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In order to obtain high-quality images of Venus and to construct a relief map of 
its surface by using side-looking radar and radioaltimeter observations from a 
spacecraft operating in a near-Venus orbit, as well as to provide accurate map 
control, one should know with high precision the trajectory of the spacecraft 
relative to the planet. For solving this problem a ground-based and spaceborne 
measurement data processing system has been developed in the Keldysh Institute 
of Applied Mathematics (USSR Academy of Sciences). The system has been used 
successfully for the radar mapping of Venus from the Soviet Venera 15 and 16 
spacecraft. Its capabilities are described in this paper. The authors hope that the 
the methods developed and the experience gained may also be useful in the 
MAGELLAN Project. 

The data processing system is based on a mathematical model of the orbital 
motion of a Venusian artificial satellite (VAS). In this model the satellite motion 
in the gravitational field of Venus is affected by perturbations due to the oblateness 
of the field, the gravity of the Sun and planets, and light pressure on the satellite 
surface. These perturbations give rise to the satellite’s orbit evolution. The evol- 
ution due to the Sun and planets is well understood. The oblateness of the Venus 
gravity field was determined from the Venera-9 and 10 observation data while 
preparing the present experiment (Akim et al., 1978) and Pioneer Venus Orbiter 
(Bruce et al., 1987). 

Observations of the Venera-15 and 16 spacecraft motion revealed still another 
cause of orbit evolution: perturbation of the motion of the satellite’s c.m. by the 
attitude control system (due to a difference in thrust between the jets providing 
rotation about each of two axes). Since the attitude control system operated at 
each revolution when the images were taken, it caused orbital perturbations at 
each revolution. The value and direction of the perturbing accelerations vary from 
revolution to revolution. To take these perturbations into account a mathematical 
model of a mechanism of their generation has been constructed. The model 
contains parameters determined by the trajectory measurements. For describing 
the satellite’s motion, osculating elements of its orbit are used. Calculations of 
perturbations in the orbit elements due to the oblateness of the Venus gravity 
field, the gravity of the Sun and planets, and light pressure are made by means 
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of numerical integration of differential equations of the satellite’s perturbed motion 
in the Lagrangian form. A numerical-analytical method was used to account for 
the perturbations caused by the attitude control system operation. 

The observational material was supplied mainly by the ground radar measure- 
ments of the Venera-15 and 16 Doppler shift. Besides, the measurements of the 
satellite altitude above the Venus surface, obtained by the spaceborne altimeter- 
profilograph, were also available. As a result of preliminary processing, the 
Doppler shift values were interpreted in the form of ballistic values of the satellites’ 
radial velocities with respect to spaced ground measuring stations. Compression 
of homogeneous trajectory information obtained in each measurement session was 
performed with its replacement by averaged measurements (AM). 

A technique of determining the VAS motion parameters forms the basis for the 
data processing system. The satellite orbit elements are determined along with 
unknown parameters of the attitude control system by means of statistical process- 
ing of AM of ground trajectory measurements and spaceborne measurements. 
To enhance the accuracy of determining the satellite trajectory a technique of 
measurement data processing was developed which enabled us to correlate trajec- 
tory measurements over about 1 month. The entire interval of the Venera-15 and 
16 flight, during which the radar mapping was carried out, was split into segments 
of the above given duration. The Venera-15 and 16 trajectory was determined in 
two stages. At the first stage, by using the ground trajectory measurements from 
each segment, the orbit elements referring to the beginning of the segment were 
determined along with additional parameters characterizing the attitude control 
system operation during this segment. To solve this problem the onboard measure- 
ments of the satellite altitude above the planet surface were also used for some 
segments. 

At the second stage the orbital elements and the additional parameters were 
adjusted for all segments. For this purpose a multiparametric problem was solved 
to determine L parameters from all the measurement data, where 

N being the number of segments for both satellites; i, the number of a segment; 
mj is the number of additional parameters of the i-th segment. For solving this 
problem the whole set of ground trajectory measurements (in the form of AM) 
was used in addition to the onboard measurements of altitudes carried out by 
different VAS, or by a single VAS on different segments, for the same regions 
on the planet surface. 

Numerical values of the VAS parameters obtained from the first stage were 
used as good initial values for the iterative second-stage procedure of this large 
multiparametric problem. Its solution yields a unified correlation of all trajectory 
measurements performed by Venera-15 and 16 on the mapping interval, and 
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provides higher accuracy in determining the VAS trajectory. The proposed tech- 
nique using the altitude difference measurements as well as the technique for 
combined evaluation of the satellites’ orbital elements and the parameters of 
nongravitational perturbations, with the specific features of the spacecraft attitude 
control system operation taken into account, are original. 

