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Abstract. Developing knowledge bases using knowledge-acquisition tools is difficult because each stage of develop- 
ment requires performing a distinct knowledge-acquisition task. This paper describes these different tasks and 
surveys current tools that perform them. It also addresses two issues confronting tools for start-to-finish develop- 
ment of knowledge bases. The first issue is how to support multiple stages of development. This paper describes 
Protos, a knowledge-acquisition tool that adjusts the training it expects and assistance it provides as its knowledge 
grows. The second issue is how to integrate new information into a large knowledge base. This issue is addressed 
in the description of a second tool, KI, that evaluates new information to determine its consequences for existing 
knowledge. 
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1. Introduction 

The purpose of a knowledge-acquisition tool is to help with knowledge-base development-- 

the progression of a knowledge base from a level of complete ignorance to a desired level 
of knowledge. Supporting start-to-finish development is hard because different stages of 
development require different forms of assistance. In this paper we describe the support 
that current knowledge-acquisition methods provide, issues in supporting start-to-finish 
development, and specific tools we have built to study these issues. 

Developing a knowledge base typically involves three stages: elicitation, refinement, and 
reformulation. During elicitation, the basic terminology and conceptual structure of the 
knowledge base is acquired. During refinement, knowledge is added to the skeletal struc- 
ture and debugged. Finally, during reformulation, the knowledge base is optimized for prob- 
lem solving. 

Knowledge-acquisition tasks have been defined for each stage of development. For exam- 
ple, a task during knowledge refinement is to explain how a faulty conclusion was reached 
so that the knowledge base can be debugged. Section 2 describes the tasks required for 
each stage of development and surveys knowledge-acquisition tools that perform these tasks. 

To support start-to-finish development, knowledge-acquisition tools must do more than 
sequentially perform these tasks. In addition to performing the tasks required for each stage 
of  development, the knowledge needed to perform successive knowledge-acquisition tasks 
must be acquired. For example, during systematic elicitation, the justification for inferences 
should be acquired so that conclusions can be explained during knowledge refinement. 
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Requiring such stage-setting complicates developing knowledge bases with a single tool 
or a collection of tools. 
Our research addresses two issues confronting tools for start-to-finish development of large- 
scale knowledge bases. The first issue is spanning multiple stages of development, which 
requires versatility to meet the needs of each stage. Ideally, transitions between stages are 
seamless, and there are no gaps in support during development. Section 3 describes Protos, 
which adjusts the problem-solving assistance it provides and the training it expects as the 
knowledge base develops. Its ability to support start-to-finish development is empirically 
demonstrated; through direct interaction with a domain expert, Protos has achieved profi- 
ciency at diagnosing hearing disorders and continues to learn as it is used. 

The second issue is integrating new information into existing knowledge. Knowledge 
integration involves evaluating new information to determine its consequences for existing 
knowledge. For example, new information might conflict with existing knowledge or reveal 
gaps in the knowledge base. Although knowledge integration is performed throughout 
development, our research focuses on automating the task during the advanced stages of 
development. This focus identifies the knowledge required to perform the task, which is 
critical to its application. Section 4 discusses our current research on KI, a tool for knowledge 
integration that efficiently determines nonsuperficial consequences of new information. 

2. The Tasks and Tools of Knowledge-Base Development 

In general, there are three stages in developing a knowledge base: 

* During systematic elicitation, the basic terminology and conceptual structure of the 
knowledge base is acquired. 

• During knowledge refinement, the knowledge base is debugged and extended. 
• During knowledge reformulation, the knowledge base is compiled to solve problems more 

efficiently. 

Sections 2.1 through 2.3 describe these stages and survey knowledge-acquisition tools 
supporting each stage. 

An ideal tool supports all stages of development. When there is little problem-solving 
knowledge available, the tool interviews the domain expert to acquire basic information. 
As the knowledge base grows, the tool helps identify gaps and inconsistencies responsible 
for problem-solving failures. Finally, the tool solves problems and improves performance 
without explicit training. 

A "workbench of tools" approximates the ideal tool. The workbench organizes a collec- 
tion of tools, each of which helps with a particular development phase. As discussed in 
Section 2.4, this method differs from the ideal tool in that the support it offers is not con- 
tinuous. Moreover, many current tools are not good candidates for the workbench because 
they do not set the stage for the tools used after them. In order to compare research results, 
much of this discussion focuses on knowledge acquisition tools for heuristic classification. 
Heuristic classification is the predominant problem-solving method in current expert systems 
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[Clancey, 1985]. The method relates the features describing a problem to a predetermined 
set of solutions and is useful for a broad range of tasks, such as diagnosis, that require 
classifying an unknown object or situation. 

2.1. Systematic Elicitation 

The primary task during systematic elicitation is acquiring the conceptual structure of a 
knowledge base through a structured interview with the domain expert. The conceptual 
structure is a "description of the kinds of domain-specific inferences that the consultant 
will perform and the facts that will support these inferences" [Bennett, 1985]. For heuristic 
classification, this includes the predetermined set of solutions and the features that describe 
problems. Researchers believe elicitation of the conceptual structure must be systematic 
in order to prod the domain expert's memory and to avoid overlooking elements of the 
conceptual structure. 

The knowledge required to perform systematic elicitation is a model to guide interaction 
with the user. The model describes the important components of a knowledge base for 
a problem-solving method or task. Some tools use a weak model of a generic problem- 
solving method, such as heuristic classification. Others use a strong model of a problem- 
solving method specific to a particular domain, such as diagnostic reasoning for disk failures. 

ETS [Boose, 1984] is representative of systematic-elicitation tools that use a weak model 
of classification. The ETS model contains information about the classification process, 
such as the use of discriminating features to select among competing classifications. The 
first step in using ETS is enumerating the conclusions that the knowledge-based system 
should be able to reach. Given these conclusions, ETS systematically elicits the conceptual 
structure by directing the expert through two tasks. The first task is to identify features 
that discriminate among conclusions. The second task is to rate each feature's importance 
to each conclusion. ETS uses these features and associations to construct a prototype 
knowledge base. Ongoing research on Aquinus [Boose and Bradshaw, 1987] focuses, in 
part, on refining the knowledge base by adjusting the features' importance ratings and by 
expanding the sets of conclusions and features. 

A systematic-elicitation tool using a strong model can be more focused. Such a tool is 
Roget [Bennett, 1985], which acquires the conceptual structure of a knowledge base by 
selecting and instantiating one of several available models. For example, starting with a 
model of medical diagnosis manually abstracted from a previously built knowledge base, 
Roget interviews the domain expert for specific diagnostic categories, symptoms, test results, 
predisposing factors, and rules for diagnosing blood infections. Going further in strengthen- 
ing the problem-solving model, Opal [Musen, Fagan, Combs, and Shortliffe, 1987] uses 
a model of oncology to elicit chemotherapy treatment plans. The expert communicates by 
completing treatment forms using domain-specific terms. 

