can be denoted by the hexadecimal number 
936C9C96A699526B, which contains the 26 = 64 successive outcomes off. 

and we flipped fi(e) at positions e with smallest values of T(e). The necessary number 
of flips is given by IFi(0)l/2. Note that the multiplicative constants in (35) (1, 2, and 
~) were chosen for the same reasons that we put forward for (32): the smallness of 
IFs(w)[ for w's with small Hamming weights seems to have more impact on the 
entropy profile of a function than the smallness of [Fs(w) l for w's with large Hamming 
weights. The choice of these particular values (1, 2, and ~) in (35) was motivated by 
several trials of the algorithm with various multiplicative constants. 

We tried out the algorithm with totally random functions as start functions as 
well as with randomly selected bent functions. The proportion of success was slightly 
better with bent functions (33.25~ "good" functions) than with random functions 
(30.12~ "good" functions). This might be explained by the fact that bent functions 
have flat Walsh spectra (IF(w)l = 2 "/2, Vw E GF(2)"), and thus do not contain 
extreme large values of IF(w)l, that could be difficult to "flatten." But, as mentioned 
before, these performances strongly depend on the choice of the parameters and 
formulas in the algorithm and are therefore subject to improvement. What is 
important in our opinion is that the algorithm described is able to find functions 
with good entropy profiles much more efficiently than random search. Indeed, 
among 17,950 randomly selected balanced boolean functions, only 21 (i.e., 0.117~) 
were found to have entropy profiles without any point below the curve of DES 
minima. Figure 6 shows the entropy profile of a function that was found by the 
above algorithm, together with the minimal and maximal entropy curves of the DES 
functions. 

2.3. Comparison with Previous Work 

This section aims at describing the essential differences between previous characteri- 
zations of boolean functions (completeness, avalanche effect, strict avalanche crite- 
rion, nonlinearity) and the conditional entropies. 

In [33 Kam and Davida introduce the idea of completeness: an n x n S-box 
(S: GF(2)" ~ GF(2)") is complete if, for every i,j ~ {1, 2 . . . .  , n}, there exists an input 
vector x such that S(x) differs from S(x ~9 ei) at least in the j th  bit. Obviously, the 
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completeness of an S-box simply requires the completeness of each of the boolean 
functions involved, which is defined as follows. 

Definition 1. A boolean function f :  GF(2)" ~ {1, - 1 }  is complete if and only if, 
for every i ~ {1, 2 . . . . .  n}, there exists an input vector x such that f(x) ~ f ( x  (9 e~), 
where e~ denotes the vector of GF(2)" with a one at the ith position and zeros 
elsewhere. 

In terms of entropy, the completeness of a boolean function f is expressed as 

n ( f ( x  ~ e~)lf(x)) > h(21-"), Vi ~ {1, 2, . . . ,  n}, (36) 

where h denotes the binary entropy function. For larger numbers of arguments n, 
the lower bound in (36) is quite small. In fact, completeness is a rather weak 
requirement. For instance, the function g: GF(2)" ---, {1, - 1} defined by 

f - -  1 for all x's with Hamming weight 1, 
g(x) (37) 

1 for the other x's 

is complete, since, for all i e {1, 2 . . . .  , n}, g(0) ~ g(0 ~ ci). However, this function is 
of little cryptographic worth, since it takes in most cases (i.e., 2" - n times) the same 
value over its domain. 

Anyway, (36) underscores an essential difference between completeness and con- 
ditional entropies as considered in this paper. Completeness is a characterization 
of the sensitivity of boolean functions to small input changes, whereas conditional 
entropies measure how strongly the output of a function depends on subsets of its 
input variables. 

In I-9] Webster and Tavares define the avalanche effect for an S-box as the 
property that, on average, half the output bits change when a single input bit 
is complemented. Clearly, this definition takes two notions into account 
simultaneously: 

�9 the dependence between input and output of the S-box ("vertical" dependence), 
and 

�9 the dependence between the various outputs of the S-box ("horizontal" 
dependence). 

In this paper these two notions are considered separately: conditional entropies 
H(Y~IXi,...Xi~) deal with the vertical dependence and conditional entropies H(Y~I 
Y~ "" Y~,) deal with horizontal dependences. It is therefore difficult to compare 
formally the avalanche effect to our characterization of S-boxes. Note that the 
avalanche effect, like completeness, is concerned with sensitivity to small input 
changes. 

In the same paper [9] Webster and Tavares also give the following definition. 

Definition 2. A boolean function fulfills the strict avalanche criterion (SAC) if its 
output changes with a probability of one-half whenever a single input bit is 
complemented. 
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The SAC of higher order was defined in [2-1 and expressed in a simpler way in [4]. 

Definition 3. A boolean function of n variables is said to fulfill the SAC of order 
m (1 < m < n - 2) if and only if any function obtained from f by keeping m of its 
input bits constant satisfies the SAC (for any choice of the positions and of the values 
of the m constant bits). 

