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Abstract. Allender [2] showed that if there are dense P languages containing only a 
finite set of Kolmogorov-simple strings, then all pseudorandom generators are insecure. 
We extend this by proving that if there are dense P (or even BPP) languages containing 
only a sparse set of Kolmogorov-simple strings, then all pseudorandom generators are 
insecure. 
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1. Introduction 

A pseudorandom generator is a deterministic polynomial- t ime algorithm that takes a 
short random seed and produces a long output. A pseudorandom generator is s e c u r e  

if  the ensemble of  its outputs is indistinguishable from a truly random distribution of  
strings. The existence of  secure pseudorandom generators has been a subject of  keen 
interest to many researchers ever since Yao [ 19] formally defined secure pseudorandom 
generators. Blum and Micali [4] showed that secure pseudorandom generators can be 
constructed under the assumption that the discrete logarithm problem is hard. Yao [19] 
showed how to construct a secure pseudorandom generator from any one-way permuta- 
tion. Thereafter, many results on the relationship between pseudorandom generators and 
one-way functions showed that pseudorandom generators can be constructed from less 
restrictive one-way functions [ 15], [9], [ 13], [ 11 ]. This line of  research culminated with 
results proving, in both the nonuniform model [13] and the uniform model [11], that the 
existence of  secure pseudorandom generators is equivalent to the existence of one-way 
functions. 

* This research was supported in part by Grants NSF-CCR-8957604, NSF-INT-9116781/JSPS-ENG-207, 
and NSF-CCR-9322513. The work of the second author was done in part while visiting the University of 
Electro-Communications, Tokyo. 
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In contrast, the study of the relationship between the existence of secure pseudorandom 
generators and the frequency of Kolmogorov-simple strings in dense languages was 
undertaken much later. Allender [2] showed that if there are dense P languages containing 
only a finite set of Kolmogorov-simple strings, then all pseudorandom generators are 
insecure. In this paper we continue this line of research by showing that if there are 
dense P (or even BPP) languages containing only a sparse set of Kolmogorov-simple 
strings, then all pseudorandom generators are insecure. We do this by first proving 
that the injectivity (degree of "many-to-one"-ness) of secure pseudorandom generators 
is bounded by an arbitrary polynomial fraction. We also prove similar bounds on the 
injectivity of secure pseudorandom extenders and the injectivity of pseudorandom string 
generators derived from any secure pseudorandom extender. 

The rest of the paper consists of three sections. In Section 2 we introduce definitions 
and prove some useful lemmas. In Section 3 we prove results on the injectivity of secure 
pseudorandom generators and extenders. In Section 4 we study the relationship between 
the existence of secure pseudorandom generators and the frequency of simplicity in 
dense P (and BPP) languages. 

2. Preliminaries 

Throughout this paper we use the alphabet Z = {0, 1 }. For any set L and any integer 
n, L =n denotes the set of all length n strings in L. P denotes the class of languages that 
can be recognized by deterministic polynomial-time Turing machines (see, e.g., [ 12] for 
the definitions of Turing machines and other standard notions used in this paper). For 
any finite set A, we use HAll to denote the cardinality of A. A set L is dense if there is a 
constant d such that, for infinitely many values of n, II L =n II -> n-d2n. A set L is sparse 

if there is a constant s such that, for all n >_ 2, IlL=nil _< n ~. 
A pseudorandom generator is a deterministic polynomial-time function that, for some 

constant k > 1 and for each n, has the property that, when given an input of length n, 
the function outputs a string of length n k. A pseudorandom extender is a deterministic 
polynomial-time function that, when given an input of length n, outputs a string of length 
n + 1. A pseudorandom generator or extender is considered secure if the distribution 
of its outputs is indistinguishable from a truly random distribution. The formalization 
of security is done in terms of statistical tests [19]. A statistical test is a probabilistic 
polynomial-time decision algorithm. Let FI be a statistical test. Pn (E ~) is the probability 
with which FI accepts an input string that is drawn uniformly from Z n. Let g be a 
pseudorandom generator or extender. PS n (g, I2 n) is the probability with which H accepts 
g(x), when g(x)  is formed by drawing x uniformly from ~n. 