Current tools for systematic elicitation are effective during the initial stage of knowledge 
base development. During this stage there is insufficient domain knowledge to solve prob- 
lems. The tools interview a domain expert, but ask questions unlike those typically answered 
by the expert. In contrast, the tools discussed next acquire knowledge during problem 
solving. 
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2.2. Knowledge Refinement 

The primary task during knowledge refinement is to incrementally debug a prototype knowl- 
edge base. Unlike conventional software systems, top-down development is impractical 
because the specification and design of a knowledge base cannot be formalized. Researchers 
have taken two approaches to knowledge refinement. Static analysis scans the knowledge 
base for patterns that suggest weak inference paths or missing knowledge. Dynamic analysis 
uses the knowledge base to process a set of test cases to reveal problem-solving errors. 
These analysis methods focus the developer on repairs and extensions of the knowledge base. 

Teiresias [Davis, 1977], which employs dynamic analysis, exemplifies tools for knowledge 
refinement. The domain expert presents a test case to the performance system. If the expert 
deems the result incorrect, Teiresias traces the erroneous reasoning path. Teiresias highlights 
portions of the knowledge base that may be responsible for the mistake, and the expert 
repairs the gap or inconsistency. As the expert introduces inference rules, Tieresias compares 
them with rule models abstracted from the knowledge base. Each rule model records correla- 
tions between antecedent terms and consequent terms. If a new rule violates a pattern, 
Teiresias reports to the domain expert and suggests a modification of the rule that conforms 
to the pattern. The refinement process continues until the domain expert is satisfied with 
the system's performance. Other knowledge-refinement systems include MORE [Kahn, 
Nowlan, and McDermott, 1985], which uses static analysis, and MOLE [Eshelman, Ehret, 
McDermott, and Tan, 1987], which combines static and dynamic analysis. 

Knowledge-refinement tools use the knowledge base in two ways. First, they use the 
problem-solving ability of the knowledge base to identify failures. When problem solving 
fails, the tool elicits knowledge from the expert to advance the knowledge base's develop- 
ment. Second, some tools use explicit knowledge of justifications for inference rules to 
determine the cause of problem-solving failures [Smith, Winston, Mitchell, and Buchanan, 
1985] and to explain each failure [Neches, Swartout, and Moore, 1985]. Using the knowledge 
base in these ways requires an initial conceptual structure capable of solving problems, 
revealing bugs, and explaining failures. Most tools for knowledge refinement (and systematic 
elicitation) do not acquire this initial knowledge. 

2.3. Knowledge Reformulation 

The primary task during knowledge reformulation is compiling the knowledge base for 
more efficient problem solving. This requires an initial knowledge base, called the domain 
theory, which is assumed to be complete but nonoperational. For example, the domain 
theory for chess encodes all the rules for play but is inefficient for selecting good chess 
moves. 

Leap/Vexed [Mitchell, Mahadevan, and Steinberg, 1985] exemplifies tools for knowledge 
reformulation. This tool is an apprentice to an expert VLSI circuit designer. Vexed is given 
a design specification and attempts to design a circuit. If Vexed fails, then the expert provides 
a solution, and Leap attempts to learn from this training. First, Leap uses its pre-existing 
domain theory, consisting of rules of logic and primitive building blocks for logic circuits, 
to construct a proof that the expert's design correctly implements the specification. Then, 
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the specification and the circuit design are generalized, subject to the constraints in the 
proof of correctness, to form a new design rule for Vexed's future problem solving. 

Knowledge reformulation performed by Leap/Vexed is restricted by two requirements. 
First, the domain theory must be complete to explain every solution presented by the expert. 
Second, the domain theory must be strong and consistent to prove the solution is correct. 
Unfortunately, most domains of interest (e.g., medicine) cannot be formalized; consequently, 
their domain theories are incomplete, weak, and inconsistent. Additionally, knowledge- 
reformulation tools ignore the acquisition of the required knowledge base and address only 
improvements in efficiency, not in competence or explanation ability. 

Integrating knowledge refinement with knowledge reformulation can address these limita- 
tions. For example, the Odysseus system [Wilkins, 1988] extends the domain theory used 
in knowledge reformulation. This learning apprentice observes an expert solving problems 
and attempts to explain the reasons underlying the expert's actions. Learning occurs when 
the explanation process fails. When one of the expert's actions cannot be explained, Odysseus 
conjectures new knowledge that would allow it to complete an explanation. The conjectured 
knowledge is validated by comparing it with a database of cases. If the hypothesized knowl- 
edge is consistent with the cases, it is added to the knowledge base. 

2.4. Supporting Start-to-Finish Development with a Workbench of Tools 

Tools for the knowledge-acquisition tasks discussed thus far support narrow phases of 
knowledge-base development. Conceivably, a collection of these tools could be combined 
into a workbench, which could support the start-to-finish development of knowledge bases. 
The approach is appealing, but several problems must be addressed. 

The first problem with the workbench approach is that the knowledge base is rarely at 
a uniform level of development. For example, a knowledge base supporting heuristic classi- 
fication contains inference rules relating observable data to final answers. During the knowl- 
edge base's development, parts of the knowledge base reliably classify and explain. Other 
parts are incomplete and erroneous. No narrow-spectrum tool from the workbench can 
refine the entire knowledge base. The second problem with the workbench approach is 
that the support it provides is not continuous. The developmental path is decomposed into 
discrete steps, and the consequences of supporting each step with a separate, narrow- 
spectrum tool can be severe: 

* Mismatched knowledge representations--Each tool constructs and uses different represen- 
tations for domain knowledge. For example, a tool for knowledge elicitation might repre- 
sent correlations among domain terms in a rating grid, while a tool for knowledge refine- 
ment might use a causal model to solve a problem and explain its solution. 

e Inconsistent user roles--Each tool has different requirements. For example, a tool for 
systematic elicitation requires a user familiar with basic terminology and high-level rules. 
However, a tool for knowledge refinement requires a user capable of debugging complex 
problems with the knowledge base. 

• Inconsistent user interface--Each tool presents the user with a different interface, which 
is an unnecessary source of confusion. 
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A final problem with the workbench approach concerns the specific tools that have been 
developed thus far. Many tools for acquiring the initial domain knowledge do not set the 
stage for the tools that follow them. Tools for knowledge refinement and knowledge refor- 
mulation require a support structure for domain knowledge. For example, Teiresias presents 
the inference path leading to an incorrect conclusion so that the domain expert can identify 
faulty inferences. However, many tools for systematic elicitation do not acquire the interme- 
diate inferences that support conclusions. Because of such mismatches, many tools are in- 
appropriate for the workbench. 

Because of these problems with the workbench approach, our research pursues an alter- 
native--a single tool that supports start-to-finish development of knowledge bases. Sections 
3 and 4 describe our approach to solving two issues critical to the success of such a tool. 

