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Abstract. Evaluation of the impact of nosocomial infection on duration of hospital stay usually relies on estimates 
obtained in prospective cohort studies. However, the statistical methods used to estimate the extra length of stay are 
usually not adequate. A naive comparison of duration of stay in infected and non-infected patients is not adequate 
to estimate the extra hospitalisation time due to nosocomial infections. Matching for duration of stay prior to 
infection can compensate in part for the bias ofad hoc methods. New model-based approaches have been developed 
to estimate the excess length of stay. It will be demonstrated that statistical models based on multivariate counting 
processes provide an appropriate framework to analyse the occurrence and impact of nosocomial infections. We 
will propose and investigate new approaches to estimate the extra time spent in hospitals attributable to nosocomial 
infections based on functionals of the transition probabilities in multistate models. Additionally, within the class of 
structural nested failure time models an alternative approach to estimate the extra stay due to nosocomial infections 
is derived. The methods are illustrated using data from a cohort study on 756 patients admitted to intensive care 
units at the University Hospital in Freiburg. 

1. Introduct ion  

N o s o c o m i a l  (hospi ta l -acquired)  infect ions are major  compl ica t ions  arising in the pat ients '  

t rea tment  in hospital.  The  rate o f  nosocomia l  infect ions is h ighest  in intensive care units 
( ICU),  the mos t  hazardous  areas in the hospital  setting. N o s o c o m i a l  infect ions  may  cause  

severe  morb id i ty  in patients leading to prolongat ion  o f  hospital  stay and, dependen t  on the 

type o f  infect ion,  may  also contr ibute to an increase in mortali ty.  Therefore ,  nosocomia l  
infect ions  const i tute  a substantial medica l  and soc ioeconomic  problem,  apart  f rom the 

individual  consequences  for the affected patient  (Daschner,  1982, 1984; Haley, 1981). For  

the Uni ted  States (US) the total e conomic  burden for the society f rom nosocomia l  infect ions  

is recent ly  es t imated  to be about  4.5 bi l l ion U.S. $ per  year  (Bennet  & Brachman,  1993). 

Pro longat ion  o f  hospital  stay due to nosocomia l  infect ion is a major  issue in cost -benef i t  

analysis  o f  p rograms for infect ion control  (Haley, 1986). Informat ion  about  pro longat ion  
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of hospital stay due to nosocomial infections is also regarded as a surrogate measure to 
quantify the medical impact of nosocomial infections. 

In estimating the extend to which duration of hospital stay is prolonged by the infection one 
has to accept that the extra time is not directly observable. Ad-hoc approaches for estimating 
the extra hospital stay attributable to nosocomial infections applied so far (McGowan, 
1982; Brawley et al., 1989; Freeman et al., 1979; Haley et al., 1980; Green et al., 1982; 
Freeman & McGowan, 1984; Leu et al., 1989; Pittet et al., 1994) suffer the drawback 
of a necessary retrospective stratification in infected and non-infected patients. These 
approaches lead to biased results because they treat nosocomial infections like predefined 
fixed baseline characteristics of the patients neglecting that acquiring infection is a process in 
time. To assess the consequences of nosocomial infections, the temporal sequence of events 
and the dynamics of the disease process have to be considered. It will be demonstrated 
that statistical models based on multivariate counting processes provide an appropriate 
framework to analyse the occurrence and impact of nosocomial infections. We will propose 
new approaches to estimate the extra time spent in hospital attributable to nosocomial 
infections based on functionals of transition probabilities in multistate models. Within the 
class of structural nested failure time models an additional alternative approach to estimate 
the extra stay due to nosocomial infections is derived. The methods are illustrated using 
data from a cohort study on 756 patients admitted to intensive care units at the University 
Hospital in Freiburg. 

The outline of the paper is as follows: Section 2 describes the example data set; section 3 
specifies the model based on multivariate counting processes; section 4 deals with non- 
parametric estimation of the transition intensities and probabilities in multistate models; 
section 5 describes the different approaches for estimating prolongation of hospital stay 
attributable to nosocomial infections; section 6 presents the results of an application of the 
discussed approaches in the example data set. For motivation of the reader it might be 
worthwhile to skip the more technical section 4 for the first reading and move directly to 
section 5. 