Definition 2.1 (Secure Pseudorandom Generator) [ 19]. Let g be a pseudorandom gen- 
erator that, for some constant k > I and every n, maps each input of length n to an output 
string of length n k. Given a statistical test H and a positive constant p, g passes the sta- 

tistical test FI with precision n -p if an integer no exists such that, for all n >_ no, it holds 
that IPn(E nk) - PSn(g, E~)I < n -p. g is secure if, for all statistical tests H and for all 
constants p, it passes the statistical test H with precision n -p. 
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The security of a pseudorandom extender is defined similarly [6]. It is known that 
secure pseudorandom generators exist if and only if secure pseudorandom extenders 
exist [6]. Since pseudorandom extenders are more convenient in proving our results, 
we, following the approach of Allender [2], consider only pseudorandom extenders in 
Section 4 of this paper. Nevertheless, the resulting theorems are valid even when stated 
in terms of pseudorandom generators. 

Given a pseudorandom extender g, the following definition of gb provides a method 
for generating pseudorandom strings of arbitrary length. Note that since gb outputs only 
strings of one length, gb does not qualify as a pseudorandom generator. Nonetheless, gb 
generates perfectly good pseudorandom strings if g is secure and the length of the input 
is smaller than b. Henceforward, we refer to gb as a "pseudorandom string generator" 
derived from the pseudorandom extender g. 

Definition 2.2 [6]. Let g be a pseudorandom extender. For any string x and any b 
{0, 1,2 . . . .  }, g~(x) is defined as 

gb(x) = cl(x)c2(x).., c~(x), 

where 

C i (X) ~- h e a d  o g(t i  ( x ) )  

and 

ti (X) = (tail o g ) i -  1 ( x ) ,  

and head(x) is the first character of the string x and tail(x) is the remainder of x after 
the first character is taken off of it. 

Note that the time complexity o fg  b is O(btg(n)) where tg(n) is the time complexity ofg.  
Obviously, a polynomial-time algorithm ML that recognizes a language L can be 

considered a statistical test. Allender [2], via a generalization of a technique used in the 
earlier literature [6], [ 19], [5], showed that given a language L, there is a statistical test 
T(L, g, b) that effectively "boosts" a test of a pseudorandom extender g to a test of the 
"generator" gb- (See Lemma 2.4 below.) If b is sufficiently greater than the length of the 
input string, then, since gb maps a short string to a much longer string, the output string 
has low Kolmogorov complexity, and, thus, it is easy to apply Kolmogorov complexity 
argumentation to the test of gb- It turns out that the boosting effect remains unchanged 
even if we replace ML with an arbitrary probabilistic polynomial-time decision algorithm 
A. Below, we introduce the statistical test T(A, g, b) and the "boosting lemma" in a 
slightly generalized form that we will need later. 

Definition 2.3 [2]. Let A, g, and b be a statistical test, a pseudorandom extender, and 
a positive integer, respectively. Given an input x of length n + 1, the statistical test 
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T(A,  g, b) performs the following algorithm: 

Probabilistically choose i 6 {0 . . . . .  b - 1 }. 
Probabilistically choose z ~ •b-i-l, 

Let y = gi(tail(x)), and let c = head(x). 
Accept iff A accepts zcy. 

Note that it is not necessarily true that i can be chosen from {0 . . . . .  b - 1 } with equal 
probability regardless of  the value of b. For example, an algorithm with a two-sided 
die cannot simulate an equiprobability roll of a three-sided die if we always require an 
output. Nonetheless, it is easy and standard to design a polynomial-time algorithm that 
chooses i so close to equiprobably that the very small error is negligible for our purposes. 
Since the error does not affect the validity of  our results in this paper, we ignore it and 
assume that i can be chosen from {0 . . . . .  b - 1 } with equal probability. 

