
Machine Learning, 4, 259-283 (1989)
© 1989 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Supporting Start-to-Finish Development
of Knowledge Bases

RAY BAREISS BAREISS @V USE.VANDERBILT. EDU
Computer Science Department, Vanderbilt University, Nashville, TN 37235

BRUCE W. PORTER PORTER@CS.UTEXAS.EDU
KENNETH S. MURRAY MURRAY@CS.UTEXAS.EDU
Computer Sciences Department, University of Texas, Austin, TX 78712

Abstract. Developing knowledge bases using knowledge-acquisition tools is difficult because each stage of develop-
ment requires performing a distinct knowledge-acquisition task. This paper describes these different tasks and
surveys current tools that perform them. It also addresses two issues confronting tools for start-to-finish develop-
ment of knowledge bases. The first issue is how to support multiple stages of development. This paper describes
Protos, a knowledge-acquisition tool that adjusts the training it expects and assistance it provides as its knowledge
grows. The second issue is how to integrate new information into a large knowledge base. This issue is addressed
in the description of a second tool, KI, that evaluates new information to determine its consequences for existing
knowledge.

Key words: knowledge-acquisition tools, knowledge-base refinement, knowledge-base development

1. Introduction

The purpose of a knowledge-acquisition tool is to help with knowledge-base development--

the progression of a knowledge base from a level of complete ignorance to a desired level
of knowledge. Supporting start-to-finish development is hard because different stages of
development require different forms of assistance. In this paper we describe the support
that current knowledge-acquisition methods provide, issues in supporting start-to-finish
development, and specific tools we have built to study these issues.

Developing a knowledge base typically involves three stages: elicitation, refinement, and
reformulation. During elicitation, the basic terminology and conceptual structure of the
knowledge base is acquired. During refinement, knowledge is added to the skeletal struc-
ture and debugged. Finally, during reformulation, the knowledge base is optimized for prob-
lem solving.

Knowledge-acquisition tasks have been defined for each stage of development. For exam-
ple, a task during knowledge refinement is to explain how a faulty conclusion was reached
so that the knowledge base can be debugged. Section 2 describes the tasks required for
each stage of development and surveys knowledge-acquisition tools that perform these tasks.

To support start-to-finish development, knowledge-acquisition tools must do more than
sequentially perform these tasks. In addition to performing the tasks required for each stage
of development, the knowledge needed to perform successive knowledge-acquisition tasks
must be acquired. For example, during systematic elicitation, the justification for inferences
should be acquired so that conclusions can be explained during knowledge refinement.

13

260 E. BAREISS, B. PORTER, AND K. MURRAY

Requiring such stage-setting complicates developing knowledge bases with a single tool
or a collection of tools.
Our research addresses two issues confronting tools for start-to-finish development of large-
scale knowledge bases. The first issue is spanning multiple stages of development, which
requires versatility to meet the needs of each stage. Ideally, transitions between stages are
seamless, and there are no gaps in support during development. Section 3 describes Protos,
which adjusts the problem-solving assistance it provides and the training it expects as the
knowledge base develops. Its ability to support start-to-finish development is empirically
demonstrated; through direct interaction with a domain expert, Protos has achieved profi-
ciency at diagnosing hearing disorders and continues to learn as it is used.

The second issue is integrating new information into existing knowledge. Knowledge
integration involves evaluating new information to determine its consequences for existing
knowledge. For example, new information might conflict with existing knowledge or reveal
gaps in the knowledge base. Although knowledge integration is performed throughout
development, our research focuses on automating the task during the advanced stages of
development. This focus identifies the knowledge required to perform the task, which is
critical to its application. Section 4 discusses our current research on KI, a tool for knowledge
integration that efficiently determines nonsuperficial consequences of new information.

2. The Tasks and Tools of Knowledge-Base Development

In general, there are three stages in developing a knowledge base:

* During systematic elicitation, the basic terminology and conceptual structure of the
knowledge base is acquired.

• During knowledge refinement, the knowledge base is debugged and extended.
• During knowledge reformulation, the knowledge base is compiled to solve problems more

efficiently.

Sections 2.1 through 2.3 describe these stages and survey knowledge-acquisition tools
supporting each stage.

An ideal tool supports all stages of development. When there is little problem-solving
knowledge available, the tool interviews the domain expert to acquire basic information.
As the knowledge base grows, the tool helps identify gaps and inconsistencies responsible
for problem-solving failures. Finally, the tool solves problems and improves performance
without explicit training.

A "workbench of tools" approximates the ideal tool. The workbench organizes a collec-
tion of tools, each of which helps with a particular development phase. As discussed in
Section 2.4, this method differs from the ideal tool in that the support it offers is not con-
tinuous. Moreover, many current tools are not good candidates for the workbench because
they do not set the stage for the tools used after them. In order to compare research results,
much of this discussion focuses on knowledge acquisition tools for heuristic classification.
Heuristic classification is the predominant problem-solving method in current expert systems

14

START-TO-FINISH KNOWLEDGE BASE DEVELOPMENT 261

[Clancey, 1985]. The method relates the features describing a problem to a predetermined
set of solutions and is useful for a broad range of tasks, such as diagnosis, that require
classifying an unknown object or situation.

2.1. Systematic Elicitation

The primary task during systematic elicitation is acquiring the conceptual structure of a
knowledge base through a structured interview with the domain expert. The conceptual
structure is a "description of the kinds of domain-specific inferences that the consultant
will perform and the facts that will support these inferences" [Bennett, 1985]. For heuristic
classification, this includes the predetermined set of solutions and the features that describe
problems. Researchers believe elicitation of the conceptual structure must be systematic
in order to prod the domain expert's memory and to avoid overlooking elements of the
conceptual structure.

The knowledge required to perform systematic elicitation is a model to guide interaction
with the user. The model describes the important components of a knowledge base for
a problem-solving method or task. Some tools use a weak model of a generic problem-
solving method, such as heuristic classification. Others use a strong model of a problem-
solving method specific to a particular domain, such as diagnostic reasoning for disk failures.

ETS [Boose, 1984] is representative of systematic-elicitation tools that use a weak model
of classification. The ETS model contains information about the classification process,
such as the use of discriminating features to select among competing classifications. The
first step in using ETS is enumerating the conclusions that the knowledge-based system
should be able to reach. Given these conclusions, ETS systematically elicits the conceptual
structure by directing the expert through two tasks. The first task is to identify features
that discriminate among conclusions. The second task is to rate each feature's importance
to each conclusion. ETS uses these features and associations to construct a prototype
knowledge base. Ongoing research on Aquinus [Boose and Bradshaw, 1987] focuses, in
part, on refining the knowledge base by adjusting the features' importance ratings and by
expanding the sets of conclusions and features.

A systematic-elicitation tool using a strong model can be more focused. Such a tool is
Roget [Bennett, 1985], which acquires the conceptual structure of a knowledge base by
selecting and instantiating one of several available models. For example, starting with a
model of medical diagnosis manually abstracted from a previously built knowledge base,
Roget interviews the domain expert for specific diagnostic categories, symptoms, test results,
predisposing factors, and rules for diagnosing blood infections. Going further in strengthen-
ing the problem-solving model, Opal [Musen, Fagan, Combs, and Shortliffe, 1987] uses
a model of oncology to elicit chemotherapy treatment plans. The expert communicates by
completing treatment forms using domain-specific terms.