3. Protos: Continuous Support During Knowledge Acquisition 

Protos is a knowledge-acquisition tool that supports knowledge elicitation and refinement. 
It learns to perform heuristic classification by solving problems under the guidance of an 
expert teacher. When the expert describes a case, Protos assigns the case to a known category 
and explains the classification. If the classification is wrong or the explanation is inade- 
quate, Protos interacts with the expert to acquire knowledge. Its domain-independent method 
of classification suggests possible causes of problem-solving failures and guides interaction 
to extend and refine the knowledge base. 

Protos' problem-solving ability and interaction with the expert improve as it acquires 
knowledge. Initially, Protos lacks adequate knowledge for problem solving. It fails to classify 
cases and depends on the expert to provide classifications and explanations. As Protos 
acquires more knowledge, it becomes increasingly able to perform classification. However, 
misclassifications are frequent, and its ability to discriminate is refined. Through this evolv- 
ing interaction, Protos becomes an autonomous problem solver whose learning concentrates 
on acquiring specific knowledge to improve its ability to explain its classifications. 

The following dialogue illustrates Protos' early interaction with the expert as it acquires 
knowledge to classify hearing disorders. 

Expert: 

Protos: 

Expert: 
Protos: 
Expert: 
Protos: 
Expert: 
Protos: 
Expert: 

Protos: 

NewCase has the features: notch__at 4k, sensorineural:mild, hystory:noise, 
air:normal, speech:normal, static:normal, tympanogram:a, et ce tera  

These features suggest the classification normal__ear. To confirm this, a known case 
of nonnal~ear is being compared to NewCase. All features match except notch__at 
4k, sensorineural:mild, and history:noise. Is normal__ear the collect classification? 
No. 
Are any of the unmatched features of NewCase incompatible with normal__ear? 
All are. 
Protos cannot classify NewCase. What is its classification? 
Cochlear___noise. 
Please explain the relevance of case features to this classification. 
notch___at__Ak is usually caused by cochlear_noise. 
et ce tera  

NewCase is being retained as the first exemplar of cochlear__noise. 
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Through this interaction, Protos refined its ability to discriminate instances of a known 
category of hearing disorder and acquired initial knowledge of a new one. 

3.1. How Yrotos Performs Classification 

Protos' classification method guides knowledge acquisition by relating steps in the classifica- 
tion process to the domain knowledge required to perform them successfully. Each type 
of failure suggests types of knowledge that are absent or faulty. This section describes the 
classification method and the knowledge it requires. Section 3.2 discusses how failures 
of the method guide knowledge acquisition. 

Protos' method of classifying a case involves two steps. The first step is to hypothesize 
classifications based on the case's features (Figure 1). This step uses remindings, which 
are heuristic associations between features and categories learned from previous expert- 
provided explanations. The remindings associated with the features of a new case are com- 
bined to produce an ordered list of possible classifications. 

The second step in classification attempts to confirm a hypothesis by matching the new 
case with prototypical exemplars (Figure 2). A process of knowledge-basedpattern matching 
determines the similarity of the case and each exemplar. It uses previously acquired domain 
knowledge to explain how features of the case provide the same evidence as features of 
the exemplar. Overall similarity of the two cases is assessed by evaluating the quality of 
the resulting explanation and the importance of unmatched features. 

If a match is imperfect, Protos searches for a more similar exemplar by traversing differ- 
ence links associated with the current exemplar. Difference links connect exemplars and 
record their criterial differences. 

Confirmation of the hypothesis is evaluated to determine Protos' next action. If the match 
is strong (i.e., adequately explained), it is presented to the user for approval and discus- 
sion. If it is weak, Protos considers other hypotheses and exemplars. Protos reports failure 
if its hypotheses are exhausted without finding an adequate match? 

NEW CASE DESCRIPTION 

~ PREVIOUSLY LEARNED REMINDINGS 

~NDII ~"~'~,~?~r~c,,~T ~ GIEURISTICS FOR 
~ COMBINING REMINDINGS 

ORDERED LIST OF POSSIBLE CLASSIFICATIONS 
Figure 1. Step 1--Hypothesize classifications. 
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ORDERED LIST OF POSSIBLE CLASSIFICATIONS @ /ExE~P~S 

N PROTOTYPI CALITY RATI N GS 

~_~ROTOTYPICAL EXEMPLAR 

/w~n~ ~-n~'_x~ J NEW CASE DESCRIPTION 

x SII~MOIL~d~G OF FEATURAL 

MATCH AND CLASSIFICATION 

Figure 2. Step 2--Confirm a hypothesized classification. 

3. 2. How Failures Guide Knowledge Acquisition 

Protos learns by analyzing and discussing failures of the classification method. The following 
general types of failures are possible: 

1) Failure to classify--no classification can be determined 
2) Failure to discriminate--an incorrect classification is reported 
3) Failure to explain--the correct classification is inadequately explained 

Protos associates each failure with a type of domain knowledge and interacts with the 
expert to acquire or refine the knowledge. Figure 3 presents Protos' algorithm for learning 
from failures. 

Failure to classify a case indicates that Protos lacks knowledge of how a case's features 
determine its classification. The expert is asked to classify the case. Protos tries to relate 
each feature of the case to the provided classification by explaining its relevance. If  Protos 
cannot relate a feature to the classification, the expert provides an explanation, which is 
added to the system's domain knowledge. After all of the features have been explained, 
the case is retained as a new exemplar of the classification. 

Failure to discriminate occurs when Protos reports an incorrect classification. This indi- 
cates that Protos lacks knowledge to discriminate between instances and noninstances of the 
classification. Protos should not be able to match a new case to an exemplar of an incorrect 
classification. When such a match occurs, three possible causes are discussed with the expert. 
First, the expert is asked to evaluate the explanation relating the case and exemplar. Second, 
he is asked about unmatched features of the new case to determine whether any are incom- 
patible with the classification. Third, he is asked for additional discriminating features. 
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GIVEN: 

FIND: 

Search 

IF not 

THEN 

ELSE 

a new case 

a classification of the case and an explanation of the 

classification 

for an exemplar that matches the new case 

found 

{classification failure} 

Ask teacher for classification 

Acquire explanations relating features to classification 

Compile remindings 

Ketain case as an exemplar 

IF the teacher disapproves 

THEN <discrimination failure} 

Keassess remindings 

Discuss featural matches with the teacher 

Ask for discriminating features 

Kemember unmatched features to add difference link 

ELSE <classification is correct} 

Increase exemplarJs prototypicality rating 

IF match is incompletely explained 

THEN <explanation failure} 

Ask teacher for explanations of featural 

equivalence 

IF not given 

THEN Ketain case as exemplar 

ELSE <processing was successful} 

Figure 3. The Protos algorithm for learning from failures. 

