Skip to main content
Log in

Numt, a recent transfer and tandem amplification of mitochondrial DNA to the nuclear genome of the domestic cat

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The mitochondrial DNA of plant and animal cells is a transcriptionally active genome that traces its origins to a symbiotic infection of eucaryotic cells by bacterial progenitors. As prescribed by the Serial Endosymbiosis Theory, symbiotic organelles have gradually transferred their genes to the eucaryotic genome, producing a functional interaction of nuclear and mitochondrial genes in organelle function. We report here a recent remarkable transposition of 7.9 kb of a typically 17.0-kb mitochondrial genome to a specific nuclear chromosomal position in the domestic cat. The integrated segment has subsequently become amplified 38–76 times and now occurs as a tandem repeat macrosatellite with multiple-length alleles resolved by pulse-field gel electrophoresis (PFGE) segregating in cat populations. Sequence determination of the nuclear mitochondrial DNA segment, Numt, revealed a d(CA)-rich 8-bp motif [ACACACGT] repeated imperfectly five times at the deletion junction that is a likely target for recombination. The extent and pattern of sequence divergence of Numt genes from the cytoplasmic mtDNA homologues plus the occurrence of Numt in other species of the family Felidae allowed an estimate for the origins of Numt at 1.8–2.0 million years ago in an ancestor of four modern species in the genus Felis. Numt genes do not function in cats; rather, the locus combines properties of nuclear minisatellites and pseudogenes. These observations provide an empirical glimpse of historic genomic events that may parallel the accommodation of organelles in eucaryotes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson S, Bankier AT, Barrell BG, De Bruijn MHL, Coulson AR, Drouin J, Eperon DP, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJH, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290: 457–465

    Google Scholar 

  • Anderson S, De Bruijn MHL, Coulson AR, Eperon IC, Sanger F, Young IG (1982) Complete sequence of bovine mitochondrial DNA. J Mol Biol 156: 683–717

    Google Scholar 

  • Arnason U, Johnsson E (1992) The complete mitochondrial DNA sequence of the harbor seal mtDNA, Phoca vitulina. J Mol Evol 34: 493–505

    Google Scholar 

  • Attardi G (1985) Animal mitochondrial DNA: an extreme example of genetic economy. Int Rev Cytol 93: 93–145

    Google Scholar 

  • Avise JC (1991) Ten unorthodox perspectives on evolution prompted by comparative population genetic finding on mitochondrial DNA. Ann Rev Genet 25: 45–69

    Google Scholar 

  • Bibb MJ, Van Etten RA, Wright CT, Walberg MW, Clayton DA (1981) Sequence and gene organization of mouse mitochondrial DNA. Cell 26: 167–180

    Google Scholar 

  • Birky CW Jr (1978) Transmission genetics of mitochondria and chloroplasts. Ann Rev Genet 12: 471–512

    Google Scholar 

  • Birren WB, Wai E, Hook L, Simon MI (1988) Optimized conditions for pulsed field gel electrophoresis separations of DNA. Nucleic Acids Res 16: 7563–7582

    Google Scholar 

  • Breitenberger C, RajBhandary UL (1985) Some highlights of mitochondrial research based on analyses of Neurospora crassa mitochondrial DNA, Trends Biochem Sci 10: 478–483

    Google Scholar 

  • Brown WM (1985) The mitochondrial genome of animals. In: MacIntyre RJ (ed) Molecular evolutionary genetics. Plenum Press, New York, pp 95–130

    Google Scholar 

  • Capecchi MR (1989) Altering the genome by homologous recombination. Science 244: 1288–1292

    Google Scholar 

  • Chang DD, Clayton DA (1984) Precise identification of individual promoters for transcription of each strand of human mitochondrial DNA. Cell 36: 635–643

    Google Scholar 

  • Collier GE, O'Brien SJ (1985) A molecular phylogeny of the Felidae: immunological distance. Evolution 39: 473–487

    Google Scholar 

  • Devereux J, Haeberli P, Smithies O (1984) A comprehensive set of sequence analysis programs for the Vax. Nucleic Acids Res 12: 387–395