Current tools for systematic elicitation are effective during the initial stage of knowledge
base development. During this stage there is insufficient domain knowledge to solve prob-
lems. The tools interview a domain expert, but ask questions unlike those typically answered
by the expert. In contrast, the tools discussed next acquire knowledge during problem
solving.

15

262 E. BAREISS, B. PORTER, AND K. MURRAY

2.2. Knowledge Refinement

The primary task during knowledge refinement is to incrementally debug a prototype knowl-
edge base. Unlike conventional software systems, top-down development is impractical
because the specification and design of a knowledge base cannot be formalized. Researchers
have taken two approaches to knowledge refinement. Static analysis scans the knowledge
base for patterns that suggest weak inference paths or missing knowledge. Dynamic analysis
uses the knowledge base to process a set of test cases to reveal problem-solving errors.
These analysis methods focus the developer on repairs and extensions of the knowledge base.

Teiresias [Davis, 1977], which employs dynamic analysis, exemplifies tools for knowledge
refinement. The domain expert presents a test case to the performance system. If the expert
deems the result incorrect, Teiresias traces the erroneous reasoning path. Teiresias highlights
portions of the knowledge base that may be responsible for the mistake, and the expert
repairs the gap or inconsistency. As the expert introduces inference rules, Tieresias compares
them with rule models abstracted from the knowledge base. Each rule model records correla-
tions between antecedent terms and consequent terms. If a new rule violates a pattern,
Teiresias reports to the domain expert and suggests a modification of the rule that conforms
to the pattern. The refinement process continues until the domain expert is satisfied with
the system's performance. Other knowledge-refinement systems include MORE [Kahn,
Nowlan, and McDermott, 1985], which uses static analysis, and MOLE [Eshelman, Ehret,
McDermott, and Tan, 1987], which combines static and dynamic analysis.

Knowledge-refinement tools use the knowledge base in two ways. First, they use the
problem-solving ability of the knowledge base to identify failures. When problem solving
fails, the tool elicits knowledge from the expert to advance the knowledge base's develop-
ment. Second, some tools use explicit knowledge of justifications for inference rules to
determine the cause of problem-solving failures [Smith, Winston, Mitchell, and Buchanan,
1985] and to explain each failure [Neches, Swartout, and Moore, 1985]. Using the knowledge
base in these ways requires an initial conceptual structure capable of solving problems,
revealing bugs, and explaining failures. Most tools for knowledge refinement (and systematic
elicitation) do not acquire this initial knowledge.

2.3. Knowledge Reformulation

The primary task during knowledge reformulation is compiling the knowledge base for
more efficient problem solving. This requires an initial knowledge base, called the domain
theory, which is assumed to be complete but nonoperational. For example, the domain
theory for chess encodes all the rules for play but is inefficient for selecting good chess
moves.

Leap/Vexed [Mitchell, Mahadevan, and Steinberg, 1985] exemplifies tools for knowledge
reformulation. This tool is an apprentice to an expert VLSI circuit designer. Vexed is given
a design specification and attempts to design a circuit. If Vexed fails, then the expert provides
a solution, and Leap attempts to learn from this training. First, Leap uses its pre-existing
domain theory, consisting of rules of logic and primitive building blocks for logic circuits,
to construct a proof that the expert's design correctly implements the specification. Then,

16

START-TO-FINISH KNOWLEDGE BASE DEVELOPMENT 263

the specification and the circuit design are generalized, subject to the constraints in the
proof of correctness, to form a new design rule for Vexed's future problem solving.

Knowledge reformulation performed by Leap/Vexed is restricted by two requirements.
First, the domain theory must be complete to explain every solution presented by the expert.
Second, the domain theory must be strong and consistent to prove the solution is correct.
Unfortunately, most domains of interest (e.g., medicine) cannot be formalized; consequently,
their domain theories are incomplete, weak, and inconsistent. Additionally, knowledge-
reformulation tools ignore the acquisition of the required knowledge base and address only
improvements in efficiency, not in competence or explanation ability.

Integrating knowledge refinement with knowledge reformulation can address these limita-
tions. For example, the Odysseus system [Wilkins, 1988] extends the domain theory used
in knowledge reformulation. This learning apprentice observes an expert solving problems
and attempts to explain the reasons underlying the expert's actions. Learning occurs when
the explanation process fails. When one of the expert's actions cannot be explained, Odysseus
conjectures new knowledge that would allow it to complete an explanation. The conjectured
knowledge is validated by comparing it with a database of cases. If the hypothesized knowl-
edge is consistent with the cases, it is added to the knowledge base.

2.4. Supporting Start-to-Finish Development with a Workbench of Tools

Tools for the knowledge-acquisition tasks discussed thus far support narrow phases of
knowledge-base development. Conceivably, a collection of these tools could be combined
into a workbench, which could support the start-to-finish development of knowledge bases.
The approach is appealing, but several problems must be addressed.

The first problem with the workbench approach is that the knowledge base is rarely at
a uniform level of development. For example, a knowledge base supporting heuristic classi-
fication contains inference rules relating observable data to final answers. During the knowl-
edge base's development, parts of the knowledge base reliably classify and explain. Other
parts are incomplete and erroneous. No narrow-spectrum tool from the workbench can
refine the entire knowledge base. The second problem with the workbench approach is
that the support it provides is not continuous. The developmental path is decomposed into
discrete steps, and the consequences of supporting each step with a separate, narrow-
spectrum tool can be severe:

* Mismatched knowledge representations--Each tool constructs and uses different represen-
tations for domain knowledge. For example, a tool for knowledge elicitation might repre-
sent correlations among domain terms in a rating grid, while a tool for knowledge refine-
ment might use a causal model to solve a problem and explain its solution.

e Inconsistent user roles--Each tool has different requirements. For example, a tool for
systematic elicitation requires a user familiar with basic terminology and high-level rules.
However, a tool for knowledge refinement requires a user capable of debugging complex
problems with the knowledge base.

• Inconsistent user interface--Each tool presents the user with a different interface, which
is an unnecessary source of confusion.

17

264 E. BAREISS, B. PORTER, AND K. MURRAY

A final problem with the workbench approach concerns the specific tools that have been
developed thus far. Many tools for acquiring the initial domain knowledge do not set the
stage for the tools that follow them. Tools for knowledge refinement and knowledge refor-
mulation require a support structure for domain knowledge. For example, Teiresias presents
the inference path leading to an incorrect conclusion so that the domain expert can identify
faulty inferences. However, many tools for systematic elicitation do not acquire the interme-
diate inferences that support conclusions. Because of such mismatches, many tools are in-
appropriate for the workbench.

Because of these problems with the workbench approach, our research pursues an alter-
native--a single tool that supports start-to-finish development of knowledge bases. Sections
3 and 4 describe our approach to solving two issues critical to the success of such a tool.

3. Protos: Continuous Support During Knowledge Acquisition

Protos is a knowledge-acquisition tool that supports knowledge elicitation and refinement.
It learns to perform heuristic classification by solving problems under the guidance of an
expert teacher. When the expert describes a case, Protos assigns the case to a known category
and explains the classification. If the classification is wrong or the explanation is inade-
quate, Protos interacts with the expert to acquire knowledge. Its domain-independent method
of classification suggests possible causes of problem-solving failures and guides interaction
to extend and refine the knowledge base.