Failure to explain a correct classification indicates that Protos lacks knowledge to support 
its classification. Protos and the expert discuss improvements to the explanation of the match 
between the new case and the recalled exemplar. Unmatched features of the exemplar are 
of particular concern. For each, the expert is asked to identify a corresponding feature 
in the new case and to explain their relationship. If the expert cannot provide these explana- 
tions, the case is retained as a new exemplar. 

Protos is also concerned with learning efficient problem solving. Just as it elicits and 
refines domain knowledge by discussing problem-solving ~.ilures, Protos acquires and refines 
an indexing structure of remindings, difference links, and prototypicality ratings. As discussed 
in Section 3.1, these indices limit the search for matching exemplars during classification. 

When Protos fails to classify, it acquires remindings. To correct the failure, the expert 
provides explanations relating each case feature to the classification. Protos compiles the 
explanations into remindings that directly associate features and classifications. The strength 
of each reminding is determined by evaluating the explanation's quality, using heuristics 
similar to Cohen's path endorsements [Cohen and Kjeldsen, 1987; Bareiss, 1989]. 

When Protos fails to discriminate, it refines remindings. The remindings that suggested 
the incorrect classification are reassessed to determine whether they are consistent with 
the system's current knowledge. Because Protos is incrementally acquiring domain knowl- 
edge, it attempts to regenerate the explanation from which each reminding was compiled 
to determine whether it is still valid. If the explanation is no longer valid, the reminding 
is weakened or removed. 
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Protos also acquires a difference link when a failure to discriminate occurs. A difference 
link records important featural differences that distinguish two exemplars. Upon adding 
the new case as an exemplar, Protos creates a difference link between the case and the 
improperly matched exemplar. Protos suggests the features to annotate the difference link, 
and the expert approves them. 

When a correct match occurs, Protos increases the exemplar's prototypicality rating. Proto- 
typicality is determined by family resemblance, that is, the degree to which an exemplar 
matches other category members. An increased rating makes selection of the exemplar 
more likely during subsequent classification attempts. 

Explanations play two roles in knowledge acquisition. First, explanations describe the 
relevance of exemplar features to categories. Such explanations enable remindings to be 
compiled and importance of features to classifications to be estimated. Second, explanations 
describe how different features provide equivalent evidence for a classification. Such explana- 
tions provide knowledge to match cases that are not uniformly described. 

An explanation is a plausible chain of relations linking domain terms in the knowledge 
base (e.g., "fur is consistent with mammal which has specialization dog"). Explanations 
are expressed in a predefined language of relations (e.g., "causes," "co-occurs with," "has 
part"), qualifiers (e.g., "usually" "sometimes" "occasionally") and expert-supplied domain 
terms [Bareiss, 1989]. Heuristics associated with specific relations allow Protos to evaluate 
their plausibility in the context of a particular explanation [cf. Cohen and Kjeldsen, 1987]. 

In summary, Protos elicits and refines domain knowledge by interacting with the expert 
in the context of problem-solving failures. Through classification and discrimination failures, 
it acquires exemplars, an indexing structure, and general domain knowledge. Through expla- 
nation failures, it acquires the ability to explain its (otherwise correct) classifications. 

3.3. An Example of Protos' Evolving Interaction 

This section presents two examples illustrating how Protos' interaction with an expert audiol- 
ogist evolved to support start-to-finish development of a knowledge base for classifying 
hearing disorders. The first example is from early in training; Protos systematically elicits 
knowledge of a new classification from the expert. The second example is from late in 
training; Protos refines its ability to explain an otherwise correct classification. To enable 
direct comparison of the two stages of training, NewCase, the case discussed in the intro- 
duction to Section 3, was presented to Protos twice. Independent copies of the knowledge 
base were used so that knowledge acquired by processing NewCase the first time did not 
affect its processing the second time. 

3.3.1. Processing NewCase Early in Training This example elaborates on the dialogue 
in the introduction to Section 3. NewCase was processed when Protos had seen few cases 
and lacked domain knowledge to classify correctly. At this stage of training, interaction 
with the expert primarily involved acquiring exemplars and systematically eliciting knowledge 
relating their features and classifications. 

Based on past training, the features of NewCase (Figure 4) remind Protos of two possible 
diagnoses (Figure 5). When the individual remindings are combined, normal ear is the 
strongest hypothesis. Protos retrieves the most prototypical exemplar of normal__ear and 

22 



START-TO-FINISH KNOWLEDGE BASE DEVELOPMENT 269 

Case: NewCase 

Classification: Unknown 

sensorineural: mild 

notch at 4k 

history: noise 

speech: normal 

oc_acousfic_reflex: normal 

oi acoustic reflex: elevated 

Figure. 4. The features of the example case. 

Case: NewCase 

Classification: Unknown 

iacoustic_reflex: normal 

c_acoustic_reflex: normal 

static: normal 

tympanogram: a 
air: normal 

sapiIie~h:r~n~lrmal ~ 

tympanogram: a ~  

static: normal ~ 

iacoustic_reflex: normal ~ 

c acoustic_reflex: normal / ~ 

oi acoustic reflex: elevated ~ , /  

o c  acoustic reflex: normal / 

normalear  

cochlear_age 

Figure. 5. Hypotheses associated with the features of NewCase when presented early in training. 

attempts to match it to NewCase to confirm the hypothesis (Figure 6). Protos believes the 
match to be strong since all of the exemplar's features are matched. However, when the 
match is presented for discussion, the teacher rejects it as incorrect. 

This failure to discriminate results in learning to classify cases of normal___ear more 
accurately. Since the exemplar's features are perfectly matched by NewCase, there are only 
a few possible reasons for the problem-solving failure. Protos pursues them systematically. 
First, Protos independently reassesses the remindings, which led it to normal ear, with 
respect to its domain knowledge. It is able to regenerate the explanation from which each 
was compiled, suggesting that all are still valid. Second, Protos asks about the features 
of NewCase that were not matched by the exemplar and is told that all are incompatible 
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Case: NewCase 

Classification: Unknown 

Case: p8447L 

Normal_Ear 

air: normal 
speech: normal 
tympanogram: a 
static: normal 
i_acoustic_reflex: normal 
c acousticreflex: normal 
oi_acoustic_reflex: elevated 
oc acoustic_reflex: normal 
notch at 4K 
history: noise 

sensorineural: mild 

air: normal 
speech: normal 
tympanogram: a 
static: normal 
iacoustic_reflex: normal 
c acousticreflex: normal 
oi_acoustic reflex: elevated 
oc acoustic reflex: normal 

Figure. 6. Matching NewCase to an exemplar of normal ear. 

with the classification. Third, when it asks whether the exemplar has additional features 
that discriminate it from NewCase, the teacher does not identify any. 

Protos then tries to confirm its second diagnostic hypothesis, cochlear age. It is unable 
to find an adequately similar exemplar of this category, so discussion with the teacher is 
not possible. Protos fails to confirm its hypothesis and, as before, reassesses the remindings 
that suggested cochlear age. 

