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Abstract. We examine the problem of the thermoelastic deformation of a spherical Earth with constant 
elastic parameters heated from within by the spontaneous decay of radiogenic elements. 

The problem consists of the simultaneous solution of the Navier-Stokes equation and the heat conduc- 
tion equation. We reach an integrodifferential equation which we solve by means of the Laplace transform 
and the Green’s function approach. 

We obtain analytic solutions for the temperature distribution and radial deformation as infinite series 
of functions of the radial distance and time, depending also on a sequence of eigenvalues. We provide 
particular solutions for the case when the two specific heats C,, and C, are approximately equal. 

We believe that our analytic results are applicable to the study of the oceanic lithosphere deformations. 
Our approach could be successfully applied to ascertain the deformation according to other regimes of 
internal heating. 

1. Introduction 

When Earth accumulated from the primeval cloud from which the solar system was 
formed about 4.5 x lo9 yars ago it brought within its mass a certain fraction of 
radioactive elements. The radiogenic heat released by their decay was bound to spread 
throughout the entire mass by conduction and convection and eventually escape by 
radiation through its surface. 

We are referring here to the radioactive elements of the Uranium class (K4’, Th232, 
U235, Uz3’) which possess a half-life of the order of lo9 to 10” years. This is compar- 
able with the age of the solar system and it means that the interior of the Earth has 
been warming up secularly and more likely that it will do so for several thousand 
million years (see Urey (1955) and Alfvtn and Arrhenius (1974)). 

Both stars and planets derive their internal energy from nuclear sources: the stars 
from the fusion of light elements, the planets from the disintegration of heavy 
radioactive elements. Whereas the physical conditions prevailing in the stellar 
interiors are sufficiently extreme to influence the rate of energy production, the rate 
of spontaneous disintegration of the radioactive material in the planetary interiors is 
totally unaffected by the prevailing conditions due to the insulation of thick layers of 
silicate mantles exhibiting the properties of viscoelastic bodies. Planets do not shine 
because of their silicate mantles, however they do radiate thermal energy into space. 

The two processes, radiative cooling through the surface and radiogenic heating at 
the interior, must entail certain mechanical consequences. Any secular change in their 
temperature profile must bring about a corresponding contraction or dilatation of the 

Earth, Moon, and Planets 34 (1986) 283-304. 
0 1986 by D. Reidel Publishing Company 



284 P. LANZANO 

material. Radial strain will arise that might exceed the strength of the rocks and thus 
affect the structure of the respective layers. Stresses arising from heating and cooling 
of the planetary masses are large enough to alter even their size. 

In many earlier studies, the temperature field has been considered independent of 
the corresponding strains. This is of course a rough approximation. In fact, any 
change in the amount of heat in a volume element of the body will give rise to strain 
and stress; conversely, loading of the body and corresponding strain will produce a 
temperature field. The coupling of temperature and strain fields constitutes the 
essence of thermoelasticity. 

The purpose of this paper is to study the thermoelastic stress generated in the 
Earth’s lithosphere because of the heat of the radiogenic sources and to take into 
account the compression caused by the self-gravitation of the various layers in 
contrasting the thermal expansion. 

To obtain an analytic solution for our problem, we make a number of simplifying 
assumptions. We are assuming: (1) a spherical Earth, (2) constant density Q, (3) con- 
stant elastic parameters 1, p, (4) that the sources of radiogenic heat are concentrated 
at the center of the configuration, (5) hydrostatic equilibrium before heating, and 
(6) that both the displacement vector u and the temperature T are functions of the 
radial distance Y and time t alone; i.e., U(T, t) and T(r, t). 

We make use of the following equations: (1) Navier-Stokes equation safeguarding 
the conservation of momentum, and (2) the equation of heat flow in solids which 
ensures the conservation of energy. We are ignoring possible convection currents 
which at present are considered to be plausible whenever the conductive temperature 
gradient is larger than the adiabatic gradients of silicate rocks. 

A number of analytic solutions exist in the form of infinite series that provide 
temperature distribution within a sphere according to certain regimes of heat gener- 
ation (see Carslaw and Jaeger, 1959, pp. 242-246). Two such solutions, one due to 
Allan (1956) the other to Lowan (1935) have been used by Kopal(1963) to examine the 
problem of lunar and terrestrial planets interiors. In a more recent publication (Kopal, 
1966), a new solution was formulated by Kopal which he applied to the lunar case. In 
a later paper Kopal(1968) provided a general formulation of the problem for the case 
of variable elastic parameters, but no further explicit solutions were furnished there. 