Protos' problem-solving ability and interaction with the expert improve as it acquires
knowledge. Initially, Protos lacks adequate knowledge for problem solving. It fails to classify
cases and depends on the expert to provide classifications and explanations. As Protos
acquires more knowledge, it becomes increasingly able to perform classification. However,
misclassifications are frequent, and its ability to discriminate is refined. Through this evolv-
ing interaction, Protos becomes an autonomous problem solver whose learning concentrates
on acquiring specific knowledge to improve its ability to explain its classifications.

The following dialogue illustrates Protos' early interaction with the expert as it acquires
knowledge to classify hearing disorders.

Expert:

Protos:

Expert:
Protos:
Expert:
Protos:
Expert:
Protos:
Expert:

Protos:

NewCase has the features: notch__at 4k, sensorineural:mild, hystory:noise,
air:normal, speech:normal, static:normal, tympanogram:a, et ce tera

These features suggest the classification normal__ear. To confirm this, a known case
of nonnal~ear is being compared to NewCase. All features match except notch__at
4k, sensorineural:mild, and history:noise. Is normal__ear the collect classification?
No.
Are any of the unmatched features of NewCase incompatible with normal__ear?
All are.
Protos cannot classify NewCase. What is its classification?
Cochlear___noise.
Please explain the relevance of case features to this classification.
notch___at__Ak is usually caused by cochlear_noise.
et ce tera

NewCase is being retained as the first exemplar of cochlear__noise.

18

START-TO-FINISH KNOWLEDGE BASE DEVELOPMENT 265

Through this interaction, Protos refined its ability to discriminate instances of a known
category of hearing disorder and acquired initial knowledge of a new one.

3.1. How Yrotos Performs Classification

Protos' classification method guides knowledge acquisition by relating steps in the classifica-
tion process to the domain knowledge required to perform them successfully. Each type
of failure suggests types of knowledge that are absent or faulty. This section describes the
classification method and the knowledge it requires. Section 3.2 discusses how failures
of the method guide knowledge acquisition.

Protos' method of classifying a case involves two steps. The first step is to hypothesize
classifications based on the case's features (Figure 1). This step uses remindings, which
are heuristic associations between features and categories learned from previous expert-
provided explanations. The remindings associated with the features of a new case are com-
bined to produce an ordered list of possible classifications.

The second step in classification attempts to confirm a hypothesis by matching the new
case with prototypical exemplars (Figure 2). A process of knowledge-basedpattern matching
determines the similarity of the case and each exemplar. It uses previously acquired domain
knowledge to explain how features of the case provide the same evidence as features of
the exemplar. Overall similarity of the two cases is assessed by evaluating the quality of
the resulting explanation and the importance of unmatched features.

If a match is imperfect, Protos searches for a more similar exemplar by traversing differ-
ence links associated with the current exemplar. Difference links connect exemplars and
record their criterial differences.

Confirmation of the hypothesis is evaluated to determine Protos' next action. If the match
is strong (i.e., adequately explained), it is presented to the user for approval and discus-
sion. If it is weak, Protos considers other hypotheses and exemplars. Protos reports failure
if its hypotheses are exhausted without finding an adequate match?

NEW CASE DESCRIPTION

~ PREVIOUSLY LEARNED REMINDINGS

~NDII ~"~'~,~?~r~c,,~T ~ GIEURISTICS FOR
~ COMBINING REMINDINGS

ORDERED LIST OF POSSIBLE CLASSIFICATIONS
Figure 1. Step 1--Hypothesize classifications.

19

266 E. BAREISS, B. PORTER, AND K. MURRAY

ORDERED LIST OF POSSIBLE CLASSIFICATIONS @ /ExE~P~S

N PROTOTYPI CALITY RATI N GS

~_~ROTOTYPICAL EXEMPLAR

/w~n~ ~-n~'_x~ J NEW CASE DESCRIPTION

x SII~MOIL~d~G OF FEATURAL

MATCH AND CLASSIFICATION

Figure 2. Step 2--Confirm a hypothesized classification.

3. 2. How Failures Guide Knowledge Acquisition

Protos learns by analyzing and discussing failures of the classification method. The following
general types of failures are possible:

1) Failure to classify--no classification can be determined
2) Failure to discriminate--an incorrect classification is reported
3) Failure to explain--the correct classification is inadequately explained

Protos associates each failure with a type of domain knowledge and interacts with the
expert to acquire or refine the knowledge. Figure 3 presents Protos' algorithm for learning
from failures.

Failure to classify a case indicates that Protos lacks knowledge of how a case's features
determine its classification. The expert is asked to classify the case. Protos tries to relate
each feature of the case to the provided classification by explaining its relevance. If Protos
cannot relate a feature to the classification, the expert provides an explanation, which is
added to the system's domain knowledge. After all of the features have been explained,
the case is retained as a new exemplar of the classification.

Failure to discriminate occurs when Protos reports an incorrect classification. This indi-
cates that Protos lacks knowledge to discriminate between instances and noninstances of the
classification. Protos should not be able to match a new case to an exemplar of an incorrect
classification. When such a match occurs, three possible causes are discussed with the expert.
First, the expert is asked to evaluate the explanation relating the case and exemplar. Second,
he is asked about unmatched features of the new case to determine whether any are incom-
patible with the classification. Third, he is asked for additional discriminating features.

20

START-TO-FINISH KNOWLEDGE BASE DEVELOPMENT 267

GIVEN:

FIND:

Search

IF not

THEN

ELSE

a new case

a classification of the case and an explanation of the

classification

for an exemplar that matches the new case

found

{classification failure}

Ask teacher for classification

Acquire explanations relating features to classification

Compile remindings

Ketain case as an exemplar

IF the teacher disapproves

THEN <discrimination failure}

Keassess remindings

Discuss featural matches with the teacher

Ask for discriminating features

Kemember unmatched features to add difference link

ELSE <classification is correct}

Increase exemplarJs prototypicality rating

IF match is incompletely explained

THEN <explanation failure}

Ask teacher for explanations of featural

equivalence

IF not given

THEN Ketain case as exemplar

ELSE <processing was successful}

Figure 3. The Protos algorithm for learning from failures.

Failure to explain a correct classification indicates that Protos lacks knowledge to support
its classification. Protos and the expert discuss improvements to the explanation of the match
between the new case and the recalled exemplar. Unmatched features of the exemplar are
of particular concern. For each, the expert is asked to identify a corresponding feature
in the new case and to explain their relationship. If the expert cannot provide these explana-
tions, the case is retained as a new exemplar.

Protos is also concerned with learning efficient problem solving. Just as it elicits and
refines domain knowledge by discussing problem-solving ~.ilures, Protos acquires and refines
an indexing structure of remindings, difference links, and prototypicality ratings. As discussed
in Section 3.1, these indices limit the search for matching exemplars during classification.

When Protos fails to classify, it acquires remindings. To correct the failure, the expert
provides explanations relating each case feature to the classification. Protos compiles the
explanations into remindings that directly associate features and classifications. The strength
of each reminding is determined by evaluating the explanation's quality, using heuristics
similar to Cohen's path endorsements [Cohen and Kjeldsen, 1987; Bareiss, 1989].

When Protos fails to discriminate, it refines remindings. The remindings that suggested
the incorrect classification are reassessed to determine whether they are consistent with
the system's current knowledge. Because Protos is incrementally acquiring domain knowl-
edge, it attempts to regenerate the explanation from which each reminding was compiled
to determine whether it is still valid. If the explanation is no longer valid, the reminding
is weakened or removed.