Having exhausted the hypotheses, Protos reports a failure to classify. It asks the teacher to 
provide a classification, and he classifies NewCase as cochlear__noise. Since Protos has 
no exemplars of this category, NewCase is retained as an exemplar. Protos then interacts 
with the teacher to acquire general knowledge of cochlear__noise. It asks the teacher to 
explain the relevance of each case feature to the classification (using the predefined explana- 
tion language). The teacher provides explanations such as "history:noise is required by 
cochlear~oise." From these explanations, Protos compiles remindings linking the features 
and the classification. For example, history: noise is inferred to be highly predictive of 
cochlear_noise. 

Since the failure to classify was preceded by a failure to discriminate, Protos installs a 
difference link between the new exemplar and the exemplar of normal ear that is errone- 
ously matched. The difference link is annotated with the features of NewCase that were 
not matched by features of the exemplar of normal ear. 

3.3.2. Processing NewCase Late in Training After Protos had seen 175 cases, NewCase 
was presented to illustrate the shift from knowledge elicitation to refinement. 2 As it acquires 
knowledge, Protos becomes increasingly competent at problem solving and expects qualita- 
tively different training from the expert. At this stage, Protos' classifications are generally 
correct, and interacton focuses on refining explanations. 

As before, Protos hypothesizes classifications using remindings compiled from explana- 
tions of previous cases. Based on combining the remindings shown in Figure 7, Protos' best 
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Case: NewCase 
Classification: Unknown 

sensorineural: mild / cochlear_unknown 

notch_at_4K ~ cochlear_noise 

history: noise ~ "  . cochlear age and noise 

s p e e c h : n o r m a l ~  cochlear noise heredity 

oc acoustic reflex: n o r m a l ~ ~  mixed noise o media 

oi acoustic reflex: elevated " ~ otitis media 

i acoustic reflex: normal ~ possible brainstem 

i~ti~?~t~_rnr~?ex: n ~  normal_ear 

mixed age_fixation 

~ cochlear_age tympanogram: a 

air:normal ~ ~ possible menieres 

bellspalsy 

Figure. 7. Hypotheses associated with features of NewCase when presented late in training. 

hypotheses are cochlear___age&noise and cochlear__noise. Protos rejects the first hypothesis 
when it cannot find a matching exemplar and reassesses the remindings to cochlear___ 
age&noise. It then tries cochlear__noise and finds a good match, which is illustrated in 
Figure 8. 

Most of the features of the two cases match directly. The match between sensorineural:miM 
and sensorineural:moderate is an exception. Protos can match these features because of 
a past, expert-provided explanation that the two values of sensorineural are sometimes inter- 
changeable in the context of this diagnosis. 

Discussion with the expert focuses on Protos' failure to explain the match completely. 
Protos asks the expert whether the unmatched features of NewCase are equivalent to the 
unmatched exemplar features. He tells Protos: 

notch at 4k is definitionally equivalent to notch__dk 

and 

if the category is cochlear__noise then c__acoustic__reflex: normal 
is sometimes interchangeable with c acoustic___reflex: elevated 

Protos does not retain NewCase because any future case that would match NewCase would 
match the existing exemplar equally well. The prototypicality of the exemplar is increased 
to credit its participation in a close, successful match. 
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Case: N e w C a s e  
Classification: Unknown 

sensorineurah mild 

notch at 4k 

history: noise 

speech: normal 

oc_acoustic reflex: normal 

oi acoustic_reflex: elevated 

i_acoustic_reflex: normal 

c_acousticreflex: normal 

static: normal 

tympanogram: a 

air: normal 

Case: p8572R 
Cochlear noise 

sensorineural: moderate 

notch 4k 

history: noise 

speech: normal 

oc acoustic reflex: normal 

oi acoustic reflex: elevated 

i_acousticreflex: normal 

c_acoustic_reflex: elevated 

static: normal 

tympanogram: a 

air: normal 

Figure 8. Matching NewCase to an exemplar of cochlear_._noise. 

Processing NewCase at two points in the evolution of the audiology knowledge base illus- 
trates how Protos supports different stages of knowledge acquisition. The first time NewCase 
was processed, the system had little domain knowledge and was unable to classify it correctly. 
Through discussing the failure to classify, Protos acquired knowledge of a new classification, 
an exemplar, and the relevance of the exemplar's features to the classification. The expert 
was asked to provide a considerable amount of explanation relating NewCase to the system's 
existing knowledge. Discussion of the failure to discriminate NewCase from a case of 
normal___ear refined Protos' indexing knowledge. 

The second time NewCase was processed, Protos had more extensive knowledge and 
could determine the correct classification independently. The expert played the more limited 
role of explaining relationships between features, which improved Protos' ability to explain 
its classification. 

3.4. Evaluating Protos in Clinical Audiology 

A distinct advantage of studying knowledge acquisition for expert systems is the evaluation 
criteria that it affords. Problem-solving proficiency can be measured as knowledge accu- 
mulates and, ultimately, can be compared with human experts. It is somewhat surprising 
that, with few exceptions [e.g., Quinlin, 1986; Michalski, 1987], knowledge acquisition 
tools have not been evaluated. This section describes some of the data collected to assess 
Protos' viability. 

Protos was trained using 200 hearing-disorder cases from the files of a large clinic. The 
training set was random. Its size was restricted to 200 cases because this is approximately 
the number of cases that a human audiologist sees during graduate school. For Protos to 
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be considered successful, it was deemed necessary for the system to classify accurately 
and efficiently given a similar amount of training. After training, Protos' performance was 
evaluated using a random set of 26 new cases. The characteristics of the training and test 
cases are presented in Table 1. 

The fundamental assessment of Protos' performance is the correctness of its classifica- 
tions. Protos correctly classified 82 % of the training set while learning. Afterwards, Protos 
correctly classified 100% of the test cases? 

Table L Characteristics of Cases Presented to Protos 

Characteristic Training Set Test Set 

Number of Cases 200 26 
Number of Categories 24 6 
Exemplars Retained 120 -- 
Mean Features/Case 10.6 11.5 
(Total number of features=73) 

Protos' problem-solving efficiency can be measured by the amount of effort it expended 
during classification. The average number of diagnostic hypotheses pursued and the number 
of  matches attempted gradually increased (Table 2). However, as a percentage of possible 
hypotheses, the number of  hypotheses pursued decreased. As a percentage of possible ex- 
emplars, the number of matches attempted remained fairly constant. The number of mat- 
ches presented to the expert remained fairly constant as well. The corresponding percen- 
tage decreased, indicating increasing autonomy. Most of the classification process was in- 
dependent of  the expert. 