2. Navier-Stokes Equations 

The thermodynamic variables which describe a volume element of the body are: 
temperature T, and components sii of the strain tensor. 

The temperature consists of the sum of two terms 

T,(r, t) = T,,(r) + T(r, t). 

T,(r) represents the initial state of the body in which both strains and stresses vanish; 
it is also called the steady state equilibrium temperature. Since we assume that before 
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stressing our configuration is in hydrostatic equilibrium, 7’,(v) will be balanced by the 
radial pressure P(r). T(r, t) represents the changes in temperature because of defor- 
mations, internal heat sources and secular cooling due to the escape of internal heat 
into space. This is the temperature which will appear within any linearized equation 
of motion which describes a variation from an initial state. 

In the presence of thermal effects, the stress-strain relations can be written as 

~~~ = 2pi, + A(V . u) - ” T 
P 1 S,, 

see, e.g., Boley and Weiner (1960), p. 249 or Nowacki (1962), p. 39; where ‘TV are the 
components of the stress tensor, E, are the components of the strain tensor, 6, are the 
Kronecker deltas, A, p are the Lame parameters for an isothermal deformation, which 
we assume to be constant, and U(Y, t) is the displacement vector; 

is the coefficient of volume thermal expansion in (deg))‘, and 

is the coefficient of isothermal compression in cm2/dyne, which is also the inverse of 
the bulk parameter k. 

From Equation (2) we can determine the equation governing the momentum of the 
displacement vector u. This is the Navier-Stokes equation 

(A+2p)V(V.u)-PV x V x u+F-f(VT) = @ii, 
B 

(5) 

which takes into account the temperature field (see Nowacki, 1962, p. 41), where Q 
is the density of the material, and F is the resultant of the applied forces. 

Since we are assuming hydrostatic equilibrium, we have 

F = -Qg = VP, (6) 

where P(r) is the purely radial pressure. 
Both the temperature profile T(r, t) and displacement vector U(Y, t) are assumed to 

depend only on radial distance r and time t. No dependence on latitude and longitude 
will be considered in the present formulation. 

Because of the previous assumptions, it will be 

v x u = 0, 

and since in our considerations we can safely neglect the secular variation of the 
acceleration (ii = 0), the Navier-Stokes equation can be written as 
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(A. + 24pV(V * u) = aVT - BVP. 

Introducing the non-dimensional radial displacement 

5 = ; 4r, t), (7) 

we reach the final form 

The solution of this equation must remain finite at r = 0 and satisfy the boundary 
condition 

(1 - 4r $ + (1 + CT)~ = 0 

at the outermost surface r = R; this represents the vanishing of the purely radial 
component of the stress tensor. In Equation (9), r~ is the non-dimensional Poisson 
ratio 

A. 

c7 = 2(/i + p). (10) 

Due to the linearity of Equation (8), we can represent its solution as the sum of two 
terms 

5(r, 0 = t,(r, 0 + Mr). (11) 

The first term is due to the temperature gradient, the second to the pressure gradient. 
Let us first deal with the term t2(r). It satisfies the equation 

(12) 

where 

c= 
hGQ2 

3@ + 24 
(13) 

is a constant depending on the mean density of the sphere and the constant Lame 
parameters. The solution of Equation (12) is readily obtained as 

c2(r) = $ r2 + C, + 5, 

where C,, C, are two arbitrary constants. We choose C2 = 0 because t2(0) must 
remain finite, and the boundary condition at r = R, Equation (9), gives rise to 
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We get 

t2(x) = $(x2 - E), (14) 

where 
x = r/R 

is the fractional radius. Since for any known material 0 6 l/2, it will be 

(15) 

i.e., a compression due to self-gravitation. However, the component 

& rr = 2 Gf2) 

of the strain tensor can be seen to vanish within the body at the fractional radius 

(16) 

E,, is negative between zero and X, positive beyond that point. 
We next consider the non-dimensional radial displacement 5, due to heating. It 

satisfies the equation 

(17) 

If we neglect the forcing term, we can find a solution to the homogeneous equation 

a251 x, 
rdp+4% = 0 

in the form 
5, = r(‘, 

with the parameter c satisfying the indicial equation c(c + 3) = 0. The solution of 
the homqgeneous equation is then 

5, = C, + C2F3. 

The solution of Equation (17) with the boundary conditions given by Equation (9) can 