21

268 E, BAREISS, B. PORTER, AND K. MURRAY

Protos also acquires a difference link when a failure to discriminate occurs. A difference
link records important featural differences that distinguish two exemplars. Upon adding
the new case as an exemplar, Protos creates a difference link between the case and the
improperly matched exemplar. Protos suggests the features to annotate the difference link,
and the expert approves them.

When a correct match occurs, Protos increases the exemplar's prototypicality rating. Proto-
typicality is determined by family resemblance, that is, the degree to which an exemplar
matches other category members. An increased rating makes selection of the exemplar
more likely during subsequent classification attempts.

Explanations play two roles in knowledge acquisition. First, explanations describe the
relevance of exemplar features to categories. Such explanations enable remindings to be
compiled and importance of features to classifications to be estimated. Second, explanations
describe how different features provide equivalent evidence for a classification. Such explana-
tions provide knowledge to match cases that are not uniformly described.

An explanation is a plausible chain of relations linking domain terms in the knowledge
base (e.g., "fur is consistent with mammal which has specialization dog"). Explanations
are expressed in a predefined language of relations (e.g., "causes," "co-occurs with," "has
part"), qualifiers (e.g., "usually" "sometimes" "occasionally") and expert-supplied domain
terms [Bareiss, 1989]. Heuristics associated with specific relations allow Protos to evaluate
their plausibility in the context of a particular explanation [cf. Cohen and Kjeldsen, 1987].

In summary, Protos elicits and refines domain knowledge by interacting with the expert
in the context of problem-solving failures. Through classification and discrimination failures,
it acquires exemplars, an indexing structure, and general domain knowledge. Through expla-
nation failures, it acquires the ability to explain its (otherwise correct) classifications.

3.3. An Example of Protos' Evolving Interaction

This section presents two examples illustrating how Protos' interaction with an expert audiol-
ogist evolved to support start-to-finish development of a knowledge base for classifying
hearing disorders. The first example is from early in training; Protos systematically elicits
knowledge of a new classification from the expert. The second example is from late in
training; Protos refines its ability to explain an otherwise correct classification. To enable
direct comparison of the two stages of training, NewCase, the case discussed in the intro-
duction to Section 3, was presented to Protos twice. Independent copies of the knowledge
base were used so that knowledge acquired by processing NewCase the first time did not
affect its processing the second time.

3.3.1. Processing NewCase Early in Training This example elaborates on the dialogue
in the introduction to Section 3. NewCase was processed when Protos had seen few cases
and lacked domain knowledge to classify correctly. At this stage of training, interaction
with the expert primarily involved acquiring exemplars and systematically eliciting knowledge
relating their features and classifications.

Based on past training, the features of NewCase (Figure 4) remind Protos of two possible
diagnoses (Figure 5). When the individual remindings are combined, normal ear is the
strongest hypothesis. Protos retrieves the most prototypical exemplar of normal__ear and

22

START-TO-FINISH KNOWLEDGE BASE DEVELOPMENT 269

Case: NewCase

Classification: Unknown

sensorineural: mild

notch at 4k

history: noise

speech: normal

oc_acousfic_reflex: normal

oi acoustic reflex: elevated

Figure. 4. The features of the example case.

Case: NewCase

Classification: Unknown

iacoustic_reflex: normal

c_acoustic_reflex: normal

static: normal

tympanogram: a
air: normal

sapiIie~h:r~n~lrmal ~

tympanogram: a ~

static: normal ~

iacoustic_reflex: normal ~

c acoustic_reflex: normal / ~

oi acoustic reflex: elevated ~ , /

o c acoustic reflex: normal /

normalear

cochlear_age

Figure. 5. Hypotheses associated with the features of NewCase when presented early in training.

attempts to match it to NewCase to confirm the hypothesis (Figure 6). Protos believes the
match to be strong since all of the exemplar's features are matched. However, when the
match is presented for discussion, the teacher rejects it as incorrect.

This failure to discriminate results in learning to classify cases of normal___ear more
accurately. Since the exemplar's features are perfectly matched by NewCase, there are only
a few possible reasons for the problem-solving failure. Protos pursues them systematically.
First, Protos independently reassesses the remindings, which led it to normal ear, with
respect to its domain knowledge. It is able to regenerate the explanation from which each
was compiled, suggesting that all are still valid. Second, Protos asks about the features
of NewCase that were not matched by the exemplar and is told that all are incompatible

23

270 E. BAREISS, B. PORTER, AND K. MURRAY

Case: NewCase

Classification: Unknown

Case: p8447L

Normal_Ear

air: normal
speech: normal
tympanogram: a
static: normal
i_acoustic_reflex: normal
c acousticreflex: normal
oi_acoustic_reflex: elevated
oc acoustic_reflex: normal
notch at 4K
history: noise

sensorineural: mild

air: normal
speech: normal
tympanogram: a
static: normal
iacoustic_reflex: normal
c acousticreflex: normal
oi_acoustic reflex: elevated
oc acoustic reflex: normal

Figure. 6. Matching NewCase to an exemplar of normal ear.

with the classification. Third, when it asks whether the exemplar has additional features
that discriminate it from NewCase, the teacher does not identify any.

Protos then tries to confirm its second diagnostic hypothesis, cochlear age. It is unable
to find an adequately similar exemplar of this category, so discussion with the teacher is
not possible. Protos fails to confirm its hypothesis and, as before, reassesses the remindings
that suggested cochlear age.

Having exhausted the hypotheses, Protos reports a failure to classify. It asks the teacher to
provide a classification, and he classifies NewCase as cochlear__noise. Since Protos has
no exemplars of this category, NewCase is retained as an exemplar. Protos then interacts
with the teacher to acquire general knowledge of cochlear__noise. It asks the teacher to
explain the relevance of each case feature to the classification (using the predefined explana-
tion language). The teacher provides explanations such as "history:noise is required by
cochlear~oise." From these explanations, Protos compiles remindings linking the features
and the classification. For example, history: noise is inferred to be highly predictive of
cochlear_noise.

Since the failure to classify was preceded by a failure to discriminate, Protos installs a
difference link between the new exemplar and the exemplar of normal ear that is errone-
ously matched. The difference link is annotated with the features of NewCase that were
not matched by features of the exemplar of normal ear.

3.3.2. Processing NewCase Late in Training After Protos had seen 175 cases, NewCase
was presented to illustrate the shift from knowledge elicitation to refinement. 2 As it acquires
knowledge, Protos becomes increasingly competent at problem solving and expects qualita-
tively different training from the expert. At this stage, Protos' classifications are generally
correct, and interacton focuses on refining explanations.

As before, Protos hypothesizes classifications using remindings compiled from explana-
tions of previous cases. Based on combining the remindings shown in Figure 7, Protos' best

24

START-TO-FINISH KNOWLEDGE BASE DEVELOPMENT 271

Case: NewCase
Classification: Unknown

sensorineural: mild / cochlear_unknown

notch_at_4K ~ cochlear_noise

history: noise ~ " . cochlear age and noise

s p e e c h : n o r m a l ~ cochlear noise heredity

oc acoustic reflex: n o r m a l ~ ~ mixed noise o media

oi acoustic reflex: elevated " ~ otitis media

i acoustic reflex: normal ~ possible brainstem

i~ti~?~t~_rnr~?ex: n ~ normal_ear

mixed age_fixation

~ cochlear_age tympanogram: a

air:normal ~ ~ possible menieres

bellspalsy

Figure. 7. Hypotheses associated with features of NewCase when presented late in training.

hypotheses are cochlear___age&noise and cochlear__noise. Protos rejects the first hypothesis
when it cannot find a matching exemplar and reassesses the remindings to cochlear___
age&noise. It then tries cochlear__noise and finds a good match, which is illustrated in
Figure 8.