L e m m a  2.4 (Boosting Lemma). Let A and g be a statistical test and a pseudorandom 
extender, respectively. For all n and b, it holds that 

PT(A,g ,b ) (~  ) --  PST(A,g ,b) (g ,  E n) = (PA(E b) - PSA (gb, En)) .  

The proof of  Lemma 2.4 is a straightforward generalization of the proof of  the corre- 
sponding result of  Allender [2]. 

The following lemma shows that when a polynomial number of  pinpoints are randomly 
dropped on the unit interval, any interval collection of "meaningful" size is hit by at least 
one of the pinpoints with very high probability. This lemma plays an important role in 
the proof of the injectivity results in Section 3. 

Definition 2.5. Let n be a positive integer. Consider a collection of mutually disjoint 
intervals in [0, 1], the total length of which is n -t. Let E (n) denote the probability with 
which no interval in the collection is hit by any ofn  2t pinpoints that are randomly dropped 
on [0, 1]. 

L e m m a  2.6 (Pin Dropping Lemma).  For all I ~ Z +, E(n)  = O(2-n ' ) .  

1 Proof. Clearly, y~(n) = (1 - n- l )  n2'. Since limn__,oo(E(n))"-' = e - l  < 3, it follows 

that 2/, (n) = O(2-" ' ) .  [] 

Kolmogorov complexity (see [ 16]) provides an important tool to describe the complex- 
ity of  each individual string. The Kolmogorov complexity of  a given string x is the length 
of the shortest code that, as input to a (certain) universal Turing machine, yields output x. 
The short code, in a sense, plays the role of  a description of the longer string x. In order 
to describe sets of  strings with low Kolmogorov complexity, we adopt the time-bounded 
Kolmogorov complexity set notation of Hartmanis ([ 10], see also [ 18], and, generally, 
[ 16] for a discussion of the history). Let Mo be a Turing machine. Kv Is (n), t (n)] is the 
set {x 6 I:* I (3y 6 Z*)[lyl < s(txl) A Mo(y) prints x in time t([xD]}. Hartmanis [10] 
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generalized the standard invariance theorem to this time-bounded case, noting that there 
is a universal Turing machine u such that, for all v, there is a constant c such that, for all 
s and t, Ko[s(n), t(n)] _ Ku[s(n) + c, ct(n) log t(n) + c]. In the rest of  the paper we 
use K[s(n), t(n)] to mean Ku[s(n), t(n)].  

3. In jec t iv i ty  o f  P s e u d o r a n d o m  G e n e r a t o r s  

We prove an upper bound on the injectivity of  secure pseudorandom generators and 
pseudorandom extenders. We also show that the same bound applies to the pseudorandom 
string generators that are derived from a pseudorandom extender using the method of 
Definition 2.2. 

T h e o r e m  3.1. Let g be a secure pseudorandom generator. Then, for any integer l, an 
integer no exists such that it holds that, for any integer n > no, 

maxllg-t(g(x))ll ~ n-12 ~. 

Proof.  Since the proof is trivial for I < 0, we assume l > 0 for the rest of  the proof. 
We prove the contrapositive. Let g be a pseudorandom generator such that an integer l 
exists such that, for infinitely many n, an x 6 E" exists that satisfies 

IIg-l(g(x))ll > n-t2 n. 

It suffices to show that g is not secure. 
Let k be the integer such that g(E n) ___ E ~k . Consider the following statistical test A. 

Given a string y 6 Z nk, A executes the following algorithm: 

Guess n 2t strings of  length n. Let S' denote these strings. 
If  y is in g(S') ,  then accept y; 
otherwise, reject y. 

Since A rejects all inputs from E "~ - g ( E  n) with probability one, it holds that, for 
every length n, 

pa(~ nk) <--IIg(r~)ll  <__ 2n-~ '" 

II r ~  II 

On the other hand, consider a length n for which there is a string x that satisfies 

IIg-l(g(x))Jl > n-t2 ". 