be obtained by the variation of parameters method, whereby the arbitrary constants 
C, and C, will be replaced by appropriate functions of r for the purpose of accom- 
modating the forcing term and boundary condition. 

The procedure easily yields 

+ -$ (&$) j: T(r, t)r’dr]. (18) 
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This is the fundamental relation which describes the radial deformation once the 
temperature distribution has been ascertained, t, remains finite at r = 0. We must 
note here that in obtaining Equation (18) we have assumed 

T(R, t) = 0, (19) 

that is to say the vanishing of the temperature at the outer surface of the sphere. This 
assumption does not constitute any restriction with respect to the class of models for 
which 

T(R, t) = constant, 

because in our case the temperature profile T(r, t) should then be augmented by the 
constant temperature at r = R. 

For physical reasons, we can safely assume that T(R, t) should remain constant. 

3. Heat Conduction Equation 

We proceed by considering the fundamental equation of heat conduction 

where h is the absorbed heat per unit volume in erg/cm3, K is the heat conduction 
coefficient in erg/(s * cm. deg), and W is the amount of heat generated in a unit 
volume per unit time in erg/(cm3 . s). 

Conservation of energy dictates that any increment in the absorbed heat be balanced 
by a variation of the internal energy and stress related energy 

where 
dh = dU - ajj(dEjj), 

UP,> Q) 

(21) 

is the internal energy per unit volume; it is a function of the total temperature and the 
strain field. The summation convention applies to the repeated indices in Equation (21) 
and in subsequent equations. 

The specific entropy of the body can then be written as 

dS = $ = i[gdTr +(g- Gij)(dt,)]. 

Entropy being a total differential, it will entail the equality of the two following partial 
derivatives 

Expanding the above expression and simplifying we get 

i au 
( > 

aa.. -2 = 
E &yj = ay-, ; 6,. 
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The last equality is a consequence of Equation (2). Thus we have 

Now 

dS = +gdT, + ;d(e&,). 
I I 

Eilhij = &,i = v - u 

is the divergence of the displacement vector, and when E;, = 0 (i.e., when no strain 
exists), Equation (21) makes it clear that 

au ah -=-= 
ar, aT, eG2 

where C, is the specific heat per unit mass when no strain field exists. This is 
equivalent to saying that a constant volume be maintained. The dimension of C, is 
erg/(g * deg). The entropy becomes 

dS = QC, F + 2 d(V.u). 
I P 

Assuming Q and C, to be constant, we can integrate the above expression starting from 
the state corresponding to T = 0 and V . u = 0 up to a generic state and get 

S = QC, In (Tl/T,,) + $ (V. u). 

Since T, = T,, + T, expansion of the expression 

gives rise to an approximate representation for the specific entropy 

The amount of absorbed heat will be 

h = T,S 2 c&T + % T,(r)(V - u). 

Substituting into Equation (20), we can finally write 

QC, g = KV~T - % T,(r) i (V * u) + W, (22) 

see also Biot (1956). When the heat sources consist of the spontaneous decay of a 
number of radioactive elements, we can specifically write 

W = Ce.s,exp (-St). (23) 
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Here, the subscript j extends to the four elements of the Uranium family, E, is the 
thermal energy of the source in erg/(g * s), and d, is the decay constant of the 
radioactive element in so’. 

The term containing the divergence of the displacement vector is the only link to 
the Navier-Stokes equation. Since we take into accounts its time derivative, the only 
term that matters is the 4, (Y, l), given by Equation (18). 

Let us combine Equations (22) and (23) and rewrite them as 

aT Ka a - = -- g- 
at r2 dr ( 7 ar - +g[ii(r3tJ] + J4jev-jl,0, 

(24) 

where, K = rc/& is the thermal diffusivity in cm21s, y = CJC, is the ratio of the 
two specific heats, $j = E/IC~ is the rate of temperature increase in deg/s, and 

Y-1 aToO-) 
- z.z 

o! QBG 

is a relation that can be proved to be valid in thermodynamics (see, e.g., Ubbelohde, 
1952, p. 13); it is also related to y, = a/efiC, which is the Griineisen parameter. 

In solving the above equation, we must assume an initial temperature distribution 

T(r, 0) = f(r), (25) 

and a distribution at the outer surface which, with physical confidence, we can assume 
to be constant. As mentioned earlier, there is no loss of generality by taking 