2. Illustrative Example 

A cohort study was initiated in 1991 at the University Hospital in Freiburg with prospective 
assessment of data to evaluate the impact of nosocomial infections. All patients admitted 
to the anesthesiological (AIT) and medical (MIT) intensive care units during the two year 
period from July 1991 to June 1993, 18 years of age or older who resided in these ICUs 
for 48 hours or more entered the study cohort. Overall, 756 patients were included in the 
cohort and were monitored daily during ICU stay by an independent physician who was 
not involved in the treatment of the patients. Diagnose of nosocomial infection were made 
based upon the definitions by the Centers for Disease Control (Garner et al., 1988). Dates 
recorded are the date of admission to ICU, date(s) of onset of nosocomial infection(s) on 
ICU, date of discharge from ICU and date of death on ICU, respectively. For every patient 
the complete follow up information is available, hence, censored event times do not occur. 

One-hundred-ninety-seven patients (26.1%) acquired one or more nosocomial infections. 
The most common type of infection was nosocomial pneumonia which was acquired by 
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Table 1. Characteristics of the study cohort. 

Patient characteristics AIT (N = 440) MIT (N = 316) Total (N = 756) 

Age* 48.5 (21.7) 58.5 (15.2) 52.7 (19.9) 
Gender (female) 159 (36.1%) 138 (43.7%) 297 (39.3%) 

Admission diagnosis: 
Central nervous system 8 (1.8%) 27 (8.5%) 35 (4.6%) 
Cardiopulmonary 36 (8.2%) 151 (47.8%) 187 (24.7%) 
Abdominal 89 (20.2%) 13 (4.1%) 102 (13.5%) 
Urogenital 8 (1.8%) 3 (0.9%) 11 (1.5%) 
Polytrauma/Head trauma 192 (43.6%) 0 (0%) 192 (25.4%) 
Infections 63 (14.3%) 65 (20.6%) 128 (16.9%) 
Others 44 (10%) 56 (17.7%) 100 (13.2%) 

Operation: 
Elective surgery 106 (24.1%) 10 (3.2%) 116 (15.3%) 
Emergency surgery 222 (50.5%) 11 (3.5%) 233 (30.8%) 

Infection on admission to ICU 209 (47.6%) 203 (64.2%) 412 (54.6%) 
Pneumonia on admission 168 (38.2%) 165 (52.2%) 333 (44%) 
Sepsis on admission 44 (10%) 37 (11.7%) 81 (10.7%) 

*.mean (standard deviation) 

124 patients (16.4%); the second most common nosocomial  infection was sepsis which 
was acquired by 67 patients (8.9%). Overall, 191 patients (25.3%) died on ICU; of  the 
67 patients who acquired nosocomial sepsis 49 patients (73.1%) died on ICU and of  the 
124 patients who acquired nosocomial pneumonia without subsequent sepsis 28 patients 
(22.6%) died on ICU. Median duration of  stay was 6 days on AIT  and 7 days on MIT. 
Table 1 describes the patient population by selected baseline variables. Further details of  
the study are given elsewhere (Kropec et al., 1995). 

3. Model Specification Based on Multivariate Counting Processes 

In a multistate model  for occurrence and impact of  nosocomial infections, we regard for 
example admittance to ICU, nosocomial  infections, death and discharge as potential disease 
states. Acquir ing an infection during hospital stay is regarded as a transition to the state 
"nosocomial  infection" out of  an initial non-infected state. Occurrence of  infections, death 
and discharge are so called events in the disease course. Figure 1 illustrates the basic 
potential individual movements in the example presented. 

Patients and their event times will be assumed independent of  each other. Time will in 
general be assumed continuous, however, observation of  events will in general be in discrete 
time. The basic time scale in the example is t ime (days) since admittance to ICU. 