By using this data processing system implemented in the form of large computer 
program complexes the Venera-15 and 16 trajectories were determined with high 
accuracy for a major part of imaging revolutions by a team of specialists in the 
Keldysh Institute of Applied Mathematics. The results in the form of orbital 
elements for each revolution have been used to construct a picture of Venus and 
its relief, to make the coordinate referencing of radar images, The orbital data 
were also made available to American specialists. 

1. Mathematical Model of Motion of the Venusian Artificial Satellites 

1.1 DESCRIPTION OF THE VENUSIAN ARTIFICIAL SATELLITE MOTION 

The Venera-15 and 16 satellites operate in the gravitational field of Venus. Their 
motion is perturbed due to oblateness of the field, gravitational effects of the Sun 
and planets, the light pressure effect upon the satellites surface, and the effect of 
minor active forces caused byJ operation of the attitude control systems on the 
satellites. 

The Venera-15 and 16 motion is described in Cartesian coordinates. The origin 
of the coordinate system coincides with the Venus cm. and the axes are fixed 
with respect to stars. The XY plane coincides with the plane of the average 
planetary equator for epoch 1983, October 1.0 (Moscow time). The 2 axis is 
perpendicular to this plane and directed opposite to the vector of angular momen- 
tum of the planet’s proper rotation, towards the North of the fixed Laplace plane. 
The X axis is in Venus’s equatorial plane and zero meridian; the Y axis completes 
the right-handed coordinate system. The zero meridian of Venus is defined by 
setting the Venusian longitude of the central meridian of the planet as observed 
from the Earth’s center on 20.06.1964 at 00.00 of ET (Ephemeris Time) for 
2438566.5 JD (Julian Date) equal to 32OO.O. In the geoequatorial coordinate system 
of epoch 1950.0 the coordinates of the North Pole of Venus are taken as CQ = 
272O.8; S, = 67”.2 (System of IAU). 

For describing the motion of the satellite, the orbital elements used are as 
follows: the semimajor axis, a: the Laplace vector components, cpI = e sinw and 
cpz = e cosw (e is the eccentricity and o is the argument of pericenter - the angular 
distance to pericenter from the ascending node of the orbit): the inclination. i; 

the ascending node longitude, an; and the time of passage through this node. T,,. 
The angular parameters i, w and 1R are measured from the XY plane and the X 
axis using the usual method of celestial mechanics. 
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1.2. DIFFERENTIAL EQUATIONS OF MOTION 

The osculating elements of the satellite orbit at a current time t 

are calculated by the formula 

4 = 40 + Aq, (1.2) 

where 

40 = b0, n0,920,i0, fh TCLO), (1.3) 

are the osculating orbital elements at the time of the satellite’s passage through 
the first ascending node of the orbit, and are current perturbations. The current 
perturbations are calculated by integrating numerically the differential equations 
of the satellite’s perturbed motion in the Lagrange form: namely, 
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where p is the gravity constant of Venus, and c is the angular momentum. The 
perturbation function R consists of four summands characterizing, respectively, 
the perturbations in the satellite motion due to oblateness of the Venus gravity 
field, the Sun gravity effect, the light pressure onto the satellite surface and minor 
active forces caused by operation of the satellite attitude control system. 

1.3. INVOLVEMENT OF PERTURBATIONS IN THE SATELLITE MOTION CAUSED BY THE 

GRAVITY EFFECTS 0~ THE SUN AND PLANETS, OBLATENESS OF THE VENUS 

GRAVITY FIELD AND THE LIGHT PRESSURE ONTO THE SATELLITE SURFACE 

Partial derivatives of the perturbation function with respect to the orbital par- 
ameters, which are contained in the right-hand sides of Equations (1.4), are 
calculated by the formulas 

(1.5) 

where F{F,, Fy, F,} is the vector of the perturbing acceleration in the coordinate 
system XYZ with the components 

F,=z, F,=%, Fz=E 

~&g$.; 

(1.6) 

and 

(1.7) 

are the partial derivatives of the radius vector with respect to the orbital elements 
(1.1). 

The components of the Sun’s perturbing acceleration are calculated by the 
formula 

where pU is the gravity constant of the Sun, fb{x,, y,, z,} is the Sun radius vector, 
3x, y, z} is the VAS radius vector in the considered coordinate system, and 

P = a7 - x)’ + cyc - y)* + (z, - z)*. (1.9) 

The gravity effect of planets upon the motion of the satellites is negligibly small 
on the time intervals under consideration. 

Components of the perturbing acceleration caused by the solar radiation pres- 
sure are calculated by the formula 

- - 
p; = Kpc7--1_~, 

d 
(1.10) 

where K is a coefficient characterizing a value of the light pressure. 
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The gravitational potential of Venus is presented by a series in spherical func- 
tions in the form: 

P,,n,(e) c,,,, cos mh + d ,,,,, sin mh . 