Most of the features of the two cases match directly. The match between sensorineural:miM
and sensorineural:moderate is an exception. Protos can match these features because of
a past, expert-provided explanation that the two values of sensorineural are sometimes inter-
changeable in the context of this diagnosis.

Discussion with the expert focuses on Protos' failure to explain the match completely.
Protos asks the expert whether the unmatched features of NewCase are equivalent to the
unmatched exemplar features. He tells Protos:

notch at 4k is definitionally equivalent to notch__dk

and

if the category is cochlear__noise then c__acoustic__reflex: normal
is sometimes interchangeable with c acoustic___reflex: elevated

Protos does not retain NewCase because any future case that would match NewCase would
match the existing exemplar equally well. The prototypicality of the exemplar is increased
to credit its participation in a close, successful match.

25

272 E. BAREISS, B. PORTER, AND K. MURRAY

Case: N e w C a s e
Classification: Unknown

sensorineurah mild

notch at 4k

history: noise

speech: normal

oc_acoustic reflex: normal

oi acoustic_reflex: elevated

i_acoustic_reflex: normal

c_acousticreflex: normal

static: normal

tympanogram: a

air: normal

Case: p8572R
Cochlear noise

sensorineural: moderate

notch 4k

history: noise

speech: normal

oc acoustic reflex: normal

oi acoustic reflex: elevated

i_acousticreflex: normal

c_acoustic_reflex: elevated

static: normal

tympanogram: a

air: normal

Figure 8. Matching NewCase to an exemplar of cochlear_._noise.

Processing NewCase at two points in the evolution of the audiology knowledge base illus-
trates how Protos supports different stages of knowledge acquisition. The first time NewCase
was processed, the system had little domain knowledge and was unable to classify it correctly.
Through discussing the failure to classify, Protos acquired knowledge of a new classification,
an exemplar, and the relevance of the exemplar's features to the classification. The expert
was asked to provide a considerable amount of explanation relating NewCase to the system's
existing knowledge. Discussion of the failure to discriminate NewCase from a case of
normal___ear refined Protos' indexing knowledge.

The second time NewCase was processed, Protos had more extensive knowledge and
could determine the correct classification independently. The expert played the more limited
role of explaining relationships between features, which improved Protos' ability to explain
its classification.

3.4. Evaluating Protos in Clinical Audiology

A distinct advantage of studying knowledge acquisition for expert systems is the evaluation
criteria that it affords. Problem-solving proficiency can be measured as knowledge accu-
mulates and, ultimately, can be compared with human experts. It is somewhat surprising
that, with few exceptions [e.g., Quinlin, 1986; Michalski, 1987], knowledge acquisition
tools have not been evaluated. This section describes some of the data collected to assess
Protos' viability.

Protos was trained using 200 hearing-disorder cases from the files of a large clinic. The
training set was random. Its size was restricted to 200 cases because this is approximately
the number of cases that a human audiologist sees during graduate school. For Protos to

26

START-TO-FINISH KNOWLEDGE BASE DEVELOPMENT 273

be considered successful, it was deemed necessary for the system to classify accurately
and efficiently given a similar amount of training. After training, Protos' performance was
evaluated using a random set of 26 new cases. The characteristics of the training and test
cases are presented in Table 1.

The fundamental assessment of Protos' performance is the correctness of its classifica-
tions. Protos correctly classified 82 % of the training set while learning. Afterwards, Protos
correctly classified 100% of the test cases?

Table L Characteristics of Cases Presented to Protos

Characteristic Training Set Test Set

Number of Cases 200 26
Number of Categories 24 6
Exemplars Retained 120 --
Mean Features/Case 10.6 11.5
(Total number of features=73)

Protos' problem-solving efficiency can be measured by the amount of effort it expended
during classification. The average number of diagnostic hypotheses pursued and the number
of matches attempted gradually increased (Table 2). However, as a percentage of possible
hypotheses, the number of hypotheses pursued decreased. As a percentage of possible ex-
emplars, the number of matches attempted remained fairly constant. The number of mat-
ches presented to the expert remained fairly constant as well. The corresponding percen-
tage decreased, indicating increasing autonomy. Most of the classification process was in-
dependent of the expert.

Table 2. Classification Effort Expended

Cases Hypotheses Pursued Matches Attempted Matches Discussed

1-50 2.7 (25.5%) not available 1.7 (3.7%)
51-100 2.8 (17.5%) not available 1.6 (1.9%)
101-150 2.5 (11.9%) 4.6 (4.4%) 1.5 (1.4%)
151-200 4.0 (16.7%) 7.4 (6.2%) 1.9 (1.6%)
average 3.0 6.0 1.6

test 3.7 (15.4%) 5.3 (4.4%) 1.1 (0.9%)

The evolution of Protos' interaction with the expert can be seen in a gradual shift in the
type of explanations Protos elicited (Figure 9). As the knowledge base evolved, Protos' focus
shifted from attaining competence at classification to attaining competence at explanation.
Early training was dominated by classification failures. Protos primarily elicited explanations
relating features to classifications as new exemplars were retained. Gradually, classification
failures were superceded by explanation failures, and interaction with the teacher shifted
to explaining the similarity of features in the context of particular diagnostic categories.
This knowledge refined the system's ability to explain its correct classifications.

The design of Protos and its experimental evaluation in the domain of clinical audiology
are more completely described in Bareiss [1989]. A Common Lisp implementation of Protos
is available [Dvorak, 1988] and has been widely distributed.

27

2.0
[" I:I F e a t . -> C a t .

"~ 1.5

e ~

b 1.o
e,~

2:
g

o.s

<

0.0

274 E. BAREISS, B. PORTER, AND K. MURRAY

I I I I
1-50 51-100 101-150 151-200

Cases

Figure 9. Teacher-provided explanations per case.

3.5. Strengths and Limitations

Proms' primary strength as a knowledge-acquisition tool is its knowledge of the classification
method. This initial knowledge relates steps in the classification process to the domain
knowledge required to perform them. In particular, Protos relates failures during classifica-
tion to particular forms of knowledge that are absent or faulty. This rich decomposition
of the problem-solving task is perhaps the most useful form of a priori knowledge for
knowledge-acquisition tools. [Bylander and Chandrasekaran, 1987].

Protos' classification method is effective during both systematic elicitation and knowledge
refinement. Initially, Protos is unable to classify cases, and it acquires knowledge from the
expert in the form of explained examples. As Protos acquires more knowledge, it becomes
increasingly able to classify cases, although misclassifications are common. Using explicit
knowledge of possible failures, Protos interacts with the expert to refine the knowledge base.
Protos becomes an autonomous problem solver and acquires knowledge to improve its ability
to explain its classifications. However, Protos' classification method is ineffective for deter-
mining the consequences of knowledge-base modifications and extensions. As with most
knowledge-acquisition tools, Protos is a "lazy evaluator" of new information. Some of the
consequences of a knowledge-base change are revealed during problem solving, which is
interleaved with knowledge acquisition; other consequences are undetected. "Eager evalua-
tion" of new information is preferred for two reasons. First, it detects inconsistencies and
knowledge-base gaps before they cause failures. Second, it enables a tool to respond to
new information with follow-up inferences and questions. The next section describes a tool
that performs this task and identifies the required knowledge.