Table 2. Classification Effort Expended 

Cases Hypotheses Pursued Matches Attempted Matches Discussed 

1-50 2.7 (25.5%) not available 1.7 (3.7%) 
51-100 2.8 (17.5%) not available 1.6 (1.9%) 
101-150 2.5 (11.9%) 4.6 (4.4%) 1.5 (1.4%) 
151-200 4.0 (16.7%) 7.4 (6.2%) 1.9 (1.6%) 
average 3.0 6.0 1.6 

test 3.7 (15.4%) 5.3 (4.4%) 1.1 (0.9%) 

The evolution of Protos' interaction with the expert can be seen in a gradual shift in the 
type of explanations Protos elicited (Figure 9). As the knowledge base evolved, Protos' focus 
shifted from attaining competence at classification to attaining competence at explanation. 
Early training was dominated by classification failures. Protos primarily elicited explanations 
relating features to classifications as new exemplars were retained. Gradually, classification 
failures were superceded by explanation failures, and interaction with the teacher shifted 
to explaining the similarity of features in the context of particular diagnostic categories. 
This knowledge refined the system's ability to explain its correct classifications. 

The design of Protos and its experimental evaluation in the domain of clinical audiology 
are more completely described in Bareiss [1989]. A Common Lisp implementation of Protos 
is available [Dvorak, 1988] and has been widely distributed. 
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I I I I 
1-50 51-100 101-150 151-200 

Cases 

Figure 9. Teacher-provided explanations per case. 

3.5. Strengths and Limitations 

Proms' primary strength as a knowledge-acquisition tool is its knowledge of the classification 
method. This initial knowledge relates steps in the classification process to the domain 
knowledge required to perform them. In particular, Protos relates failures during classifica- 
tion to particular forms of knowledge that are absent or faulty. This rich decomposition 
of the problem-solving task is perhaps the most useful form of a priori knowledge for 
knowledge-acquisition tools. [Bylander and Chandrasekaran, 1987]. 

Protos' classification method is effective during both systematic elicitation and knowledge 
refinement. Initially, Protos is unable to classify cases, and it acquires knowledge from the 
expert in the form of explained examples. As Protos acquires more knowledge, it becomes 
increasingly able to classify cases, although misclassifications are common. Using explicit 
knowledge of possible failures, Protos interacts with the expert to refine the knowledge base. 
Protos becomes an autonomous problem solver and acquires knowledge to improve its ability 
to explain its classifications. However, Protos' classification method is ineffective for deter- 
mining the consequences of knowledge-base modifications and extensions. As with most 
knowledge-acquisition tools, Protos is a "lazy evaluator" of new information. Some of the 
consequences of a knowledge-base change are revealed during problem solving, which is 
interleaved with knowledge acquisition; other consequences are undetected. "Eager evalua- 
tion" of new information is preferred for two reasons. First, it detects inconsistencies and 
knowledge-base gaps before they cause failures. Second, it enables a tool to respond to 
new information with follow-up inferences and questions. The next section describes a tool 
that performs this task and identifies the required knowledge. 
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4. KI: Integrating New Information During Knowledge Refinement 

KI is a knowledge acquisition tool being developed to support integrating new information 
during knowledge refinement. Although this research is preliminary, a prototype of KI has 
been implemented that demonstrates several benefits from aggressively evaluating knowledge- 
base modifications and extensions. When new information is provided, KI uses the existing 
knowledge to critique the new information and determine its consequences. Determining 
these consequences reveals inconsistencies and gaps in the knowledge base. KI elicits infor- 
mation from the knowledge engineer to fill the gaps and resolve the inconsistencies. KI's 
computational model of knowledge integration includes three prominent activities: 

1) Recognition--identifying the knowledge relevant to new information 
2) Elaboration--applying the expectations provided by relevant knowledge to determine 

the consequences of the new information 
3) Adaptation--modifying the knowledge base to accommodate the elaborated information 

Current knowledge refinement tools avoid in-depth evaluation of knowledge acquired during 
knowledge refinement. Some tools simply add new information and ignore its consequences, 
assuming that inconsistencies will be exposed as problem-solving failures and corrected as 
they occur. Other approaches have been limited to detecting surface inconsistencies [e.g., 
Davis, 1977; Wilkins, 1988]; however, these approaches cannot detect subtle inconsistencies 
introduced by knowledge-base revisions, because they ignore implicit consequences of new 
information for existing domain knowledge. FIE [Cohen, 1984] improves on these approaches 
by using resolution to determine the shallow interaction between new information and exist- 
ing beliefs. However, this approach lacks sufficient control to integrate extensions into a 
large knowledge base or to identify the deep consequences of new information. 

KI's approach to controllng the search for the consequences of new information uses a 
form of domain knowledge called views. Each view defines a segment of the knowledge base 
comprised of concepts that interact in some significant way. Views are used to heuristically 
guide the search during knowledge integration by identifying the inference paths worth 
pursuing when the representation of a concept is extended with new information. 

KI is being developed to assist knowledge engineers to extend the Botany Knowledge 
Base [Porter, Lester, Murray, Pittman, Souther, Acker, and Jones, 1988], which contains 
approximately 4,000 frames representing task-independent knowledge about plant anatomy, 
physiology, and development. The following sections describe KI's preliminary development. 
Section 4.1 describes an example of knowledge integration that is representative of the com- 
plex knowledge-base extensions we expect KI to perform. A prototype implementation of 
KI has been successfully tested with this example. Sections 4.2 through 4.4 describe how 
KI performs the tasks of recognition, elaboration, and adaptation. In Section 4.5, the 
strengths and limitations of this approach are reviewed. 

4.1. An Example of Knowledge Integration 

This example involves extending the knowledge base with new information about plant seeds. 
The knowledge base already has the information that plant seeds contain nutritive tissue 
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called endosperm (which is analogous to an egg's yoke). The plant embryo consumes the 
endosperm during its development inside the seed. A knowledge engineer wishes to extend 
the knowledge base with a representation of nonendospermic seed, a type of seed that con- 
tains no endosperm. The task of KI is to interact with the knowledge engineer to integrate 
this new information. The knowledge engineer presents new information to KI: 4 

Knowledge Engineer: There is a class of seeds that have no endosperm. 

With assistance from the knowledge engineer, KI identifies and retrieves knowledge struc- 
tures relevant to this new information. Using inference rules defined for the retrieved knowl- 
edge structures, KI forms the expectation that the embryo in a nonendospermic seed will 
die of starvation. It then attempts to confirm this expectation with the knowledge engineer: 

KI: Endosperm is a source of plant nutrients; is this relevant? 
Knowledge Engineer: Yes. 
KI: Seeds without endosperm do not give rise to healthy seedlings. 
Knowledge Engineer: Explain. 
KI: The embryo starves since the endosperm provides nutrients, and nutrients are essential 

for health and survival. 
Knowledge Engineer: Yes, nutrients are essential; however, the embryo survives. 