Components of the perturbing acceleration due to oblateness of the Venus 
gravity field are expressed in the form 

(FG)>, = F, (FG); = 5, 

where RB is the average radius of Venus, 8 and A are the latitude and the longitude 
of the subsatellite point. 

The partial derivatives (df/laqi) are calculated from the formulae 

a7 2 - 
-z-e, 

di sin i ” 

g = {-y, x, 01, 

where 

RI = 2All cos u + All sm u, p, = I, c eN = e,. x I?;,p = - (1.12) 
7 c 

R2 = AZ, an u + AZ2 cos u, A,, =A 
1 + 92 
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1 + 92 
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T2 = f2 - (2 + (~2)A2,> 

Here u is an argument of latitude, and c is the angular momentum vector of the 
osculating orbit. 

Let us give also the necessary formulae for derivatives of the velocity vector 
components in orbital elements. They are 

ao 1 
aa=2a 3(t- T&i-v , 

7 
do a -=- 
%I P 

VNR,PN - (!J& - V,PN)T, 

dV a -=- 
%2 P i 

V&22-~ + (v&z, - v&p2 , 
I 

av v- - = -Lg. 
di ” sin i 

av -2’7, 
aT,, 7.1 

c - - v, = e,v, V N = -. (1.13) 
7 

Kinematic parameters of the satellite motion 7(x, y, z) and v(v.,, v,., v,) are 
calculated at the current instant of time t using the Keplerian equation with orbital 
elements q(a, cpI, (Pi, i, R, T,,) that osculate at this time. 

1.4. INVOLVEMENT OF PERTURBATIONS IN MOTION OF THE SATELLITE CAUSED BY 

OPERATION OF ITS ATTITUDE CONTROL SYSTEM 

Aside from the gravity forces and the light pressure described by Equations (1.4), 
the spacecraft motion is affected by the forces caused by operation of the attitude 
control system. The spacecraft orientation in space is changed by rotating the 
body coordinate system around the axes OX and OZ. The rotation around each 
of those axes is performed by two pairs of jets (one pair of forces provides the 
clockwise rotation of the spacecraft while the other provides the counter-clockwise 
rotation). In the idea1 case the jets of the same pair have identical thrusts and are 
oppositely directed. The operation of such a pair of jets does not produce ad- 
ditional forces affecting the spacecraft cm. motion. In real spacecraft, however, 
the above mentioned conditions are more or less violated. In this case, the arising 
additional forces generate accelerations of the spacecraft c.m. 

Let the real forces arising due to the operation of jets of the i-th pair be 
designated by f;(r) and -f:(t). We shall assume that axes of the paired jets are 
parallel and as the thrust of one jet increases the thrust of the other jet also 
increases in proportion. In this case the forces fi and fj can be given in the form 
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where 

v, -.fi -.tl 1 
fi ’ 

and 

-i f (4 
1 -. -. 

= - Lf’l (4 + fW1. 2 

The perturbing force applied to the spacecraft c.m. is determined by the vector 
-i *i 

f2Ct) - f Itt) = vifi (f) 

To rotate the spacecraft four pairs of jets operate by turns and provide an 
increase or a decrease in the angular velocity with respect to the axes OX and 
02 of the body coordinate system. 

An increment of the velocity vector caused by operation of the i-th pair of jets 
on the time interval tj, tjtI can be calculated by the formula 

where m is the spacecraft mass (we ignore its change). 
By taking into account that the value of f(t) in the first approximation is equalled 

to the design value of the jet thrust, the integrals 

can be calculated explicitly for each switch-on of the attitude control system jets. 
According to the assumption made above, if the design thrust value p increases 
the values of actual forces f: and $ increase in proportion; therefore the value of 
vi = 2(fi - fi)l(f: + f;) does not depend on the thrust intensity and characterizes 
a difference in the thrusts of jets of the i-th pair (it may conditionally be called 
the norm of the thrust difference of the i-th pair). 

2. Determining the Orbital Motion Parameters of Venera-15 and 16 by using the 
Ground Trajectory Measurement 

2.1. DETERMINING THE VAS ORBIT ELEMENTS BY USING THE DOPPLER 

MEASUREMENTS 

For determining the Venera-15 and 16 orbits the radar measurements of the 
Doppler shifts of these spacecraft were interpreted in the form of ballistic values 
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of the radial velocity Lj with respect to the ground measuring stations. In order 
to obtain values of 0 we calculated the VAS position and the ground measuring 
station position in the geocentric geoequatorial coordinate system xyz of epoch 
1975.0. 

The orthogonal coordinates of the measuring station in the system xyz are 
calculated by using its Greenwich coordinates with involvement of the Earth’s 
proper rotation as well as the Earth’s rotation axis procession and nutation in the 
time interval from epoch 1975.0 to the measurement time. 