(Recall that there are infinitely many values of  n that satisfy this.) Since the probability 
with which A accepts g(x) is at least 1 - y, (n), 

IIg-I(g(x))ll 
/ 

(1 - y l (n) )  > n - l ( 1  - y , (n) ) .  PSA(g, E n) > 2n 
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Note that 2 n -n '  < n - l / 3  for all sufficiently large n and that, from the result of  Lemma 2.6, 
1 for all sufficiently large n. Thus, it is easy to see that, for infinitely many values yt(n) < 

of  n, 

IPa(Z ~ )  - PSA(g, zn)[ > n - l - 1 .  

Hence, g is not secure. [] 

Theorem 3.2. Let g be a secure pseudorandom extender. Then, for  any integer l, an 
integer no exists such that it holds that, for any integer n > no, 

maxllg-l(g(x))[I 5 n -t2". 

Proof. We prove the contrapositive. Let g be a pseudorandom extender such that an 
integer I exists such that, for infinitely many n, an x ~ E n exists that satisfies 

IIg-l(g(x))ll > n- t2  n. 

It suffices to show that g is not secure. 
Let k > 2 be an integer constant. In order to use the result of  Theorem 3.1, we define 

a pseudorandom generator h derived from g as 

h(x)  = glxl~ (x). 

Consider a statistical test A h that is identical to the test A of  the proof of  Theorem 3.1 
except that A h u s e s  h instead of  g. Since, for any x and y, g(x)  = g(y)  implies h(x)  = 
h (y), it is clear that, for any n and x, IIh-I (h (x))ll >_ IIg -1 (g(x))II. From the assumption, 
it follows that, for infinitely many n, an x ~ E" exists that satisfies 

IIh-l(h(x))ll > n- t2  n. 

By the proof of  Theorem 3.1, this implies that, for infinitely many values of  n, 

Ipah(~ nk) -- PSAh(h, ~n)l > n - l - l .  

By Lemma 2.4, this in turn implies that 

IPT(a~,g,nk)(~, n+l) -- PST(ah.g,nk)(g, Zn)l > n -k - l - l .  

Hence, g is not secure. [] 

The following theorem on the injectivity of  pseudorandom string generators derived 
from a pseudorandom extender will be useful in proving the results of  Section 4. 

Definition 3.3. Let g be a secure pseudorandom extender and let k be a positive integer. 
Let pg,~(n) denote the maximum injectivity ofgb in the range n k < b < n k+l for inputs 
of  length n; that is, 

pg,k(n) = max II(gZl(gb(x)))="ll. 
xe~Zn 

n k <_b<nk-I-I 
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Theorem 3.4. Let g be a secure pseudorandom extender. Then,for any positive integers 
k > 2 and I, an integer no exists such that it holds that, for  any integer n > no, 

pg.k(n) ~ n - t2  ". 

Proof.  The proof of  this theorem easily follows from the proof of  Theorem 3.2 since, 
for any x 6 E n and any b that satisfies n k < b < n k+l, it holds that 

IIh-l(h(x))ll ~ [l(gT~(g~(x)))="lt. [] 

4. The Frequency of Simplicity 

Allender [2] showed that if a secure pseudorandom extender exists, every dense language 
L in P has infinitely many easy strings. Allender stated this result using a Kolmogorov 
complexity notation of Levin ([ 14], see also [3]) that blurs together description length 
and time complexity. The following theorem restates his result using the now standard 
time-bounded Kolmogorov complexity notation [ 10]. 

Theorem 4.1 [2]. l f  there are a dense set L ~ P and e > O such that L O K[n e, 2 "'] is 
finite, no pseudorandom extender is secure, l 

With the help of  Lemma 2.4, the proof idea can easily be sketched as follows. Let 
g be a pseudorandom extender. Let M be a P machine that accepts L. We show that g 
is insecure by applying the statistical test M to gb. Since L is dense, there is a number 
d > 0 such that PM(E b) (i.e., IlL=bll/2b) is greater than b -d for infinitely many b. Thus, 
in order to pass the statistical test M with precision n -p for an arbitrary p, PSM(g~, Z ") 
must be close to PM(Z b) and certainly greater than zero for infinitely many values of  b 
that are within reach of an arbitrary polynomial in n. However, since L n K[n e, 2 "'] is 
finite, for all but finitely many n and for b > n L/e, L n g0 (y~n) is empty and, consequently, 
PSM (g~, E")  is zero. Thus, g fails the statistical test M with precision n -p  for sufficiently 
large values of  p. Therefore, g is not secure. 