T(R, t) = 0, 

because to our result T(r, t) we can add 

T(R, t) = constant # 0. 

(26) 

Note that should it be plausible to assume y = 1, the displacement term l, will not 
appear in the energy equation. 

When we replace within Equation (24) the expression for <,(r, t) provided by 
Equation (18) we get 

A2r CT + B2r R r2 cTd,. _ a2(rT) 
at s 0 at - a? (27) 

where we have denoted 

1 
A2 = z 1 ’ 

(28) 
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These expressions should be considered functions of T,,(r) via the y; however, due 
to the limited variation of this quantity, both A2 and B2 shall be considered constants 
in the future developments, greatly facilitating our quest for an analytic solution. 

4. Solution of an Integrodifferential Equation 

Equation (27) is an integro-differential equation for a function of two variables. Its 
dependence upon the time variable can be characterized as a Fredholm integral 
equation. We shall solve Equation (27) bq’ making use of the Laplace transform in 
order to eliminate the time variable and concentrate on the resulting equation in the 
radial variable. 

To simplify the execution of the Laplace transform, we shall introduce a new 
variable which leads to a vanishing initial value. This goal can be achieved by 
switching from T to a new variable V defined by 

where 
rT(r, t) = V(r, t) + F(r), 

F(r) = rT(r, 0) = f(r). 

The equation will transform into 

A2 g + rB2 jz ty r-dr = ~ 

The initial and boundary conditions become: 

V(0, t) = 0 because F(0) = 0, 

V(r, 0) = 0 

because rT(r, 0) = F(r) as given by Equation (30), and 

VCR, 4 = NW, 0 - fW1; 
and this will also vanish because 

f(R) = T(R, 0) = T(R, t) = 0. 

We apply next the Laplace transform 

L{ V(r, t>} = jam V(r, t) exp (- $1 dt = Y(r, .v]) 

(see Widder, 1946). Recalling that 

and 

Lg i 1 = yIY(r, 4 - Vr, 0) 
1 

L{exp (-St)} = ~ 
q + ;lf’ 

we reach the equation 

Y”+tx2Y = -,$rjf rY(r) dr - S(r, q). (31) 

(29) 

(30) 
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Here primes denote derivatives with respect to r and we have set 

(32) 

This parameter g2, which will give rise to a sequence of eigenvalues CI,, should not be 
confused with the variable c1 defined by Equation (3). The boundary conditions are 
easily obtainable as 

Y(0, q) = Y(R, q) = 0. (33) 

Equation (31) is still an integrodifferential equation but contains only one variable; 
the term S is the forcing function. 

Let us first study the homogeneous equation obtained by neglecting the forcing 
function 

Y”+a2Y = -M2zr.r,” rY(r) dr, (34) 

with same boundary conditions Y(0) = Y(R) = 0. We wish to investigate for which 
values of the parameter a we get solutions not identically zero. 

For this purpose we write 

c = $1: rY(r) dr (35) 

and solve 
Y” + (x2Y = -a2Cr. 

The primitive function is 

Y = - Cr + M sin (cw) + N cos (ar). 

The conditions Y(0) = 0 leads immediately to N = 0; the other two conditions 
Y(R) = jl and Equation (35) give rise to the homogeneous linear system 

-CR + Msin(Rcr) = 0 

(;+A) (Ru)~(CR) - Msin (Ra)[l - (Ra) cot (Ra)] = 0 

for the determination of CR and A4 sin (Ra). The determinant of the coefficients is 

A, = 1 - (Ra) cot (Ra) - (RLx)~ (;+ j&). 

We shall obtain only the zero solution corresponding to C = 0, M = 0 unless we 
choose the parameter c( to satisfy the transcendental equation A, = 0, i.e., 

1 - (Ra) cot (Ra) = (Ra)’ (;+ A)> (36) 
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where A, B are the constants given by Equation (28). If this be the case, the only valid 
condition is 

A4 = CR/sin (Ra). 

Denoting by a, the solutions of Equation (36), the eigensolutions of Equation (34) can 
be expressed as 

R sin (~a,) 

sin (Ra,) I ’ 
(37) 

Our next objective will be to attain the general solution of Equation (31) by means 
of the Green function approach. We first must investigate how to extend to the 
integrodifferential equation in question the classical Green function theory which has 
only been developed for ordinary linear differential equations. 

We are going to show that for any 5 such that 

Odt<R 

we can obtain a unique continuous function K(r, r) which satisfies the integro- 
differential equation 

K”(r, 4) + c?K(r, 0 = -x2 z r 1: rK(r, 0 dr, (38) 

and boundary conditions 

KC4 4) = 0, K(R, 0 = 0 

for values of CI which do not belong to a subset of eigenvalues. Furthermore, in each 