The measurements of Lj were carried out in the request regime. We give the 
formulas for calculating values of the radial velocity d. Let r2 be the instant of 
time of emitting a signal by the ground transmitter, 7;, and v,, are the position 
and the velocity of the transmitter at the time t2; tl is the time instant of the signal 
reception and transmission by the satellite; 7,ec and v,, are the position and 
velocity of the ground receiver at the time to. 

For the known to, when the signal is received, the times tl and t2 with their 
respective 7, v and 7;T, P,, are calculated successively by means of iterative cycles 
determined by the relations 

lfdh) - %>I = Clh - 4 Q-1) 

17,,(h) - %)I = 4 - 4 (2.2) 

where c is the light velocity. 
Calculation of values of the function 9 = 9 under measurement is carried out 

by the formulae: 

22 = ;<La!, + 92) 

(2.3) 

91 = If(h) - 7;,c(fo)l, 

92 = Iql) - G2)l. (2.4) 

The method of the Newton’s generalized tangents does not require high accuracy 
of the derivatives. This fact was used to accelerate calculation of isochronous 
partial derivatives of the functions under measurements. A numerical-analytical 
technique was developed, in which the satellite trajectory was divided by equal 
values of the argument of latitude (synphase points) into small-perturbation segm- 
ents-turns. Within a segment the motion is assumed nonperturbed and the deriva- 
tives of the orbital element reffered to the beginning of the segment, are calculated 
by the final formulas of the two-body problem. At the passage from turn to turn 
the perturbations in the satellite motion due to the Sun gravity effect are taken 
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into account. To involve these perturbations we use the final formulas obtained 
within “the first approximation” in expanding the solution of differential Equations 
(1.4) over the time interval of one turn into a series by powers of a small parameter 
(a ratio of the semimajor axis of the satellite to the distance to the perturbing 
body-the Sun). The Sun is assumed fluid during the satellite revolution. 

The parameters under measurement are designated by rC, and under verification 
by 6. A scheme of calculating the necessary partial derivatives is determined by a 
succession of the functions 

f = n(q, f), 

4 = 4(& 0, (2.5) 

where 2(x, y, z, v,, vY, v,) is the vector of orthogonal coordinates and velocities 
of the satellite at the time of measurement, and 4 = q(a, cpI, (p2, i, a, Tn) are the 
osculating elements of the satellite orbit. 

Let 9($/x) be the matrix of partial derivatives of the function I+!I with respect 
to the orthogonal coordinates, 3(x/q) be the matrix of partial derivatives of 
orthogonal coordinates with respect to the orbital elements and 3((9/8) is the 
matrix of partial derivatives of the orbital osculating elements with respect to the 
parameters under verification. Then the matrix of isochronous partial derivatives 
of the functions under measurement with respect to the parameters under ver- 
ification can be given in the form 

(2.6) 

Calculation of the matrix Y(I,/J/x) is determined by the form of function I+!I. For 
measuring the radial velocity d (the Doppler measurements) the vector gradients 

2 = SL JqJ, %I, ~2 = MfMx, My, M,), 
where 

have the form 



ORBIT DETERMINATION FOR SATELLITE OF VENUS 569 

(2.7) 

Within one revolution of the satellite the matrix Q/q) is calculated by formulas 
of nonperturbed motion (1.12) and (1.13). 

In the matrix F(q/8) the perturbations in the satellite motion are involved. Let 
us present Y(q/8) at the time of passage through the k-th ascending node in the 
form 

The matrix Z(q’k’lq’kp”) involves the perturbations over (k - 1) revolutions. It 
represents a matrix of partial derivatives of orbital elements at a current k-th 
ascending node with respect to the elements at the (k - l)-th ascending node. The 
initial matrix F(q”‘/0) is a unit matrix. Thus, the matrix F(q/8) changes step-wise 
at the time of passage through ascending node, remaining constant within one 
revolution of the satellite. 

The passage time is determined by numerical integration of the motion equations 
(1.4) under the condition z = 0 (for dzldt > 0). 

To obtain analytic formulas for perturbations in the orbital elements over one 
revolution within “the first approximation” the solutions of differential Equations 
(1.4) were expanded into a series by powers of the small parameter. 

2.2. DETERMININGTHE VAS ORBITELEMENTSALONGWITHUNKNOWNPARAMETERS 

OF THE ATTITUDE CONTROL SYSTEM OPERATION 

The planetocentric orbit elements of VAS 

are chosen as the motion parameters to be verified. Besides, the parameters 
vI, v2, v3, and v4 that characterize the thrust differences in four pairs of jets in the 
attitude control system are also included into verification procedure. In addition, 
we verify the values of additional impulses of velocity, applied to the satellite’s 
c.m. while generating the constant solar and solar-stellar attitude control modes. 