    Google Scholar 

  • Dietrich W, Katz H, Lincoln SE, Shin H-S, Friedman J, Dracopoli NC, Lander ES (1992) A genetic map of the mouse suitable for typing intraspecific crosses. Genetics 131: 423–447

    Google Scholar 

  • Drouin J (1980) Cloning of human mitochondrial DNA in Escherichia coli. J Mol Biol 140: 15–34

    Google Scholar 

  • Dujon B, Belcour L (1989) Mitochondrial DNA instabilities. In Berg DE, Howe MM (eds) Mobile DNA. American Society Microbiology, Washington, DC, pp 861–878

    Google Scholar 

  • Ellis J (1982) Promiscuous DNA-chloroplast genes inside plant mitochondria. Nature 299: 678–680

    Google Scholar 

  • Eperon IC, Anderson S, Nierlich DP (1980) Distinctive sequence of human mitochondrial ribosomal RNA genes. Nature 286: 460–467

    Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 368–376

    Google Scholar 

  • Felsenstein J (1993) PHYLIP: phylogenetic inference package, version 3.5c. University of Washington

  • Fitch WM, Margoliash E (1967) Construction of phylogenetic trees. Science 135: 279–284

    Google Scholar 

  • Fukuda M, Wakasugi S, Tsuzuki T, Nomiyama H, Shimada K (1985) Mitochondrial DNA-like sequences in the human nuclear genome. J Mol Biol 186: 257–266

    Google Scholar 

  • Gadaleta G, Pepe G, De Candia C, Quagliariello C, Sbisa E, Saccone C (1989) The complete nucleotide sequence of the (Rattus norvegicus mitochondria) genome: cryptic signals revealed by comparative analysis between vertebrates. J Mol Evol 28: 497–516

    Google Scholar 

  • Gantt JS, Baldauf SL, Calie PJ, Weeden NF, Palmer JD (1991) Transfer of rp122 to the nucleus greatly preceded its loss from the chloroplast and involved the gain of an intron. EMBO J 10: 3073–3078

    Google Scholar 

  • Gellissen G, Michaelis G (1987) Gene transfer: mitochondria to nucleus. In: Lee JJ, Frederick JF (eds) Endocytobiology. Ann NY Acad Sci 503: 391

  • Gilbert DA, O'Brien JS, O'Brien SJ (1988) Chromosomal mapping of lysosomal enzyme structural genes in the domestic cat. Genomics 2: 329–336

    Google Scholar 

  • Gray MW (1989) The evolutionary origins of organelles. Trends Genet 5: 294–299

    Google Scholar 

  • Gyllensten UB, Erlich HA (1988) Generation of single-stranded DNA by the polymerase chain reaction and its application to direct sequencing of the HLA-DQA locus. Proc Natl Acad Sci USA 85: 7652–7656

    Google Scholar 

  • Hartl F-U, Neupert W (1990) Protein sorting to mitochondria: evolutionary conservations of folding and assembly. Science 247: 930–939

    Google Scholar 

  • Hasegawa M, Kishino H, Yano T (1985) Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22: 160–174

    Google Scholar 

  • Hayashi JI, Tagashira Y, Yoshida MC (1985) Absence of extensive recombination between inter- and intraspecies mitochondrial DNA in mammalian cells. Exp Cell Res 160: 387–395

    Google Scholar 

  • Hoehe MR, Caenazzo L, Martinez MM, Hsieh WT, Modi WS, Gershon ES, Bonner TI (1991) Genetic and physical mapping of the human cannabinoid receptor gene to chromosome 6g14-q15. New Biol 3: 880–885

    Google Scholar 

  • Hoelzel AR, Hancock JM, Dover GA (1993) Generation of VNTRs and heteroplasmy by sequence turnover in the mitochondrial control region of two elephant seal species. J Mol Evol 37: 190–197

    Google Scholar 

  • Hughes AL, Nei M (1988) Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature 335: 167–170

    Google Scholar 

  • Innis MA, Gelfand DH, Srinsky JJ, White TJ (eds) (1990) PCR protocols. Academic Press, San Diego, CA