KI attempts to resolve the inconsistency between its expectations and the assertion that 
embryos in nonendospermic seeds survive. One possible explanation is that these embryos 
acquire nutrients from some other source. KI searches for alternate ways an embryo-stage 
plant might acquire nutrients. A focused discussion with the knowledge engineer ensues 
that resolves the anomaly and extends the knowledge base. 

KI: Does the embryo acquire nutrients from photosynthesis? 
Knowledge Engineer: Yes, the shoots of some plant embryos emerge from the seed during 

germination and start producing photosynthate. 

As this example illustrates, KI integrates new information by determining its consequences. 
When conflicts are encountered, KI searches for alternative explanations to resolve them. 
The computational issues that arise during knowledge integration include identifying knowl- 
edge relevant to new information, relating relevant knowledge to the new information, and 
adapting the knowledge base to accommodate the new information. The following three 
sections describe in greater detail how KI performs these activities. 

4.2. Recognition 

KI begins knowledge integration by identifying relevant knowledge structures. In the previous 
example about seeds with no endosperm, KI must determine which among the thousands 
of frames in the Botany Knowledge Base may be affected in some way. 

The representation of each object in the Botany Knowledge Base is structured with views 
to focus the search for knowledge relevant to new information. Each view is a segment of 
the knowledge base that identifies concepts that interact in some significant way. Perspectives 
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are a common type of view that represent concepts in particular roles. For example, one 
perspective of endosperm is Plant Food Source, as shown in Figure 10. Other perspectives 
include: endosperm as a Product Of Reproduction, endosperm as a Contained Object, and 
endosperm as a Taxon Defining Part. KI collects the views for objects referenced by new 
information and prompts the knowledge engineer to select which are appropriate. 

A view is represented as a semantic-net template that can be instantiated for hypothetical 
objects. KI instantiates the views selected by the knowledge engineer. The instantiation 
of Plant Food Source for an endosperm is presented in Figure 11. Collectively, these instan- 
tiated frames comprise a context representing an endosperm in its role as a plant food source; 
this context is used to simulate the effects of the new information about endosperm. 

~destroyedAs 

X ' ~ O ~ o s e d i  n 

enables 

=~ ~ superProcess 0 fAcquisition 

This perspective, represented as a semantic-net template, defines the concepts relevant to 

an object in its role as a plant food source: a plant food source must have a stage when it is 

destroyed and decomposed into nutrients; this decomposition enables the nutrients to be assimilated 

by the plant; nutrient assimilation involves the provision and acquisition of nutrients. 

Figure lO. The perspective Plant Food Source. 

Endosperm001 EmbryoNutrient 

EndospermDuring EmbryoNutrJent 
Breakdown001 Provision001 

~composedIn EnlbryoN~UP er ProcessO fAcquJsition 

Endosperm :~ Acquisition BreakdownO01 enables FrornJ~ndosperraO01 

The perspective of Figure 10 is instantiated for a hypothetical endosperm: the endosperm 

is decomposed into nutrients which are assimilated by a hypothetical plant embryo. This 

context is used to simulate the effects of seeds not having endosperms. 

Figure ]1. The context created by instantiating Plant Food Source. 
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4.3. Elaboration 

During recognition, KI creates a context by instantiating concepts in the knowledge base 
most relevant to the new information. Next, during elaboration, KI determines how the 
new information interacts with existing knowledge within this context. Elaboration involves 
applying inference rules to propagate the effects of the new information throughout the 
context. 

In the endosperm example, elaboration begins when KI asserts that the endosperm is 
absent from the context by assigning value False to the slot enabled? of Endosperm 001. 
This assignment triggers inference rules that determine the consequences of seeds lacking 
endosperm. For example, without the endosperm, the embryo cannot get enough nutrients to 
survive. Only rules that apply to frames in the context are considered; therefore, by select- 
ively instantiating frames during recognition, KI controls the inferences that are attempted 
during elaboration. The inference rules applicable to this example are listed in Figure 12, 
and the elaborated context is presented in Figure 13. 

1. When an  ent i ty  is disabled, all  of its developmental  stages are disabled. 
2. When an  ent i ty  is disabled, all  the  processes involving the  ent i ty  are disabled. 
3. When a process is disabled, all  the  processes tha t  i ts  completion enables are disabled. 
4. When the  known methods  of acquiring some essent ial  resource are disabled, the rate  of 

providing the resource is inadequate  for survival.  
5. When the assimilation ra te  for some resource is unknown,  it is the same as the provision rate. 
6. When nu t r i en t  assimilation is inadequate  for survival, the  assimilator is dying. 

Figure 12. Heuristic rules relevant to endosperm as a plant food source. 

Dying 

~ e  EmbryoO01 

Endosp erreD ttring EmbryoNutrient 
B r e a k d ~  False enebl~///~ False~bled? Pr°viTO01/ 

EmbryoNutrient 
Endospelwa :~ Acquisition Breakdown001 PromEndosp erm001 

The hypothetical endosperm is disabled, triggering the inference rules of Figure 12, which propagate 

the effects of this assertion throughout the context. The predicted consequences of seeds lacking 

endosperms are presented in italics. 

Figure 13. The elaborated context. 
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Gygote001 ~:Dredecessor 

acquirerIn 

ZygoteNutrient 
Acquisition 

FromParent 001 

Embryo001 ~" SeedlingO0l 

acquirerIn 

Seedling 
Phot osynthesisO01 

The context of Figure 13 is extended to include the developmental predecessor and successor 

of Embryo 001 and their methods of nutrient acquisition. 

Figure 14. The context extension. 

Through elaboration, KI concludes that the plant embryo is dying from lack of nutrients. 
This triggers the instantiatin of a second view defined for plants that are starving and in 
danger of dying. The original context is expanded to include the plant's developmental stages 
immediately before and after its embryo stage and how nutrients are acquired during each 
of these developmental stages. This additional knowledge is presented in Figure 14. Through 
continued elaboration, KI concludes that the plant's seedling stage is not reached because 
the plant dies during its embryo stage. 

An important function of elaboration is identifying confounded expectations. These occur 
when expectations of the knowledge base are violated by new information or when two 
rules reach conflicting conclusions. Resolving inconsistencies involves correcting the new 
information to comply with current expectations or adapting the existing knowledge struc- 
tures to accommodate the new information. 

4.4. Adaptation 

Elaboration reveals anomalies in the knowledge base; adaptation resolves them. An anomaly 
can result from inconsistencies introduced either by inference rules used during elaboration 
or by facts the knowledge engineer asserts. In the endosperm example, an anomaly is detected 
when the knowledge engineer asserts that the embryos of nonendospermic seeds survive, 
correcting the prediction that these embryos starve. 