In order to decrease the amount of computations the perturbations in kinematic 
parameters of the satellite motion, Axi(i = 1,2, . . . ) caused by operation of the 
attitude control system during one session are referred to the time of orbital 
pericenter rP and summed over separately for each of the four pairs of jets. - 

In the linear approximation the corrections Axi (x,) to the satellite state vector, 
which refer to the orbit pericenter, are connected with the corrections to the 
satellite state vector at the time ti by the relation 
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where (a$tP))l(an(fi)) is the matrix of derivatives of kinematic parameters at the 
time tP with respect to the kinematic parameters at the time ti. The vector - 
Axi is calculated in the following way. By solving a system of the linear 
equations 

aa - - 
- Aqi = AXi( 

aq 

the corrections to the orbital elements Aqi are determined. Then we calculate the 
product 

- 
Ax&,) = ax(b) - 

3 
Aqi * 

The matrix of the derivatives (an(&))l(ag) and (an(r,))l(a~) of kinematic par- 
ameters with respect to the orbital elements is calculated by the formulae of 
nonperturbed motion. 

Let at the times ty ty 1, Z,.*.r & the satellite obtain instantaneous increments of 
kinematic parameters as 

- 
Axi = v,jji 

where vl, . . . , vM are the scalar multipliers; Ji, . . . , PM are the base vectors 
characterizing the directions along which the increments of kinematic parameters 
occur. 

By using the measurements, I,!J~, $*, . . . , eN made at the times t y, t%, . . . , t,$ we 
verify the multipliers vl, . , . , vM. In this case the restriction 

Vi, = vi* zz . . . = ViM = Vi, 

may be imposed upon groups of multipliers out of the set vlr . . . , vM. Verification 
of the above parameters together with orbital elements is carried out by the usual 
least-squares scheme. In Section 2.1 we described the algorithm for calculating 
discrepancies between the measured and design values of the functions as well as 
the algorithm for calculating the derivatives of the functions under measurement 
with respect to orbital elements to be verified. Below we describe the algorithm 
for calculating the isochronous partial derivatives with respect to the parameters 
VI, v2, * . . , VM. 

Let us designate the kinematic parameters of the satellite, obtained as a result 
of instantaneous increments, by 

f,,,, = 2, + VMY,,, 
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and the satellite parameters before applying the increments by 

The measured function $ depends on the kinematic parameters X at the time t 
after applying the k-th increment as 

qqn) = l@(n,(n,- ,( . . . n*@,(q)) . . .)))) = 
= l+qn(v,g, + f;(V&,jk&, + x,,( . . . v& 

+ f’;(VlJ, + K(q)). . .>>>>. (2.9) 

The isochronous partial derivatives of measured functions with respect to the 
measured multiplier vI are calculated by the formula 

w a* ax,,, -’ - -=- - 
avj aq i( > w 

yjm+ . . . +~~j’q. (2.10) 

The products of the form 

within the square brackets are calculated by solving the system of linear equations 

with respect to the time &,. 
The derivatives of the measured functions ~j(i = 1,2, . . . , N) with respect to 

the verified parameter v, that characterized the thrust difference in the i-th pair 
of jets are calculated by formula (2.10). To calculate the expression within the 
square brackets, we sum over the terms responsible for the perturbations in the 
satellite motion caused by operation of the i-th pair of jets. 

For determining the parameters of additional velocity impulses applied to the 
satellite cm. for generating constant solar and solar-stellar attitude control modes 
the same algorithm for multiplier verifications is used. The velocity increment - 
vector under verification Av is projected onto the radial P, transversal I?,,, and 
binormal C? ( directions 

- 
Av = w+?, + w,~,,,, + w&,~. 

The multipliers w,, w,,, and w ( are verified. The vectors 

jI ={O,O,O.eTr.e,,,e,,}. 

Y2 = VA 0, 0, e,,,, 3 e,,,,., e,,,,l. 

gi = (0.0.0, e,,-. eSc,..erc}. 

are considered as basic. 
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2.3. DETERMINATION OF THE VAS ORBIT ELEMENTS TOGETHER WITH UNKNOWN 

PARAMETERS OF THE ATTITUDE CONTROL SYSTEM OPERATION BY USING A SET 

OF THE GROUND AND ON-BOARD MEASUREMENTS CARRIED OUT OVER THE 

WHOLE INTERVAL OF RADAR IMAGING 

During the radar imaging the spaceborne radioaltimeter determines distances from 
the satellite to a subsatellite point on the Venus surface, that reflects a radiosignal. 
By using these measurements for verifying the orbital motion of the satellite we 
can considerably increase an accuracy of determining the motion parameters. 

In the first approximation it may be assumed that the direction of the signal 
emitted (by the direction of the signal emitted) by the radio-altimeter coincides 
with the line connecting the satellite to the Venus c.m. In this case, the distance 
h from the satellite to the point on the planetary surface reflecting the signal is 
expressed by the relation 

h(7) = T - R(cp(?), h(f)), 

where f{x, y, z} are the VAS coordinates in the fixed-in-Venus system, 
T+C-T-T. x + y + z is the distance of the Venus cm. to VAS, cp and A are the 
latitude and longitude of the subsatellite point, and R(cp, A) is the distance of the 
Venus c.m. to the point on its surface with coordinates cp, A. 