28

START-TO-FINISH KNOWLEDGE BASE DEVELOPMENT 275

4. KI: Integrating New Information During Knowledge Refinement

KI is a knowledge acquisition tool being developed to support integrating new information
during knowledge refinement. Although this research is preliminary, a prototype of KI has
been implemented that demonstrates several benefits from aggressively evaluating knowledge-
base modifications and extensions. When new information is provided, KI uses the existing
knowledge to critique the new information and determine its consequences. Determining
these consequences reveals inconsistencies and gaps in the knowledge base. KI elicits infor-
mation from the knowledge engineer to fill the gaps and resolve the inconsistencies. KI's
computational model of knowledge integration includes three prominent activities:

1) Recognition--identifying the knowledge relevant to new information
2) Elaboration--applying the expectations provided by relevant knowledge to determine

the consequences of the new information
3) Adaptation--modifying the knowledge base to accommodate the elaborated information

Current knowledge refinement tools avoid in-depth evaluation of knowledge acquired during
knowledge refinement. Some tools simply add new information and ignore its consequences,
assuming that inconsistencies will be exposed as problem-solving failures and corrected as
they occur. Other approaches have been limited to detecting surface inconsistencies [e.g.,
Davis, 1977; Wilkins, 1988]; however, these approaches cannot detect subtle inconsistencies
introduced by knowledge-base revisions, because they ignore implicit consequences of new
information for existing domain knowledge. FIE [Cohen, 1984] improves on these approaches
by using resolution to determine the shallow interaction between new information and exist-
ing beliefs. However, this approach lacks sufficient control to integrate extensions into a
large knowledge base or to identify the deep consequences of new information.

KI's approach to controllng the search for the consequences of new information uses a
form of domain knowledge called views. Each view defines a segment of the knowledge base
comprised of concepts that interact in some significant way. Views are used to heuristically
guide the search during knowledge integration by identifying the inference paths worth
pursuing when the representation of a concept is extended with new information.

KI is being developed to assist knowledge engineers to extend the Botany Knowledge
Base [Porter, Lester, Murray, Pittman, Souther, Acker, and Jones, 1988], which contains
approximately 4,000 frames representing task-independent knowledge about plant anatomy,
physiology, and development. The following sections describe KI's preliminary development.
Section 4.1 describes an example of knowledge integration that is representative of the com-
plex knowledge-base extensions we expect KI to perform. A prototype implementation of
KI has been successfully tested with this example. Sections 4.2 through 4.4 describe how
KI performs the tasks of recognition, elaboration, and adaptation. In Section 4.5, the
strengths and limitations of this approach are reviewed.

4.1. An Example of Knowledge Integration

This example involves extending the knowledge base with new information about plant seeds.
The knowledge base already has the information that plant seeds contain nutritive tissue

29

276 E. BAREISS, B. PORTER, AND K. MURRAY

called endosperm (which is analogous to an egg's yoke). The plant embryo consumes the
endosperm during its development inside the seed. A knowledge engineer wishes to extend
the knowledge base with a representation of nonendospermic seed, a type of seed that con-
tains no endosperm. The task of KI is to interact with the knowledge engineer to integrate
this new information. The knowledge engineer presents new information to KI: 4

Knowledge Engineer: There is a class of seeds that have no endosperm.

With assistance from the knowledge engineer, KI identifies and retrieves knowledge struc-
tures relevant to this new information. Using inference rules defined for the retrieved knowl-
edge structures, KI forms the expectation that the embryo in a nonendospermic seed will
die of starvation. It then attempts to confirm this expectation with the knowledge engineer:

KI: Endosperm is a source of plant nutrients; is this relevant?
Knowledge Engineer: Yes.
KI: Seeds without endosperm do not give rise to healthy seedlings.
Knowledge Engineer: Explain.
KI: The embryo starves since the endosperm provides nutrients, and nutrients are essential

for health and survival.
Knowledge Engineer: Yes, nutrients are essential; however, the embryo survives.

KI attempts to resolve the inconsistency between its expectations and the assertion that
embryos in nonendospermic seeds survive. One possible explanation is that these embryos
acquire nutrients from some other source. KI searches for alternate ways an embryo-stage
plant might acquire nutrients. A focused discussion with the knowledge engineer ensues
that resolves the anomaly and extends the knowledge base.

KI: Does the embryo acquire nutrients from photosynthesis?
Knowledge Engineer: Yes, the shoots of some plant embryos emerge from the seed during

germination and start producing photosynthate.

As this example illustrates, KI integrates new information by determining its consequences.
When conflicts are encountered, KI searches for alternative explanations to resolve them.
The computational issues that arise during knowledge integration include identifying knowl-
edge relevant to new information, relating relevant knowledge to the new information, and
adapting the knowledge base to accommodate the new information. The following three
sections describe in greater detail how KI performs these activities.

4.2. Recognition

KI begins knowledge integration by identifying relevant knowledge structures. In the previous
example about seeds with no endosperm, KI must determine which among the thousands
of frames in the Botany Knowledge Base may be affected in some way.

The representation of each object in the Botany Knowledge Base is structured with views
to focus the search for knowledge relevant to new information. Each view is a segment of
the knowledge base that identifies concepts that interact in some significant way. Perspectives

30

START-TO-FINISH K N O W L E D G E BASE D E V E L O P M E N T 277

are a common type of view that represent concepts in particular roles. For example, one
perspective of endosperm is Plant Food Source, as shown in Figure 10. Other perspectives
include: endosperm as a Product Of Reproduction, endosperm as a Contained Object, and
endosperm as a Taxon Defining Part. KI collects the views for objects referenced by new
information and prompts the knowledge engineer to select which are appropriate.

A view is represented as a semantic-net template that can be instantiated for hypothetical
objects. KI instantiates the views selected by the knowledge engineer. The instantiation
of Plant Food Source for an endosperm is presented in Figure 11. Collectively, these instan-
tiated frames comprise a context representing an endosperm in its role as a plant food source;
this context is used to simulate the effects of the new information about endosperm.

~destroyedAs

X ' ~ O ~ o s e d i n

enables

=~ ~ superProcess 0 fAcquisition

This perspective, represented as a semantic-net template, defines the concepts relevant to

an object in its role as a plant food source: a plant food source must have a stage when it is

destroyed and decomposed into nutrients; this decomposition enables the nutrients to be assimilated

by the plant; nutrient assimilation involves the provision and acquisition of nutrients.

Figure lO. The perspective Plant Food Source.

Endosperm001 EmbryoNutrient

EndospermDuring EmbryoNutrJent
Breakdown001 Provision001

~composedIn EnlbryoN~UP er ProcessO fAcquJsition

Endosperm :~ Acquisition BreakdownO01 enables FrornJ~ndosperraO01

The perspective of Figure 10 is instantiated for a hypothetical endosperm: the endosperm

is decomposed into nutrients which are assimilated by a hypothetical plant embryo. This

context is used to simulate the effects of seeds not having endosperms.

Figure]1. The context created by instantiating Plant Food Source.

31

278 E. BAREISS, B. PORTER, AND K. MURRAY

4.3. Elaboration

During recognition, KI creates a context by instantiating concepts in the knowledge base
most relevant to the new information. Next, during elaboration, KI determines how the
new information interacts with existing knowledge within this context. Elaboration involves
applying inference rules to propagate the effects of the new information throughout the
context.