Starting from the same assumption as Allender's, we now draw a stronger conclusion: 
if a secure pseudorandom extender exists, every dense language in P has a nonsparse 
subset of easy strings. The proof below synthesizes the above proof idea and the injectivity 
result of Theorem 3.4. 

Theorem4.2.  I f t h e r e a r e a d e n s e s e t  L E P,e > O, andt  > 1 suchthat L n K [ n E , n  t] 
is sparse, then no pseudorandom extender is secure. 

I In an earlier conference paper [1], Allender originally made the following c la im that is stronger than 
Theorem 4.1: if there are a d e n s e  set L e P, e > 0, and t > 1 such that L n K[ne,n t] is finite, no 

pseudorandom extender is secure. However, the lemma that was used to establish this c la im had an invalid 

proof. The proof overlooked the fact that the range of a function r(n) with the integers as its domain may miss 
infinitely many integers in the case that r(n) = f l (n) .  Nonetheless, Allender 's  original c la im holds as it is a 
restricted version of Theorem 4.2. 
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Proof.  Let g be a pseudorandom extender. We show that g is not secure by using the 
test FI defined below. Let j be a constant such that the running time of g is in O ( n J ) .  
Let h be an integer that satisfies h > 1/e and 1 + j / h  < t. Let f ( n )  = n h. Since L is 
dense, a positive integer d exists such that ItL =" II >_ n -d2~ infinitely often. Let M be a 
polynomial-time decision algorithm that recognizes L. Given an input x of  length n + 1, 
FI executes the following algorithm: 

Probabilistically choose b 6 { f (n )  . . . . .  f ( n  + 1) - 1 }. 
Run T(M,  g, b) on x. 

Note that as n spans all lengths, b covers all lengths, too. It is not hard to see that FI is a 
polynomial-time algorithm. Let 

A(n) = P n ( E  n+l) - PSn(g,  En). 

To prove that g is not secure, it suffices to show that there is an integer p such that [A (n) [ 
is greater than n -p for infinitely many values of  n. From the definition of H, it is easy 
to see that 

I f(n+l)-l 
(PT(M,g,b)(~ ) -- PST(M,g,b)(g, En)). A(n) = f-(n + 1) - f ( n )  Z n+l 

b=f(n) 

Applying the Boosting Lemma (Lemma 2.4), we get 

f(n+l)-I 
1 1 b 

A(n) = f ( n  + 1) -- f ( n )  Z ~(PM(E ) -- PSM(gb, Z~)). 
b=f (n )  

Since PM(E b) and PSM (gb, E ~) in the sum satisfy 

pM(Z b) --IIL=bll  
2 b 

and 

Prob( M (gb ( x ) ) accepts) Pg,h ( n ) Prob(M(y)  accepts) 
PSM(g0, E n ) =  Z 2 n < ~ 2 n ' 

xEE n yEgb (En ) 

we get the following after simple rewriting: 

f(n+l)-I 1 1 II L=b II Pg,h (n) 
A(n) > max ~ 2-------;--- IlL n gb(En)ll 

- ( f ( n  + 1))  2 f~.)<_b<f~.+l) 2 b 
b=f (n )  

It is not hard to see that, for almost all n, if b > n h, then g~(E n) c K[n ~, nt]. Since 
L =n N K[n ~, n t ] is sparse, it follows that an s exists that satisfies IlL r g~(Zn)ll _< b s 
for all sufficiently large b. Recall that lJL=bll > b-d2 b for infinitely many values of b. 
Thus, choosing I = (s + d + 1)h + 1 in Theorem 3.4, it follows that, for infinitely many 
values of  n, 