The relief of the Venus surface, described by the function R(cp, A) is a priori 
unknown. Therefore, for calculating the design value of altitude h at the time I 
one has to be content with the idea of the Venus surface in the form of a sphere 
with mean radius Ro. At comparison between measured and design values of 
altitude, along with an instrument error of measurement we come across an error 
connected with ignorance of the planetary relief such as 

Ai = R(q(ti), A(ti)) - Ro, 

whose value may achieve a few km, which greatly surpasses the instrument error 
Ai. 

In order to eliminate an effect of the errors due to the relief ignorance, for 
determining the VAS orbit we use differences between altitude measurements 
made by the spaceborne radioaltimeter on two different revolutions when the 
satellite passed above the same point on the planetary surface. This altitude 
difference obtained between measurements at the time tl and t2 can be written in 
the form 

hy - hy” = T:’ - R(cp,, Al) + Ai --)[r: - R(cp,, AR) + A,], 

where ~7 and T;T are the true values of the distances from VAS to the Venus c.m. 
If cpl = q2, Ai = AZ, R(cpl, A,) = R(cp,, AZ), the value of the measured altitude 

difference 

Ah”” = f,y -h~=T~-T~+A1-A2, 
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does not depend on a value of the subsatellite point elevation over the sphere of 
radius RO, which approximates Venus. The corresponding design value Ah = 
71 - r2 is also calculated without data on the Venus relief. In this case, it does 
not matter whether the measurements hy and hy were made from one or two 
different satellites. It is only essential that both measurements be made above the 
same point on the Venus surface. 

We consider the problem of combined determination of orbital elements and 
parameters of nongravitational perturbations caused by operation of the attitude 
control system. For this purpose we use a set of earthbased and onboard trajectory 
measurements. An interval of trajectory measurements is divided into the segments 
MI, M2, . . . , M,, each of them having its own set of motion parameters. The 
number of verified parameters on each segment includes six orbital elements of 
the satellites and several parameters of nongravitational perturbations on the given 
segment. 

Intervals for trajectory measurements of the radial velocity on each segment are 
given in Table I. Numbering proceeds in succession regardless of the fact whether 
a segment refers to Venera-15 or Venera-16. 

In order to correlate a whole set of the ground trajectory measurements, made 
on different parts of the satellite motion, with the dynamics laws the altitude 
difference measurements are used. These measurements are effective only when 
a pair of altitudes making the difference are measured above two points on the 
surface that are sufficiently close to each other. The measurements of the altitudes 

Fig. 1 
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TABLE 1 

N VAS 

1 16 
2 15 
3 16 
4 1s 
5 16 
6 16 
7 15 
8 16 
9 15 

10 16 
11 15 
12 16 
13 1s 
14 16 
15 15 
16 15 
17 16 
18 15 
19 16 

Measure interval Number Number 
of d of PV (01 UlI Vll 

31.10.83-27.11.83 1x5 x 0.11 0.W 
11.11.83-28.11.83 xx II 0.46 0.50 

1.12.83-21.12.83 138 10 0.43 0.52 
1X.12.83-11.01.84 122 12 0.53 n.sn 
25.12.83-8.01.X4 Y7 10 0.25 0.3x 

X.01.84-25.01.84 12Y 10 0.17 (I.-L! 
18.01.84-8.02.84 105 11 0.58 0.7.5 
29.01.84-19.02.84 108 11 0.85 I.12 
16.02.84-12.03.84 YY 12 0.2Y 0.50 
23.02.84-4.04.X-I 14-I 13 0.56 (I.66 
15.03.X4-‘).04.X3 105 IO 0.52 0.52 
24.03.84-17.04.84 103 11 0.51 0.56 
14.04.X4-lS.OS.84 I.30 12 0.36 0.62 
22.04.84-20.05.84 YY 13 0.3Y 0.72 

3.0.5.84-10.06.84 124 II l.lY I .30 
25.06.84-11.07.84 66 10 1.01 1 .oo 
29.06.84-17.07.84 72 11 1 .OY 1.12 
10.10.83-17.10.83 76 7 0.37 0.3h 
14.10.83-22.10.X3 76 1 1.03 1.81 

forming the pair must belong to two different trajectory segments. In this case 
they are most valuable from the information point of view. 

Two different sessions of altitude measurements performed every day near the 
orbital pericenter contributed to one file of altitude difference measurements. A 
list of these files is given in Table II. The measurement data forming the file 
depend on the satellite orbit parameters on each of the two segments. The orbit 
parameters are included in the set of parameters under verification, which ensures 
the correlation of different trajectory segments with dynamics laws. 