In the endosperm example, elaboration begins when KI asserts that the endosperm is
absent from the context by assigning value False to the slot enabled? of Endosperm 001.
This assignment triggers inference rules that determine the consequences of seeds lacking
endosperm. For example, without the endosperm, the embryo cannot get enough nutrients to
survive. Only rules that apply to frames in the context are considered; therefore, by select-
ively instantiating frames during recognition, KI controls the inferences that are attempted
during elaboration. The inference rules applicable to this example are listed in Figure 12,
and the elaborated context is presented in Figure 13.

1. When an ent i ty is disabled, all of its developmental stages are disabled.
2. When an ent i ty is disabled, all the processes involving the ent i ty are disabled.
3. When a process is disabled, all the processes tha t i ts completion enables are disabled.
4. When the known methods of acquiring some essent ial resource are disabled, the rate of

providing the resource is inadequate for survival.
5. When the assimilation ra te for some resource is unknown, it is the same as the provision rate.
6. When nu t r i en t assimilation is inadequate for survival, the assimilator is dying.

Figure 12. Heuristic rules relevant to endosperm as a plant food source.

Dying

~ e EmbryoO01

Endosp erreD ttring EmbryoNutrient
B r e a k d ~ False enebl~///~ False~bled? Pr°viTO01/

EmbryoNutrient
Endospelwa :~ Acquisition Breakdown001 PromEndosp erm001

The hypothetical endosperm is disabled, triggering the inference rules of Figure 12, which propagate

the effects of this assertion throughout the context. The predicted consequences of seeds lacking

endosperms are presented in italics.

Figure 13. The elaborated context.

32

START-TO-FINISH KNOWLEDGE BASE DEVELOPMENT 279

Gygote001 ~:Dredecessor

acquirerIn

ZygoteNutrient
Acquisition

FromParent 001

Embryo001 ~" SeedlingO0l

acquirerIn

Seedling
Phot osynthesisO01

The context of Figure 13 is extended to include the developmental predecessor and successor

of Embryo 001 and their methods of nutrient acquisition.

Figure 14. The context extension.

Through elaboration, KI concludes that the plant embryo is dying from lack of nutrients.
This triggers the instantiatin of a second view defined for plants that are starving and in
danger of dying. The original context is expanded to include the plant's developmental stages
immediately before and after its embryo stage and how nutrients are acquired during each
of these developmental stages. This additional knowledge is presented in Figure 14. Through
continued elaboration, KI concludes that the plant's seedling stage is not reached because
the plant dies during its embryo stage.

An important function of elaboration is identifying confounded expectations. These occur
when expectations of the knowledge base are violated by new information or when two
rules reach conflicting conclusions. Resolving inconsistencies involves correcting the new
information to comply with current expectations or adapting the existing knowledge struc-
tures to accommodate the new information.

4.4. Adaptation

Elaboration reveals anomalies in the knowledge base; adaptation resolves them. An anomaly
can result from inconsistencies introduced either by inference rules used during elaboration
or by facts the knowledge engineer asserts. In the endosperm example, an anomaly is detected
when the knowledge engineer asserts that the embryos of nonendospermic seeds survive,
correcting the prediction that these embryos starve.

Resolving anomalies requires correcting explanations that support failed expectations and
constructing alternative explanations to account for new information. When the knowledge
engineer refutes the prediction that embryos of nonendospermic seeds starve, KI inspects
the explanation for this prediction to determine its weakest premise. This suspect explanation
is presented in Figure 15. Rule 4 (from Figure 12) relies on a closed-world assumption
and is considered a relatively weak inference. Therefore, KI retracts its conclusion and
assumes Embryo Nutrient Provision 001 is adequate for the embryo's survival. This change
propagates through the explanation, retracting the belief that the embryo starves.

The original anomaly has been resolved by assuming that the embryos of nonendospermic
seeds receive adequate nutrients. However, no alternative method is known for plant embryos
to acquire nutrients. KI seeks to construct an explanation for the assumed nutrient acquisition
using the following inference:

If a resource provision is adequate for survival, but no acquisition method is known, then
assume the acquisition method of the developmental successor is employed.

33

280 E. BAREISS, B. PORTER, AND K. MURRAY

state
Embryo001

EmbryoNutrient
Assimilation001

ErnbryoNutrient

Provision001

:~ Dying

rate
:~ Inadequate

~ rule 5

rate
:~ Inadequate ~ rule 4

EmbryoNutrient enabled?
Acquisition Fal

FromEndosperm001

Endosperm
Breakdown001

False ~ rule 3

enabled?:~ False

~ rule 2

EndospermDuring enabled? :~- False
Breakdown001

rule 1

k
enabled~

Endosperm001 False

Figure 15. The suspect explanation.

This rule suggests the embryos of nonendospermic seeds acquire nutrients by photosynthesis,
as is done by seedlings. However, this hypothesis introduces new constraints on the embryos
of nonendospermic seeds. For example, to acquire nutrients by photosynthesis, the embryo
must be a photosynthetic plant. Therefore, to apply this inference, KI asserts that Embryo
001 is an instance of Photosynthetic Plant. As a photosynthetic plant, the embryo inherits
the following features: it contacts sunlight, and its composition includes chlorophyll. This
is illustrated in Figure 16. In short, the plausibility of explaining the survival of nonendo-
spermic embryos by assuming they engage in photosynthesis is contingent on their contacting
sunlight and possessing chlorophyll. Confirming these assumptions leads to the acquisition
of further knowledge from the knowledge engineer.

4.5. KI's Strengths and Limitations

KI can partially determine the consequences of new information because it has access to sub-
stantial domain expertise and a method for heuristically determining what existing knowledge
is relevant. Using existing knowledge to elaborate new information enables KI to acquire
more than what is literally expressed by the new information. KI uncovers implicit conflicts
between new information and existing knowledge and assists the knowledge engineer with
resolving them. However, because our approach assumes substantial domain knowledge, it
is inappropriate during the initial stages of knowledge-base development when the encoded
domain expertise is sparse.

34

START-TO-FINISH K N O W L E D G E BASE D E V E L O P M E N T 281

Healthy

~ e ErabryoO01

Adequate /

N~teEmbryoNu/trlent
AssimilationO01

ErnbryoNutrient
ProvisionO01 /

PhotosynthesisO01

Pho~osynthe~icPlan~

Chlorophyll

The context is adapted to account for adequate nutrient provision when no nutrients are acquired

from the endosperm. Assuming the plant embryo acquires nutrients through photosynthesis requires

that it contacts sunlight and possesses chlorophyll.

Figure 16 The adapted context.

Identifying all interactions between new information and existing knowledge is intractable;
performing knowledge integration requires restricting this search. KI uses views in two
ways to avoid an intractable search. First, views are used as a control mechanism to provide
a coarse granularity in searching for the consequences of new information. This permits
KI to efficiently identify deep consequences of new information within selected contexts.
Second, views define local, computational environments. We are developing KI to enforce
consistency of the knowledge-base within views. This policy operationalizes the adage of
maintaining local consistency and obviates the intractable task of computing the deductive
closure of the knowledge base.

Our prototype implementation of KI has two shortcomings, which our current research
partially addresses. First, the knowledge engineer is required to choose from views that
KI considers relevant. We are designing an agenda-based search mechanism that automates
view selection [Murray and Porter, 1989]. Second, views are rigid because each is repre-
sented by an explicit path of slots (as in Figure 10). The number of views needed to structure
a knowledge base is large, and each view is manually created. We are studying alternative
representations of views [e.g., Porter, Souther, Lester, and Acker, 1989] and ways to acquire
views during knowledge integration.