of the two subintervals (0 to 0 and (5 to R), the function K(r, 5) is of class C” (i.e., 
has continuous second derivatives); and at r = 5, K is continuous but its derivative 
K’ is discontinuous in such a way that 

To prove the above statement, let us denote by 

K,(r, <) = - C,r + M, sin (cw) + N, cos (ar) 

the Green function in the interval 0 to [; similarly by 

K2(r, 5) = - C,r -t AI2 sin (w) + N2 cos (W) 

the Green function for the interval [ to R. We must prove that for generic values of 
t and CI we can determine the six coefficients C, , C2; M,, M,; N, , N2 in a unique way 
from the conditions which serve as the definition of the Green function: 

K,(O, t) = 0, &CR, 5) = 0; 

K,(t, 5) = K2(t, 5) (continuity of K at r = 5); 

Ij+y [KC4 + E, 4) - KC5 - E, 01 = - 1. 
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Because K, and K2 must be solutions of Equation (38) in each subinterval, we must 
add the two conditions 

I A2 
‘rK,(r,<)dr = -C,; 
0 B2 

s R rK,(r, t) dr = 
i; 

according to Equation (35). 
For a better understanding of the situation, we can define K, to vanish identically 

in (t to R) and K2 to vanish identically in (0 to 5). Then we are dealing with an 
equivalent equation 

(K, + K2)” + cc2(K, + K2) = - a2 $ r [?;i rK, dr + j: rK2 dr]. 

The condition K,(O, <) = 0 yields immediately N, = 0. The other five conditions 
will ultimately yield a linear system in the remaining five unknowns (C, , C,; M,, 
M2; N2) of the nonhomogeneous type since the right-hand sides consist of the set 
(0, 0, 0, 0, - 1). 

Recalling the elementary integral expressions 

I x sin x dx = sin x - x cos x, 

i x cos x dx = cos x + x sin x, 

it is a simple matter to write down the linear system in question. We do not think it 
is necessary to reproduce it here. For further discussion of our results it is however 
necessary to examine the determinant of the coefficient matrix. Our computations 
show that this determinant is 

1 
A(@, 4) = - - [sin (a<) - (~5) cos (at)] x 

a= 

X 2 + <R2 - $ - 2 g sin (aR - ~5) - 
> 

- ; CR - 5) cos (aR - at) + 

+ 2 $[(aR) - (a5)cos (aR - at)] + 

+ 3c~R5[25~ - R'cos (aR - at)] + 

- osin(nR)($+g)(T- f+ $). (39) 
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This expression clearly does not vanish identically in x and 5. This proves that for 
values of c( and 5 which are not roots of the equation 

we obtain a unique Green function K, + K2 for our integrodifferential equation. 
Before leaving this topic, let us briefly discuss here the particular case of the Green 

function when we choose 5 = R, because it will be useful in future developments. The 
previous conditions yield 

K,(O, R) = 0; K,(R, R) = K,(R, R) = 0; 

c, = 0; I ,” rK,(r, R) dr = 

A(ct, R) = $f sin (Ra) 1 - (Ra) cot (Rcc) - (RLI)~ (:+ j&J]- 

Clearly, K, (r, R) must coincide with the continuous solution Y(r, E). However, since 
we are choosing CI # CI, so that A(a, R) # 0, K, (r, R) will reduce identically to zero 
in the interval between zero and R. The same can be said about its derivative. Thus, 
we can write 

K,(r, R) = 0; 
a&k, RI _ o, 

ar 
(40) 

Next we want to prove that the function 

Y(r, a> = j: K(r, OS(i”, r> di” (41) 

satisfies the original integro-differential equation and its boundary conditions. For this 
purpose, let us rewrite the above equation as 

J’V, 4 = ji KAY, 5>S(t, 4 dt + jrR K,(r, 5P(t, r> d5. (42) 

This is so because in the first integral we have 0 < 4 < r and thus K2 is the appro- 
priate representation of K in that interval; similarly, for the second integral it will be 
r < c d R and consequently K, is the appropriate representation for K. From 
Equation (42), it follows that Y(0, a) = 0 because K, (0, 5) = 0 and that Y(R, CL) = 0 

because K2(R, 5) = 0. 

To establish the differential relation which is satisfied by Equation (41), let us 
differentiate Equation (42) twice with respect to the radial distance and find that 

Y”(r, a) = 1: KiSdt + J1” K;‘Sdl + [K2(r, r) - K;(r, r)]S(r, q) 

where 
=.i ,” K”(r, OS(5, Y> d5 - W, ~1) 



296 P. LANZANO 

It follows then, using Equation (41), that 

Y”(r, u) + u2 Y(r, u> = JoR [K”(r, 5) + u2K(r, t)lS(t, q) di: - S(r, q). 

Because K(r, t) satisfies Equation (38), the integral which appears in the right-hand 
side of the above expression can be written as 

Interchanging the order of integration we obtain 

K(r, 4>S(t, q) d5 1 dr = - u2 5 r j”z rY(r, a) dr, , 
the last step being a consequence of Equation (41). Thus it has been proved that the 