Resolving anomalies requires correcting explanations that support failed expectations and 
constructing alternative explanations to account for new information. When the knowledge 
engineer refutes the prediction that embryos of nonendospermic seeds starve, KI inspects 
the explanation for this prediction to determine its weakest premise. This suspect explanation 
is presented in Figure 15. Rule 4 (from Figure 12) relies on a closed-world assumption 
and is considered a relatively weak inference. Therefore, KI retracts its conclusion and 
assumes Embryo Nutrient Provision 001 is adequate for the embryo's survival. This change 
propagates through the explanation, retracting the belief that the embryo starves. 

The original anomaly has been resolved by assuming that the embryos of nonendospermic 
seeds receive adequate nutrients. However, no alternative method is known for plant embryos 
to acquire nutrients. KI seeks to construct an explanation for the assumed nutrient acquisition 
using the following inference: 

If a resource provision is adequate for survival, but no acquisition method is known, then 
assume the acquisition method of the developmental successor is employed. 
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state 
Embryo001 

EmbryoNutrient 
Assimilation001 

ErnbryoNutrient 

Provision001 

:~ Dying 

rate 
:~ Inadequate 

~ rule 5 

rate 
:~ Inadequate ~ rule 4 

EmbryoNutrient enabled? 
Acquisition Fal 

FromEndosperm001 

Endosperm 
Breakdown001 

False ~ rule 3 

enabled?:~ False 

~ rule 2 

EndospermDuring enabled? :~- False 
Breakdown001 

rule 1 

k 
enabled~ 

Endosperm001 False 

Figure 15. The suspect explanation. 

This rule suggests the embryos of nonendospermic seeds acquire nutrients by photosynthesis, 
as is done by seedlings. However, this hypothesis introduces new constraints on the embryos 
of nonendospermic seeds. For example, to acquire nutrients by photosynthesis, the embryo 
must be a photosynthetic plant. Therefore, to apply this inference, KI asserts that Embryo 
001 is an instance of Photosynthetic Plant. As a photosynthetic plant, the embryo inherits 
the following features: it contacts sunlight, and its composition includes chlorophyll. This 
is illustrated in Figure 16. In short, the plausibility of explaining the survival of nonendo- 
spermic embryos by assuming they engage in photosynthesis is contingent on their contacting 
sunlight and possessing chlorophyll. Confirming these assumptions leads to the acquisition 
of further knowledge from the knowledge engineer. 

4.5. KI's Strengths and Limitations 

KI can partially determine the consequences of new information because it has access to sub- 
stantial domain expertise and a method for heuristically determining what existing knowledge 
is relevant. Using existing knowledge to elaborate new information enables KI to acquire 
more than what is literally expressed by the new information. KI uncovers implicit conflicts 
between new information and existing knowledge and assists the knowledge engineer with 
resolving them. However, because our approach assumes substantial domain knowledge, it 
is inappropriate during the initial stages of knowledge-base development when the encoded 
domain expertise is sparse. 
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Healthy 

~ e  ErabryoO01 

Adequate / 

N~teEmbryoNu/trlent 
AssimilationO01 

ErnbryoNutrient 
ProvisionO01 / 

PhotosynthesisO01 

Pho~osynthe~icPlan~ 

Chlorophyll 

The context is adapted to account for adequate nutrient provision when no nutrients are acquired 

from the endosperm. Assuming the plant embryo acquires nutrients through photosynthesis requires 

that  it contacts sunlight and possesses chlorophyll. 

Figure 16 The adapted context.  

Identifying all interactions between new information and existing knowledge is intractable; 
performing knowledge integration requires restricting this search. KI uses views in two 
ways to avoid an intractable search. First, views are used as a control mechanism to provide 
a coarse granularity in searching for the consequences of new information. This permits 
KI to efficiently identify deep consequences of new information within selected contexts. 
Second, views define local, computational environments. We are developing KI to enforce 
consistency of the knowledge-base within views. This policy operationalizes the adage of 
maintaining local consistency and obviates the intractable task of computing the deductive 
closure of the knowledge base. 

Our prototype implementation of KI has two shortcomings, which our current research 
partially addresses. First, the knowledge engineer is required to choose from views that 
KI considers relevant. We are designing an agenda-based search mechanism that automates 
view selection [Murray and Porter, 1989]. Second, views are rigid because each is repre- 
sented by an explicit path of slots (as in Figure 10). The number of views needed to structure 
a knowledge base is large, and each view is manually created. We are studying alternative 
representations of views [e.g., Porter, Souther, Lester, and Acker, 1989] and ways to acquire 
views during knowledge integration. 

5. Summary 

Knowledge-acquisition tools help with knowledge-base development--the progression of a 
knowledge base from a level of complete ignorance to a desired level of knowledge. Develop- 
ment typically involves three stages: elicitation of initial knowledge, refinement of a proto- 
type knowledge base, and reformulation of knowledge to improve performance. Each stage 
requires a particular form of assistance, and most knowledge-acquisition tools support only 
a single stage. 
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Conceivably, start-to-finish development of knowledge bases could be supported by a 
workbench of tools. The workbench organizes a collection of tools, each of which helps 
with a particular development stage. However, the support is not continuous, and many 
current tools are inappropriate for the workbench because they do not acquire the knowledge 
that subsequent tools require. 

Our research pursues an alternative--supporting start-to-finish development of knowledge 
bases with a single tool. We have studied two issues crucial to building such a tool. The 
first issue is spanning multiple stages of development. We have built Protos, a tool that 
acquires knowledge while assisting a domain expert to solve classification problems. Initially, 
Protos' knowledge is inadequate for solving problems; it interviews the expert to acquire the 
domain's conceptual structure. As the knowledge base develops, problem solving improves 
and errors are discussed with the expert to refine the knowledge base. Protos becomes an 
autonomous problem solver and continues to improve its ability to explain its classifications. 
Its effectiveness has been demonstrated with the construction of a knowledge-based system 
for diagnosing hearing disorders. 

The second issue addressed by our research is knowledge integration. As a large-scale 
knowledge base is developed, the importance and the difficulty of performing knowledge 
integration increases. We are building KI, a tool that evaluates new information to determine 
its consequences for existing knowledge. KI controls the search for consequences with a 
form of domain knowledge called views. Each view identifies the inference paths to pursue 
when the representation of a concept is extended with new information. We are applying 
KI to make complex extensions to a large-scale knowledge base. 
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Notes 

1. Proms does not consider all of the categories of which it is reminded. Only the strongest remindings are con- 
sidered. Furthermore a category is considered only if no matching subordinate category can be found. 

2. Again, an independent copy of the knowledge base was used that did not contain NewCase or the associated 
indices and domain knowledge. 
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3. Note that the ability to classify cases into known categories is being reported; the 24 training instances that 
introduced new diagnostic categories are excluded from the training percentage. 

4. This example has been simplified for presentation. For example, KI does not generate and parse natural language; 
this discourse has been converted from a language of frames, slots, and values. A complete description of 
the prototype implementation and this example are provided in Murray [1988]. 
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