1 [ 1 ( n + l )  sh+l] 
A(n) >_ (n + 1) 2---------~ n "~h n t > n-~d+2)h-l" 

Hence, g is not secure. [] 



Pseudorandom Generators and the Frequency of Simplicity 259 

We note that Zimand [21], building on an analog of the contrapositive of  the result of  
this paper and on Nisan's work [ 17], has obtained interesting results about properties of  
large sets in AC ~ 

BPP [8] is the class of  languages that can be recognized by probabilistic polynomial- 
time Turing machines whose accuracy is at least �89 + ~. for all inputs, where ~. is any 

constant in the range 0 < ~. < 1. That is, if L is a set in BPP, then there is a probabilistic 
polynomial-time Turing machine M such that, for each x, 

and 

1 x ~ L iff Prob(M accepts x) > i + ~., 

1 x r L iff Prob(M rejects x) > i + 3.. 

It is well known that the accuracy of a BPP set can be amplified greatly. Given a polyno- 
mial q, the accuracy of a BPP-machine can be made to exceed 1 - 2 -q(Ixl) for all inputs 
x (see, e.g., [20]). With such a small error bound possible for BPP, it is not hard to see 
that a slight modification of the above proof leads to the following result. 

T h e o r e m  4.3. I f  there are a dense set L E BPP, e > 0, a n d t  > 1 such that L n 
K[n ~, n t ] is sparse, then no pseudorandom extender is secure. 

It would be interesting if we could show the existence of easy strings at each length 
where the density of  strings is high. Though such existence remains an open question, 
Allender showed a related positive result by employing (a somewhat idiosyncratic defi- 
nition of) a.e. dense sets, instead of dense sets. 

Definition 4.4 [2]. A set L is a.e. dense if L is infinite and, for some d and for all large 
n, L =" :~ 0 =~ IIL="II >_ n-d2 n. 

T h e o r e m  4.5 [2]. If  secure pseudorandom extenders exist, then, for  each a.e. dense P 
set L and for  all k, there exists c such that, for  almost all n, it holds that 

L ="~ # 0 ~ IlL ='~ n K[cn l/k, 2~"'/~]11 > O. 

Using the proof technique developed in this paper, we can strengthen Theorem 4.5 as 
follows. 

T h e o r e m  4.6. I f  secure pseudorandom extenders exist, then, for each a.e. dense BPP 
set L and for  all k, there exists t such that, for  all s and for  almost all n, it holds that 

L =nk • ~ ~ II L=n~ n K[n Ilk, n']tl > nsk. 

All the results of  this paper so far are with respect to security against probabilistic 
polynomial-time statistical tests. It might be asked whether this paper 's  generalizations 
also hold with respect to security against circuit-based nonuniform statistical tests in 
P/poly. It turns out that such a generalization is trivial. Consider the following theorem. 
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Theorem 4.7 [2]. l f  pseudorandom extenders exist that are secure against statistical 
tests in P/poly,  then, for each a.e. dense P/poly set L and for  all e > O, there exists c 
such that, for  almost all n, it holds that 

L =n # 0 =:~ IlL =n n K[cn ~, 2c"']ll > 0. 

This theorem can be generalized as Theorem 4.8. The generalization is indeed trivial 
because the "generalization" from 0 to n s can be handled by coding polynomially many 
strings into a circuit, and the generalization from P/poly to BPP/poly is trivialized by the 
fact 2 that P/poly = BPP/poly  = USESPARSE BppS, where SPARSE denotes the class of  
sparse sets. 

Theorem 4.8. l f  pseudorandom extenders exist that are secure against statistical tests 
in P/poly,  then,for each a.e. dense BPP/poly set L and for  all e > O, there exists t such 
that, for  all s and for  almost all n, it holds that 

L =" #.13 =r IlL =" N K[n ~, n']ll > n ~. 

Note that Theorem 4.8 subsumes the nonuniform versions of  Theorems 4.2 and 4.6. 
It is an open question whether the uniform equivalent of  Theorem 4.8 holds. 
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