function defined by Equation (41) satisfies the equation 

Y”(r, u) + u2 Y(r, u) = - u2 g r 1: rY(r, u) dr - S(r, y) 

which indeed is the original Equation (3 1) with u2 = - yA2. 

It is clear then that it is legitimate to proceed and use the Green function approach 
in the solution to our integrodifferential equation. Although the procedure which was 
exemplified above for the existence and uniqueness of the Green function could 
be used to obtain an analytical representation of the same, we shall use a more 
expeditious approach based on the theory of integral equations. This we are going to 
discuss briefly in what follows. 

We consider two sequences of functions 

K(r, 4); -Ur, 4) 

defined in the interval (0, R) and depending upon the parameter ai, and assume that 
these two sequences: 

(1) are orthogonal in said interval: i.e., 

I ,” Y,,(r, uS>-U r, ufJ dr = 0 for n # m, 

(2) are normalized to unit: i.e., 

I oR Y,(r, d>Z,( r, ui) dr = 1, and 

(3) satisfy differential systems with boundary conditions, which we symbolize 
respectively by S, = 0 and SZ = 0. 

Under the above assumptions, it can be proved that the Green function K(r, t; a’) 
of the system S, = 0 and the Green function G(r, 5 u’) for S, = 0, evaluated for a 
value of u2 # ai, can be written as 
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(43) 

This result is a direct consequence of Hilbert’s “bilinear formula” and has been 
formulated in equivalent forms by Kowalewski (1930), Ince (1927) and Tricomi 
(1963). In order to be able to use these results, we must ascertain a new set of functions 
depending on the same eigenvalues and which turns out to be orthogonal to the 
original set. 

Let us consider, as an initial trial, the set 

We get 
Z = D sin (rj), with p # x. 

1: Y(r, u2)Z(r, /I’) dr = CD i,” [ - r + tit;;:)] sin (rp) dr 

sin (Rfi) 
= cD flya’ - p’) {P”[l - (Ra) cot (Ra)] - 

We know that 
- a2[1 - (Rj?) cot (R/J)]}. 

1 - (Ra) cot (Ra) = @a)2 (;+&Z& 

which is Equation (36); if we impose that 

1 - (RP)cot(RB) = (RP)$ + &)> 

i.e., that b # cx is also a solution of Equation (36), or equivalently that p = a,,, 
is also an eigenvalue but #a,, then the orthogonality condition will be identically 
satisfied. 

Thus we have shown that the two sequences of functions 

R sin (ra,) 

sin (Ra,) 1 ’ 

Z,,,(r, ai) = D, sin (ra,) (44) 

are orthogonal provided that a,, a, be two different roots of the same Equation (36). 
In order to normalize these two sets to unity, i.e. have 

i OR Y,(r, 4)-U r, ai) dr = 1, 

we must choose the constants C, and D, in such a way that 
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(c,D,,-I = j: [-r + ai:::;)] sin (ra,) dr = 
n 

R2 

= 2 sin (Ra,) 

1 _ 2 sin2(Rcc,) 

@J2 + 

sin (2R4 1 2Rct, ’ (45) 

To conclude, we can say that the Green function 

valid for Equation (31) with a value of c1 differing from an eigenvalue is obtainable 
by using Hilbert’s bilinear formula and is furnished by Equations (43), (44), (36), and 
(45). Let us also note that the differential system with boundary conditions satisfied 
by Z, is simply 

z,: + gz, = 0, Z,(O) = 0. (46) 

5. Analytic Expressions for Temperature Distribution and Radial Deformation 

We now make use of Hilbert’s formula for the Green function according to the 
formulation developed in the previous section. Recalling Equa,tions (41), (43) and (32) 
we are in a position to write 

(47) 

where K is the thermal diffusivity and 

fl = - u2/A2 

is the parameter introduced through the Laplace transform. We evaluate by parts the 
first integral which appears in the above formula to obtain 

j; F”(5)Z,(() d< = (ZJ”): - (Z;F),R + j; FZ; d5 

= Z,(R)F(R) - Z;(R)F(R) - 

- ct; 1 ,” ROZ,(t) d5. 

This is so because: Z,(O) = 0; F(0) = 0 due to the fact that F(r) = r-(r); finally 
Zi = - a:Z, due to Equation (46). 

We substitute the above expression into Equation (47) and note that because of 
Equations (43) and (40) we have 
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3o K(r, d).uR, UK> c = K(r, R; N) = 0, 
n=l u; - u2 

similarly 
= K(r, u%XR, ui) 
c u; - u2 

= K’(r, R; a) = 0. 
?I=1 

The two fractional expressions in q can be decomposed by a partial fraction 
procedure. It is easy to verify that 

4 1 1 1 
7 =; -- ui + qA2 

q v + (u,/A)~’ 

1 1 1 1 ~ = -- 
u: + qA2 v] + A, ye + (u,/A)~ 

1 
(~x,/A)~ - S’ 

We therefore obtain 

Y(r, r> = - $ z, K@, ui) 50” F(WXt, $3 di: + 
n 

Let us remark here that the first summation appearing in the above equation is 