Both the SAC and the higher-order SAC aim at maximizing expressions of the form 

n(g(x @ c,) Ig(x)), (38) 

where g denotes either a boolean function (for the SAC) or a subfunction obtained 
from a boolean function by keeping a certain number of its input bits constant 
(higher-order SAC). In other words, the SAC and the higher-order SAC, like the 
completeness and the avalanche effect, consider the sensitivity of a function to input 
changes. None of these notions can said to be stronger or weaker than the maximiza- 
tion of conditional entropies, since the points of view adopted are different. 

The nonlinearity of boolean functions [5] is very important in cryptography. The 
distance 6 ( f )  of a function f to the set of affine functions is defined as the minimum 
of the Hamming distances o f f  to all the affine functions, and is related to the Walsh 
transform F o f f :  GF(2)" ~ {1, - 1} according to 

6 ( f )  = 2 "-1 - �89 max IF(w)l. (39) 
w 

Equation (39) shows that functions with a "good degree of nonlinearity" do not 
have any large Walsh coefficient. In the maximization of conditional entropies, (24) 
shows that small values of IF(w)l are also required, at least for w's having Hamming 
weights smaller than n. But the value ofF(11..-  1) acts upon none of the conditional 
entropies given 0, 1, 2 . . . . .  n input variables. Consequently, there might be func- 
tions with good entropy profiles and very small (or vanishing) distances to affine 
functions. Consider, for example, f ( x l ,  x2 . . . . .  x , )  = x l  @ x2 @ " "  @ x, .  It is a 
linear function (6 ( f )  = 0) which possesses an optimal set of conditional entropies 
H ( f ( X ) I X q ,  Xi  2 . . . . .  Xik ) = 1, Vk ~ {0, 1 . . . . .  n - 1}. Therefore, a careful design of 
S-boxes cannot consider exclusively the maximization of conditional entropies. The 
degree of nonlinearity of the functions involved has to be checked separately, as in 
step 6 of our algorithm. 

3. Statistical Independency of Boolean Functions 

In this section we are concerned with the problem of minimizing the mutual 
information I(Y/; Y') between the output random variable Y~ and a random output 
subvector Y'. This is equivalent to the requirement that any 2, 3 . . . . .  m outputs of 
the S-box are statistically independent. The statistical independency of boolean 
functions is investigated in the following. 

We consider to boolean functions 

f~ (resp.fj): GF(2)" --* {1, - 1}, 

X ~ Y~ (resp. Yj). 
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If their outcomes Y~ and Y~ are looked at as random variables, their statistical 
independency can be expressed as 

Pr, r~(Y,Yj) = Pr,(Y3"Prj(Y3), y,, yj �9 { - 1, 1}. (40) 

If (40) is fulfilled, we say that the functions fl and fi are statistically independent. If 
we denote by N(' (resp. NY_'x) the number  of l's (resp. of - l's) in the truth table of 
f~, we can write 

f~(X) =/VII' -- N['x (41) 
X c G F ( 2 ) "  

and 

Therefore, 

and 

i.e., 

2" = N(' + NIl .  (42) 

N(' = 2 "-1 + �89 ~ f~(X), (43) 
X ~ G F ( 2 )  n 

N-f] = 2n-1 -- �89 E f/(X), (44) 
X ~ G F ( 2 )  n 

Pr'(1) = �89 1+2-" ~ x  ~ ~V(2)- f~(X)), 

Pr,(-1) = �89 2-" X r GF(2E )n f/(X)),/ 

(45) 

(46) 

yield 

NY"CJ=�88 2 " + 1 , x  ~ f~(X)+ X f j (X)+ X fi(X)fj(X)), (54) 
X r G F ( 2 )  n X ~ G F ( 2 ) "  X ~ G F ( 2 ) "  

Pr'(Yi)=�89 l + y i ' 2 - " ~ x  ~ 6Ft2)" fi(X)) �9 (47) 

On the other hand, 

f~(X)fj(X) = # {X :f~(X) =fj(X)} - # {X :f~(X) #fj(X)} (48) 
X ~ G F (  2 )n 

and 
2" = # {X :f~(X) =fj(X)} + # {X :f~(X) #f~(X)}. (49) 

We denote by N:':J the number of X �9 GF(2y such that f~(X) = y~ and fj(X) = yj. 
Yi,Yj 

We get from (48) and (49) 

N:':, + N_Y]Y/ 1 = 2 "-1 + �89 2 f~(X)fj(X), (50) 
1 , 1  -- , -  

X r G F ( 2 )  n 

Nf~f~ + N-f~f~ = 2"-1 - �89 2 f~(X)fj(X). (51) 
X ~ G F ( 2 )  n 

Equations (50) and (51), together with 

Z f~(X) +fj(X) = 2N s':J - 2N[~SC,, (52) 1 , 1  
X,E G F ( 2 ) "  

2 f~(X)-fj(X) = 2 N ( f  5 - 2Nff~,  (53) 
X r G F ( 2 )  n 
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y i , (x )  y 2 (55) 
X ~ G F ( 2 )  n X ~ G F ( 2 )  n X ~ G F ( 2 )  '~ , ]  