5. Summary

Knowledge-acquisition tools help with knowledge-base development--the progression of a
knowledge base from a level of complete ignorance to a desired level of knowledge. Develop-
ment typically involves three stages: elicitation of initial knowledge, refinement of a proto-
type knowledge base, and reformulation of knowledge to improve performance. Each stage
requires a particular form of assistance, and most knowledge-acquisition tools support only
a single stage.

35

282 E. BAREISS, B. PORTER, AND K. MURRAY

Conceivably, start-to-finish development of knowledge bases could be supported by a
workbench of tools. The workbench organizes a collection of tools, each of which helps
with a particular development stage. However, the support is not continuous, and many
current tools are inappropriate for the workbench because they do not acquire the knowledge
that subsequent tools require.

Our research pursues an alternative--supporting start-to-finish development of knowledge
bases with a single tool. We have studied two issues crucial to building such a tool. The
first issue is spanning multiple stages of development. We have built Protos, a tool that
acquires knowledge while assisting a domain expert to solve classification problems. Initially,
Protos' knowledge is inadequate for solving problems; it interviews the expert to acquire the
domain's conceptual structure. As the knowledge base develops, problem solving improves
and errors are discussed with the expert to refine the knowledge base. Protos becomes an
autonomous problem solver and continues to improve its ability to explain its classifications.
Its effectiveness has been demonstrated with the construction of a knowledge-based system
for diagnosing hearing disorders.

The second issue addressed by our research is knowledge integration. As a large-scale
knowledge base is developed, the importance and the difficulty of performing knowledge
integration increases. We are building KI, a tool that evaluates new information to determine
its consequences for existing knowledge. KI controls the search for consequences with a
form of domain knowledge called views. Each view identifies the inference paths to pursue
when the representation of a concept is extended with new information. We are applying
KI to make complex extensions to a large-scale knowledge base.

Acknowledgments

Support for this research was provided by the Army Research Office under grant ARO-
DAAG29-84-K-0060, the National Science Foundation under grant IRI-8620052, and contri-
butions by Apple, Texas Instruments, and the Cray Foundation. We are indebted to Professor
Craig Wier for serving as the domain expert for the application of Protos to clinical audiology
and to Professor James Jerger of the Baylor College of Medicine for providing the training
cases. We are grateful to Robert Holte for providing useful commentary on early drafts
of this report. We appreciate the assistance of Joe Ross, Claudia Porter, and Ken Murray
during the development of Protos. Ken Murray and Bruce Porter are the primary researchers
on the KI project, with substantial contributions from Art Souther, Liane Acker, James
Lester, and Karen Pittman.

Notes

1. Proms does not consider all of the categories of which it is reminded. Only the strongest remindings are con-
sidered. Furthermore a category is considered only if no matching subordinate category can be found.

2. Again, an independent copy of the knowledge base was used that did not contain NewCase or the associated
indices and domain knowledge.

36

START-TO-FINISH KNOWLEDGE BASE DEVELOPMENT 283

3. Note that the ability to classify cases into known categories is being reported; the 24 training instances that
introduced new diagnostic categories are excluded from the training percentage.

4. This example has been simplified for presentation. For example, KI does not generate and parse natural language;
this discourse has been converted from a language of frames, slots, and values. A complete description of
the prototype implementation and this example are provided in Murray [1988].

References

Bareiss, R. 1989. Exemplar-based knowledge acquisition." A unified approach to concept representation, classifica-
tion, and learning. (Based on PhD dissertation, University of Texas at Austin, Austin, TX: Department of
Computer Sciences), Academic Press.

Bennett, J.S. 1985. ROGET: A knowledge-based system for acquiring the conceptual structure of a diagnostic
expert system. Automated Reasoning, 1, 49-74.

Boose, J. 1984. Personal construct theory and the transfer of expertise. Proceedings of the National Conference
on Artificial Intelligence, (pp. 27-33).

Boose, J., and Bradshaw, J. 1987. Expertise transfer and complex problems: Using Aquinus as a knowledge acqui-
sition workbench for knowledge-based systems. International Journal of Man-Machine Studies 26, 1, 3-28.

Bylander, T., and Chandrasekaran, B. 1987. Generic tasks for knowledge-based reasoning: The right level of
abstraction for knowledge acquisition. International Journal of Man-Machine Studies 26, 231-243.

Clancey, W.J. 1985. Heuristic classification. Artificial Intelligence 27, 289-350.
Cohen, P., and Kjeldsen, R. 1987. Information retrieval by constrained spreading activation in semantic networks.

Information Processing and Management 23, 255-268.
Davis, R. 1977. Interactive transfer of expertise: Acquisition of new inference rules. Proceedings of the International

Joint Conference on Artificial Intelligence (pp. 321-328).
Dvorak, D. 1988. Guide to CL-Protos: An exemplar-based learning apprentice. (Technical Report AI88-87). Austin,

TX: University of Texas, Department of Computer Sciences.
Eshelman, L., Ehret, D., McDermott, J., and Tan, M. 1987. MOLE: A tenacious knowledge acquisition tool.

International Journal of Man-Machine Studies 26, 41-54.
Kahn, G., Nowlan, S., and McDermott, J. 1985. MORE: An intelligence knowledge acquisition tool. Proceedings

of the International Joint Conference on Artificial Intelligence (pp. 581-584).
Michalski, R.S. 1987. How to learn imprecise concepts: a method for employing a two-tiered knowledge represen-

tation in learning. Proceedings of the Fourth International Workshop on Machine Learning (pp. 50-58).
Mitchell, T.M., Mahadevan, S., and Steinberg, L.I. 1985. LEAP: A learning apprentice for VLSI design. Pro-

ceedings of the International Joint Conference on Artificial Intelligence (pp. 573-580).
Murray, K. 1988. KI: An Experiment in Automating Knowledge Integration. (Technical Report AI88-90). Austin,

TX: University of Texas, Department of Computer Sciences.
Murray, K., and Porter, B. 1989. Controlling search for the consequences of new information during knowledge

integration. Proceedings of the Sixth International Workshop on Machine Learning (pp. 290-295).
Musen, M.A., Fagan, L.M., Combs, D.M., and Shortliffe, E.H. 1987. Use of a domain model to drive an inter-

active knowledge-editing tool. International Journal of Man-Machine Studies 26, 105-121.
Neches, R., Swartout, W.R., and Moore, J.D. 1985. Enhanced maintenance and explanation of expert systems

through explicit models of their development. IEEE Transactions on Software Engineering//, 1337-1351.
Porter, B., Souther, A., Lester, J., and Acker, L. 1989. Generating explanations in an intelligent tutor designed

to teach fundamental knowledge. Proceedings of the 2nd Intelligent Tutoring Systems Research Forum, (pp. 55-69).
Quinlan, J.R. 1986 Induction of Decision Trees. Machine Learning 1, 81-106.
Smith, R.G., Winston, H.A., Mitchell, T.M., and Buchanan, B.G. 1985. Representation and use of explicit justifica-

tions for knowledge base refinements. Proceedings of the Ninth International Joint Conference on Artificial
Intelligence (pp. 673-680).

Wilkins, D.C. 1988. Knowledge base refinement using apprenticeship learning techniques. Proceedings of the
National Conference on Artificial Intelligence (pp. 646-651).

37