    Google Scholar 

  • Jeffreys AJ, MacLead A, Tamaki K, Neil DL, Moncleton DG (1991) Minisatellite repeat coding as a digital approach to DNA typing. Nature 354: 204–209

    Google Scholar 

  • Kamimura N, Ishii S, Linadong M, Shay JW (1989) Three separate mtDNA sequences are contiguous in human genomic DNA. J Mol Biol 210: 703–707

    Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge, England

    Google Scholar 

  • Kocher TD, Thomas WK, Meyer A, Edwards SV, Paabo S, Villablanca FX, Wilson AC (1989) Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci USA 86: 6196–6200

    Google Scholar 

  • Kurten B (1968) Pleistocene mammals of Europe. Aldine Press, Chicago

    Google Scholar 

  • Levinson G, Gutman GA (1987) Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol Biol Evol 4: 203–221

    Google Scholar 

  • Li WH, Gojobori T, Nei M (1981) Pseudogenes as a paradigm of neutral evolution. Nature 292: 237–239

    Google Scholar 

  • Locker J, Lewin A, Rabinowitz M (1979) The structure and organization of mitochondrial DNA from petite yeast. Plasmid 2: 155–181

    Google Scholar 

  • Margulis L (1970) Origin of eukaryotic cells. Yale University Press, New Haven, CT

    Google Scholar 

  • Masuda R, Yuhki N, O'Brien SJ (1991) Molecular cloning, chromosomal assignment and nucleotide sequences of the feline homeobox HOX3A. Genomics 11: 1007–1013

    Google Scholar 

  • Masuda R, Yuhki N, Lopez JV, O'Brien SJ (1994) A molecular phylogeny of the Felidae family, based on DNA sequences of mitochondrial 12S rRNA and cytochrome b genes (in preparation)

  • Mindell DP, Honeycutt RL (1990) Ribosomal RNA in vertebrates: evolution and phylogenetic applications. Ann Rev Ecol Syst 21: 541–566

    Google Scholar 

  • Moritz C, Dowling TE, Brown WM (1987) Evolution of animal mitochondrial DNA: relevance for population biology and systematics. Ann Rev Ecol Syst 18: 269–92

    Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Nowak RM (1991) Walker's mammals of the world, 5th ed. The Johns Hopkins University Press, Baltimore, MD

    Google Scholar 

  • Nugent JM, Palmer JD (1991) RNA-mediated transfer of the gene COXII from the mitochondrion to the nucleus during flowering plant evolution. Cell 66: 473–481

    Google Scholar 

  • O'Brien SJ (1986) Molecular genetics in the domestic cat and its relatives. Trends Genet 2: 137–143

    Google Scholar 

  • O'Brien SJ, Collier GE, Benveniste RE, Nash WG, Newman AK, Simonson JM, Eichelberger MA, Seal US, Janssen D, Bush M, Wildt DE (1987) Setting the molecular clock in Felidae: the great cats, Panthera. In: Tilson RL, Seal US (eds) Tigers of the world. Noyes Publications, Park Ridge, NJ, pp 10–27

    Google Scholar 

  • O'Brien SJ, Nash WG (1982) Genetic mapping in mammals: chromosome map of domestic cat. Science 216: 257–265

    Google Scholar 

  • O'Brien SJ, Roelke ME, Yuhki N, Richards KW, Johnson WE, Franklin WL, Anderson AE, Bass OL Jr, Belden RC, Martenson JS (1990) Genetic introgression within the Florida panther Felis concolor coryi. Natl Geo Res 6: 485–494

    Google Scholar 

  • Ohta T (1992) The nearly neutral theory of molecular evolution. Ann Rev Ecol Syst 23: 263–286

    Google Scholar 

  • Quigley F, Martin WF, Ceriff R (1988) Intron conservation across the prokaryotic-eucaryotic boundary: structure of the nuclear gene for chloroplast glyceraldehyde 3-phosphate dehydrogenase from maize. Proc Natl Acad Sci USA 85: 2672–2676

    Google Scholar 

  • Saccone C, Pesole G, Sbisa E (1991) The main regulatory region of mammalian mitochondrial DNA: structure-function model and evolutionary pattern. J Mol Evol 33: 83–91