simply a representation of F(r) in terms of the orthogonal sets of functions Y,, Z,. In 
fact, assume the representation 

Wr) = f Cn Y,(r) 
n=l 

of F(r) in terms of Y,. Using the property of the orthogonal sets 

s R Y,WX9 dr = h,,, 
0 

we can write 

loR F(r)Z,(r) dr = 2 C, 1: Y,(r)Z,,,(r) dr = C,. 
n=l 
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It then follows that 

F(r) = 

P. LANZANO 

Next we note that 

L-1 I 
( > = exp (- at); L-1 i = 1, 

fl+a 0 Y 

(48) 

We are now ready to perform the inverse Laplace transform to retrieve the tem- 
perature distribution: 

T(r, t) = f(r) + i V(r, t) = f(r) + i L-’ { Y(r, fl)]. 

Upon recalling the explicit expressions for the functions Y,, 2, and the condition 
imposed on their multipliers C,, D, by the unit normalization, we can write our final 
result as follows: m 

where 

%, 4 = 1 E),(r)G(O, 
n=l 

(49) 

2 

F,(r) = 
[ 
f sin (ra,) - sin (RN,) 1 

sin* (Rx,) 

* - 2 (RaJ + 

sin (~RLx,) 

2Ra, 

(50) 

is a non-dimensional function of the fractional radius 

and 
x = r/R, 

G,,(t) = $ (1: rf(r) sin (m,) dr) exp [ - (2)’ r] + 

4 
(Ku; - KA*l,) x 

x 
i 

exp(-Ajt) - exp[- (:>‘I]}, (51) 

is a function of time whose dimension is deg. 
A few remarks are appropriate at this stage of our considerations: 
(1) T(0, t) is finite because T(r, t) depends on the limit of sin (ar)/r as r approaches 

zero: 
(2) T(R, t) = 0 because F,(R) = 0; 
(3) T(r, 0) reduces tof(r); this can be seen by using the representation of r-(r) in 

terms of the two sets of orthogonal functions as expressed by Equation (48); 
(4) the dependence of T(r, 1) on time is of an exponential character. 
The numerical difficulties that must be overcome in order to reach results from the 

above expression consist ofi (1) evaluation of the eigenvalues CI, as solutions of 
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Equation (36), and (2) evaluation of the integral of rf(r) sin (YCI) once an initial 
temperature profilef(r) has been agreed upon. In this regard, we deem it adequate to 
choose as initial temperature distribution a quadratic function in r/R: 

T(r, 0) = f(r) = fo + f, 1 - f , 
( 1 

where fO, f, are given constants whose dimension is deg. Recalling that 

I x3 sin x dx = - x3 cos x + 3x2 sin x + 6x cos x - 6 sin x, 

we can easily evaluate our integral and obtain 

1 R 

1 i‘ R 0 
rf(r) sin (ra,) dr = 

(53) 

Now that we have attained an analytical representation for the temperature, we use 
Equation (18) to retrieve an expression for the non-dimensional radial deformation 
r, . The operations required are only integration with respect to r, thus the functions 
G,(t) will not be affected. 

Elementary integrations give: 

2a 
O3 [sin (m,) - (red,) cos (m,)] - 
(RN,)* 

- + sin (Ra,) 

‘X(t) 
X 

l-2 
sin*(Ra,) 

U%J2 + 

sin (2RaJ 

2Ra, 

(54) 

One can easily verify that t,(r, t) remains finite at r = 0. 

6. Approximate Solution for the Earth’s Mantle 

For the silicates that constitute the Earth’s mantle the average value of the quantity 
~‘/&C,can be taken to be about 2 x 1O-5 (deg))‘, see, e.g., Birch (1961) and Kopal 
(1963). Assuming then the steady state temperature T,(r) to be about 2000”, we can 
write 

y E 1 + 4 x lop2 = 1.04. 

As a first order of approximation, we shall take y = 1 which, due to Equation (28) 
entails the specific relations: 
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B2 = 0. 2 A2K = 1. 

The conduction equation, Equation (24) will then simplify to 

dT Ka - = -- 
at r2 ar 

+ C4jexp(-Ajt), 
i 

and does not depend on the displacement 5,. We shall also consider that the initial 
temperature distribution T(r, 0) be given by Equation (52) as a quadratic expression 
in the fractional radius. 

Let us rewrite Equation (36) which defines the eigenvalues as 

sin (RX,) - (Ra,) cos (RaJ 
= 

WJ2 
(55) 

We see that the limit of this equation when B2 approaches zero is sin (RN,) = 0, 
whose solutions are 

Ra, = nn, (n = 0, 1, 2, . . ). 

We can now evaluate our particular solution by taking the limit of Equations (49) and 
(54) when B2 approaches zero and Ra, approaches nrc. For this purpose, let us note 
first that 

sin (Ra,) = 0; cos (Rcr,) = (- 1) 

ra, = f (RN,) = mcx. 

Next, from Equation (53) we get 

1 R 

jFz0 s 
r-(r) sin (ra,) dr = 

and from Equation (55), we see that 

R3 (- l)“+’ = -~ 
A2 rm ’ 

The temperature distribution in degrees and the non-dimensional deformation can 