It is assumed that errors of the above two kinds of measurements are statistically 
independent and obey a multidimensional normal distribution law. In this case, 
for determining most probable values of parameters 0 under verification it is 
necessary to minimize the functional 

where the vector of determined parameters e{;, , . . . , i,,} is composed of verified 
parameters & on segments MI . . . M,,. In their turn the parameters to be verified 
q.>{q.,, (5.:) represent a pair consisting of orbital elements of the satellite on the s-th 
segment cf, and the parameters of nongravitational perturbations due to the atti- 
tude control system jets. In the above expression 5, and P, are, respectively, 
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NN Numbers of 
VAS 

Dates Number crO Numbers of 
of Ah intervals 

I 15 16 23.11.83 
2 1s 16 24.11.83 
3 15 16 28.11.83 
4 15 16 19.12.83 
5 15 16 22.12.83 
6 15 16 28.12.83 
7 1s 16 31.12.83 
8 1s 16 5.01.84 
9 15 I6 10.01.84 

10 1s 16 23.01.84 
I1 15 16 26.01.84 
12 15 16 17.02.84 
13 1s 16 20.02.84 
14 1s 16 26.02.84 
1s 15 I6 9.03.84 
16 1s 16 12.03.84 
17 16 16 24.03.84 
18 1s 16 29.03.84 
19 IS I6 15.04.84 
20 1s 16 21.04.84 
21 1s 16 27.04.84 
22 1s 16 3.05.81 
23 15 IS 1.OS.84 
24 IS IS Y.OS.84 
22 IS IS lS.OS.tiJ 
26 IS lb lS.OS.84 
27 1s 16 18.05.84 
28 1s 16 25.06.84 
29 16 15 4.11.83 
30 16 15 11.11.83 
31 16 1s 12.11.83 
32 16 15 13.11.83 
33 15 16 16.10.83 
34 I6 16 20.10.83 
35 16 16 16.01.84 
36 16 16 17.01.84 
37 I6 16 18.01.84 
38 1s 16 25.01.84 
30 I6 1s 16.04.83 
JO I6 1s 17.04.84 
41 1s 16 4.06.84 
42 1s 16 6.06.84 
43 1s 16 8.06.84 
44 15 16 9.06.84 
35 15 16 10.06.84 
46 16 15 23.04.84 
47 16 15 12.01.84 
48 15 15 10.01.84 
49 1.5 IS 25.01.84 
so 15 15 19.02.84 
51 16 16 11.11.83 

26.11.83 1589 0.28 2 1 
27.11.83 1593 0.23 2 1 

1.12.83 1.571 0.29 2 3 
21.12.83 1583 0.26 4 3 
25.12.83 1587 0.26 4 5 
30.12.83 1553 0.41 4 5 

3.01.84 1576 0.27 4 5 
7.01.84 1575 0.34 4 5 

12.01.84 1496 0.57 4 6 
25.01.84 1571 0.47 7 6 

1.02.84 S57 0.62 7 8 
19.02.84 1556 0.34 9 8 
23.02.84 1557 0.28 9 10 
28.02.84 1564 0.44 9 10 
11.03.84 1572 0.33 Y 10 
15.03.84 1524 0.27 9 10 
24.03.84 1.596 0.01 10 12 
31.03.84 1579 0.16 11 12 
17.04.84 1574 0.21 13 12 
23.04.84 1534 0.20 13 14 
30.04.83 1201 0.18 13 14 

5.05.84 1370 0.17 13 14 
4.05.84 1416 0.12 13 15 
Y.0S.N-t 15.52 0.01 13 15 

IS.0S.S-I 13OY 0.1s 13 1s 
18.OS.81 1123 0.32 13 I4 
20.05.84 1567 0.27 15 14 
10.07.84 1537 0.34 16 17 

1.07.84 1480 0.36 1 16 
8.07.84 139.5 0.28 1 16 
9.07.84 1406 0.25 1 I6 

10.07.84 1501 0.28 1 16 
1.07.84 1401 0.43 18 17 
2.07.84 1446 0.32 10 17 

29.01.84 226 0.30 6 8 
30.01.84 226 0.35 6 8 
31.01.84 222 0.33 6 8 
16.02.84 170 0.34 7 8 
29.04.84 210 0.38 12 13 
30.04.84 21s 0.28 12 13 
29.06.84 334 0.44 15 17 

1.07.84 271 0.44 15 17 
3.07.84 31s 0.47 1s 17 
5.07.84 315 0.46 IS 17 

30.06.84 so5 0.47 15 17 
5.06.84 130 0. 10 14 15 
7.06.84 131 0.46 6 IS 
4.06.84 14s 0.58 4 IS 
6.06.84 146 0.20 7 1s 
5.06.84 161 0.40 Y IS 

22.01.84 6’) 0.14 1 6 
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discrepancies between measured and design values and weight characteristics of 
all measurements; fi is a total number of measurements. 