    Google Scholar 

  • Saitou N, Nei M (1987) The neighbor joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Schinkel AH, Tabak HF (1989) Mitochondrial RNA polymerase: dual role in transcription and replication. Trends Genet 5: 149–154

    Google Scholar 

  • Schon EA, Rizzuto R, Moraes CT, Nakase H, Zeriani M, Dimauro S (1989) A direct repeat is a hotspot for large-scale deletion of human mitochondrial DNA. Science 24: 346–349

    Google Scholar 

  • Serikawa T, Kuramoto T, Hilbert P, Mori M, Yamada J, Dubay CJ, Lindpainter K, Ganten D, Guenet JL, Lathrop GM, Beckmann JS (1992) Rat gene mapping using PCR-analyzed microsatellites. Genetics 131: 701–702

    Google Scholar 

  • Smith MF, Thomas WK, Patton JL (1991) Mitochondrial DNA-like sequence in the nuclear genome of an akodontine rodent. Mol Biol Evol 9: 204–215

    Google Scholar 

  • Swofford DL (1990) Phylogenetic analysis using parsimony (PAUP), version 3.0. Illinois Natural History Survey, Champaign, IL

    Google Scholar 

  • Tsuzuki T, Nomiyama H, Setoyaja C, Maeda S, Shimada K (1983) Presence of mitochondrial-DNA-like sequences in the human nuclear DNA. Gene 25: 223–229

    Google Scholar 

  • Van den Boogaart P, Samalio J, Agsteribbe E (1982) Similar genes for a mitochondrial ATPase subunit in the nuclear and mitochondrial genomes of Neurospora crassa. Nature 298: 187–189

    Google Scholar 

  • Wahls WP, Wallace LJ, Moore PD (1990) Hypervariable minisatellite DNA is a hotspot for homologous recombination in human cells. Cell 60: 95–103

    Google Scholar 

  • Wakasugi S, Nomiyama H, Fukuda M, Tsuzuki T, Shimada K (1985) Insertion of a long Kpn I family member within a mitochondrial DNA-like sequence present in the human nuclear genome. Gene 36: 281–288

    Google Scholar 

  • Wallace DC, Lott MT, Torroni A, Shoffner JM (1991) Report of the committee on human mitochondrial DNA. Cytogenet Cell Genet 58: 1103–1123

    Google Scholar 

  • Weber JL (1990) Human DNA polymorphisms based on length variations in simple-sequence tandem repeats. Genome Analysis 1: 159–181

    Google Scholar 

  • Wilson AC, Cann RL, Carr SM, George M, Gyllensten UB, Helm-Bychowski KM, Higuchi RG, Palumbi SR, Prager EM, Sage RD, Stoneking M (1985) Mitochondrial DNA and two perspectives on evolutionary genetics. Biol J Linnean Soc 26: 375–400

    Google Scholar 

  • Woese CR (1987) Bacterial evolution. Micro Rev 51: 221–271

    Google Scholar 

  • Wurster-Hill DH, Centerwall WR (1982) The interrelationships of chromosome patterns in canids, mustelids, hyena and felids. Cytogenet Cell Genet 34: 178–192

    Google Scholar 

  • Yang D, Oyaizu Y, Oyaizu H, Olsen GJ, Woese CR (1985) Mitochondrial origins. Proc Natl Acad Sci USA 82: 4443–4447

    Google Scholar 

  • Yuhki N, O'Brien SJ (1990) DNA recombination and natural selection pressure sustain genetic sequence diversity of the feline MHC class I genes. J Exp Med 172: 621–630

    Google Scholar 

  • Zullo S, Sieu LC, Slightom JL, Hadler HI, Eisenstadt JM (1991) Mitochondrial D-loop sequences are integrated in the rat nuclear genome. J Mol Biol 221: 1223–1235

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lopez, J.V., Yuhki, N., Masuda, R. et al. Numt, a recent transfer and tandem amplification of mitochondrial DNA to the nuclear genome of the domestic cat. J Mol Evol 39, 174–190 (1994). https://doi.org/10.1007/BF00163806

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00163806

Key words

Navigation