N(f~ = �88 (2" + x E av~ ~ 2," f~(X) - x ~ g,2,"fJ(X) - x ~ g,2," fi(X)fj(X)) ' (56) 

Nff~ 1 _  , = �88  X. GF(2E )"f/(X)'{- Xr ) -- X. aF,2,- ~ f/(X)fj(X)~,/ (57) 

or more generally 

Nf' fJ=�88 ~ f/(X) + yj ~ f j ( X ) + y i y  j g(2) f/(X)fj(X)). i ,Y j  
X E G F ( 2 ) "  X ~ G F ( 2 )  n X ~  

Thus 

(58) 

Pr, rj(YiYi) = 2-"Nf,'~ (59) 

= 2 -"-2 (2" + y/ ~' f~(X) + yj ~ fj(X) 
/ 

\ X ~ G F ( 2 ) "  X E G F ( 2 ) "  
\ 

+ y,yj ~ f~(X)fj(X)). (60) 
X E G F ( 2 )  n / 

Equations (47) and (60) inserted in (40) yield after simplification 

f~(X)fj(X)=2-" ~ f~(X)- ~ fj(X). (61) 
X e G F ( 2 )  n X E G F ( 2 )  n X ~ G F ( 2 )  n 

Equation (61) is a necessary and sufficient condition for two functions fi(X) and f~(X) 
to be statistically independent. If we denote by f~i(X) the term-by-term product 
(bitwise AND) fi(X)-fj(X), by Fij(w) its Walsh transform, and by Fi(w) (resp. Fj(w)) 
the Walsh transform of f~(resp, fj), (6l) can be written as 

Vij(O ) = 2-nFi(O)Fj(O), (62) 

which gives an equivalent way of checking the statistical independency of two 
boolean functions. 

In a similar way we can derive the condition for three boolean functions f~, fj, 
and fk to be statistically independent, that is, 

Pr, YjYk(Y,YjY~) = PY,(Y,)" PYj(YJ)" PYk(Yk), Yi, Yj, Yk ~ { -  1, 1}. (63) 

Assuming that f~, fj, and fk are pairwise statistically independent, (63) holds under 
the following necessary and sufficient condition: 

f~(X)fj(X)fk(X) = 2 -2" ~ f~(X)" ~. fj(X)" ~ fk(X). (64) 
X E G F ( 2 )  n X . . .  X . . .  X . . .  

For four functions f~, fi, fk, and f~ that are pairwise and tripletwise statistically 
independent, the additional condition for overall statistical independency is 

f~(X)fj(X)fk(X)fz(X) = 2 -3" ~ f~(X). ~ fj(X). Z fk(X)" ~ ft(X). (65) 
X E G F ( 2 )  n X . . .  X . . .  X . . .  X . , .  

Due to the similarity of equations (61), (63), (64), (65) and their derivations, we state 
the following generalization: 
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m -1/1-valued boolean functions f~l, f~2 . . . . .  f~m are pairwise, tripletwise . . . . .  
m-tuplewise statistically independent if and only if, for s = 2, 3 . . . . .  m and for any 
combination of distinct j l , j2  . . . .  , i s  ~ {ii, i2 . . . . .  ira}, 

fjl(X)f~2(X)-" "fj,(X) = 2 -~s-1)" ~ fj,(X). ~ fj2(X)''" ~ fjs(X) (66) 
X~GF(2) n X... X... X... 

o r  

Fj,j~...is(0 ) = 2-~s-1)'FjI(0)Fj~(0)-'- F i,(0), (67) 

using the notation introduced in (62). It can easily be checked that each of the 8 
DES S-boxes has the property that its four outputs are pairwise, tripletwise, and 
quadrupletwise statistically independent, or, in other words, 

H(Y~I Yj) = H(Y~[ YjYk) = H(Y~I Yj Yk Y~) = H(Y~) for distinct i , j ,  k,  l ~ (1, 2, 3, 4}. 
(68) 

4. Conclusions 

Two categories of results are presented in this paper: some general, mathematical 
results and some results aiming at the design of cryptographically strong S-boxes. 
The general mathematical results consist of: 

�9 An expression of the conditional entropies of the result of a boolean function 
(considered as a random variable), conditioned on k of its random, uniformly 
distributed arguments. These conditional entropies are shown to depend only 
on the values of the Walsh transform of the function calculated for arguments 
w with H(w) < k. 

�9 Necessary and sufficient conditions for the statistical independency of the 
results of two, three . . . .  boolean functions (again considered as random 
variables). 

The results aiming at the design of S-boxes comprise: 

�9 The definition of the entropy profile of a boolean function. For a boolean 
function to be "cryptographicaUy strong," we assume that its entropy profile 
should exhibit no "deep canyon" and that it should lie entirely above some 
chosen curve. 

�9 An algorithm to obtain boolean functions with "good" entropy profiles by 
successive refinement of randomly chosen functions. 
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