The functional representing a sum of weighted squares of all observations is 
written as the sum 12 + m of the summands 

4= ii +k + E @s = i: 2 Pkitii + E 3 Psj[:j, (2.11) 
k=l s=l k=l i=l s=l j-l 

so that each of the first II summands ak to contain measurements of radial velocity 
on the k-th segment, while the rest of the summands must contain m groups of 
altitude differences of onboard measurements. The index k in (2.11) means that 
the discrepancy C$ki and the weight Pkj belong to the segment ML, while index s 
means that tsi and Psi belong to the s-th group of onboard altitude measurements. 

Let the s-th group include altitude differences in measurements made on seg- 
ments MS, and Ms2. Then the corresponding design values I,!J& = 1,2, . . . , M,) 
depend on the motion parameters &r, & under verification on those segments. 
The design values $ki(i = 1,2, . . . , Nk) of radial velocity measurements on the k- 
th segment depend only on the motion parameters i{qkr qi} of verification on this 
segment and do not depend on the motion parameters on other segments. 

Thus, the functional depending on the parameters under verification can be 
written in the form 

where 

Determination of the values of parameters fj that provide minimum of func- 
tional 6(O) is reduced to solving the nonlinear equations 

a@ a4 a+ -c-z...=- 
aql aq2 aqh 

where 

fi=h*n+ i: li, 
i=l 

is a total number of the parameters under verification, Ii is the number of nongravi- 
tational parameters on the i-th segment, 12 is the number of segments. 

The linearized system of equations has the form 

&@z-& (2.12) 



ORB,T DETERMlNATLON FOR SATELLITE OF VENUS 577 

Elements of matrix A and vector 4 are expressed by the formulas 

i,j= 1,2 ,..., fi. 

The matrix A and the vector <in the system of Equations (2.12) can be written 
as 

A=A+A’, A = $ Ak, A’= i A; 
k=l .s= 1 

& (e+ @, %-= $ ce,, ce;= E @, 

k=l s=l 

where Ak and %?k are the summands referring to measurements on the k-th seg- 
ment, A.: and @: are the summands referring to the s-th group of altitude differ- 
ences. 

Values of elements aij and @ are different from zero only when the derivatives 
are calculated with the parameters on the k-th segment. Therefore, the matrix A 
is a block-diagonal. The k-th block of matrix A as well as the corresponding k-th 
fragment of vector %? can be obtained by processing the trajectory measurements 
of the k-th segment independently of the rest measurements according to the 
above described technique. 

The elements (u:~)” of matrix A: and (%?:j)” of vector %: contain the derivatives 
of altitude differences between the sl-th and sz-th groups of measurements with 
respect to the whole set of parameters (2. The nonzero values of (a>j)” and (%J)” 
are obtained only for parameters &8sz that determine the VAS motion on segments 
M,, and MS,. 

Diagrams of matrix d and vector d are drawn in the figure. Nonzero elements 
of matrix Ai and vector (8: are distinguished by the dash line. In combination 
they form the matrix A, and the vector %?s which can be made up by processing 
the altitude differences of the si-th and s2 groups independently of measurements 
on other segments. Calculation of the design values comprising the matrix A, and 
the vector gX is carried out by formulas (2.3) and (2.4). One altitude group contains 
the measurements obtained in a session of the on-board radioaltimeter operation. 
The session lasts not more than 3 hours. Within this time the trajectory calculation 
is carried out by formulas of nonperturbed motion, providing a required accuracy 
in determining the satellite coordinates. The isochronous partial derivatives of 
altitude differences with respect to the parameters &, and & under verification are 
determined from the relation 
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where qi(i = 1,2) are the orbital elements determining the satellite trajectory over 
the s-th session of the radio-altimeter operation. 

Table I lists the characteristics of measure intervals for Venera-15 and 16 partici- 
pated in combined processing. For each measure interval we have: the number of 
AM (averaged measurements) Ij; the number of parameters to be verified (PV), 
involving six orbital elements of VAS, four parameters responsible for different 
thrusts of the jets and in some cases the values of impulses in the transversal 
direction, applied at the points where additional perturbations appeared. In the 
column below a&” we list values of the mean square error of unit weight at 
independent measurement processing on each interval. 

For the combined processing of measurements on all measure intervals, except 
0, the altitude differences between the two satellites (Venera-15 and 16) passing 
above the same point on the planetary surface were used. Table II shows the 
numbers of VAS and dates of sessions when the onboard radioaltimeters operated 
and the altitude differences were calculated. Also given are the number of these 
differences, and the last two columns give the number of measure intervals to 
which the dates are referred. 

The rro column in Tables I and II contains values of the mean square error of 
unit weight, obtained for each measure interval and the altitude difference intervals 
in the combined processing. 
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