be written in terms of time and fractional radius x = r/R as 

T(x, t) = f 2(- l)“+’ 
sin (nrrx) 

K(t); 
n=l mx 
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(56) 

where 

exp (-lit) - exp (-Kq)l 

has the dimension of deg. (57) 

7. Discussion of the Results and Conclusions 

We have obtained a solution for the thermoelastic deformations of a spherical Earth 
with constant elastic parameters when the heat sources consist of the spontaneous 
decay of various radioactive elements emanating from the center of the configuration. 

We have dealt with the Navier-Stokes equation and the heat conduction equation 
and have shown that these two equations are generally interrelated unless the two 
specific heats (C, and C,) of the material have the same value. We have solved the 
Navier-Stokes equation and ascertained the radial contraction of the spherical Earth 
due to its self-gravitation, and its radial expansion caused by a known temperature 
profile. 

We have solved simultaneously for the two fundamental equations and, having 
eliminated the time variable by the use of the Laplace transform, we have reached an 
integrodifferential equation (IDE) for the temperature distribution as function of the 
radial distance. The forcing terms of this IDE consist of the initial temperature 
distribution within the sphere and the radiogenic sources. We have found solutions 
to the IDE without forcing terms in the form of simple functions depending on a 
sequence of eigenvalues; these eigenvalues can be obtained by solving a transcendental 
equation depending on the thermal diffusivity of the material. 

We have reached the general solution of our problem by integrating the product of 
the Green function and forcing function over the whole radial distance. To do that, 
we first have shown that a unique Green function exists for our problem for each point 
of discontinuity and secondly we have made recourse to classical results of analysis 
to express this Green’s function as an infinite series of the product of two orthogonal 
sets of functions. 

The final results of our investigation are analytic expressions for the temperature 
distribution and radial deformations as infinite series of the radial distance and of the 
time. Each term of these infinite series depends on one of the eigenvalues. 

The temperature decreases outwardly as l/r, the radial deformations as l/r2; 
the decay in time is of the exponential type depending on the half-lives of the 
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radiogenic elements and the thermal diffusivity of the material. The numerical. 
summation of these series, once the eigenvalues have been ascertained, should 
not present any difficulty because of the decreasing character of the constituent 
functions. 

We have applied this analytical model to the Earth’s mantle. The two specific heats 
of the constituent silicates are here close enough to be considered approximately 
equal. This has allowed us to obtain at once the sequence of the eigenvalues and has 
given rise to simpler infinite series for temperature and deformations. 

Numerical evaluation of our analytical results remains to be implemented; this will 
be done in a future work to be considered complementary to the present one. We 
have, however, compared our solution to Kopal’s fundamental treatment of heat 
conduction through the lunar interior and deformations of the lunar crust (cf. Kopal, 
1966; pp. 116-l 21). Our solution appears to be more comprehensive than Kopal’s 
results, but compatible with Kopal’s formulation; and most of Kopal’s numerical 
work presented there can be verified using our equations for appropriate choices of 
the parameters. 

To conclude. We believe that the continuous radiation of thermal energy due 
to the spontaneous decay of radiogenic material should be taken into account in 
the overall study of the oceanic lithosphere, on top of which local disturbances 
like magma chambers and hot spots should be added. Hence our new model for 
evaluating heating rates and related stresses should be of interest in many practical 
problems of geological deformation. Our analytical solutions should be considered 
a guideline to the overall problem of numerical integration over a layered Earth. 
Furthermore, our approach can be applied with slight modifications to models 
where the heat sources are of a nature different from the one considered in this 
paper. 
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