All  patients start in the transient, non-recurrent state "alive, free of  nosocomial  infection" 
( :=  state 0) with admittance to the intensive care unit (ICU) at t = 0. Infections, which are 
acquired within the first 48 hours after admission are not regarded as nosocomial.  We are 
mainly interested in the occurrence of  nosocomial pneumonia and sepsis, the most frequent 
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Figure 1. Potential states and transitions for occurrence and impact of nosocomial infections. 

types of nosocomial infections and most serious complications arising in the study popula- 
tion. The states 1 and 2 represent the occurrence of nosocomial pneumonia and nosocomial 
sepsis, respectively, both are regarded as transient states. Both states are non-recurrent 
because in the available database, there is essentially no information about termination of 
an infection. For the same reason multiple infections of the same type are not modelled. 
Finally, patients may be discharged to a normal care unit within hospital or they may die 
while still on ICU. Naturally, death (:= state 3) is an absorbing state. Discharge ( := state 4) 
is also regarded as an absorbing state because observation terminates at the time of discharge 
and no further events have been registered. We will not model transitions from state 2 to 
state 1 because nosocomial sepsis is an almost always fatal event in the patients course at 
ICU and a model for pneumonia following sepsis is clinically irrelevant. 

We assume a non-homogeneous Markov model for the movements of the individuals 
among the several states (Andersen et al., 1993). Let (X( t ) ,  t ~ T)  denote the Markov 
process with state space {0, 1, 2, 3, 4} and the initial distribution degenerated at state 0. 
Then N = (Njh; j ,  h = 0, 1, 2, 3, 4; j # h) denotes the multivariate counting process, 
counting the number of direct transitions from j to h, i.e. the number of infections, deaths 
and discharges with the time scale being "time since admittance". Let N be adapted to the 
filtration Ft = Nt t_J Fo, where Nt denotes the self-exiting filtration generated by N and Fo 
represents the information fixed at time 0 which may be given by the covariates. 

Figure 2 illustrates the processes counting the number of pneumonia cases, sepsis cases 
and deaths observed in the first 40 days after admittance to the ICU. 

4. Estimation of the Integrated Transition Intensities and Transition Probabilities 

Estimation in the multiplicative intensity model centers around estimators for the integrated 
transition intensities and the transition probabilities, which are important in judging the 
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Figure 2. Illustration of observed counting processes for transition from the initial state tO nosocomial pneumonia 
( ), sepsis (.._.._) and death (_ _ _) for the first 40 days on ICU. 

prognosis of a patient. Estimates of the event specific hazard functions can be obtained 
by application of smoothing techniques based on kernel functions (Ramlau-Hansen, 1983). 
However, we will concentrate here on the Nelson-Aalen estimator for the cumulative hazard 
function and the Aalen-Johansen estimator for the transition probabilities. The book by 
Andersen, Borgan, Gill and Keiding (1993) provides a thorough overview of methods and 
applications and will serve as the basic reference and source of notation. 

Let A denote the event-specific cumulative hazard function with 

Ajh(t) = Oljh(s)d(s), 

where the force of transition from state j to h, j ~ h, is given by the event-specific hazard 
function Oljh(t, O) (with some Oljh(t) = 0). 

An estimator for Ajh(t) is given by the Nelson-Aalen estimator (Nelson, 1972; Aalen, 
1978): 

,~jh(t)= fot JJ(;) dNjh(S), j( ) 

where Yj(t) denotes the indicator for X being in state j just prior to time t and J(t) = 
I(Y(t)  > 0) and J( t ) /Y( t )  -- 0 if Y(t) = 0. Here, dN(t) denotes the increments of the 
counting process N in the time interval [t, t + dt): dN(t) = N((t + dr) - )  - N ( t - ) .  A 
proof of consistency and asymptotic normality of the estimator is given in Aalen (1978). 
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The transition probabilities can be determined from the transition intensities by product- 
integrating the intensity measure. Using the product-integral notation (Gill & Johansen, 
1990) the matrix of transition probabilities P(s, t) with elements {Pjh(S, t)} for s < t is 
given by 

P(s, t) = I - I  (I + dA(u)), 
u~(s,t) 

with A being the matrix of the transition intensity measure with elements {Ajh }. The product 
sign over an interval denotes the product integral, a continuous version of the ordinary finite 
product. 

Let z~jh (t) denote the Nelson-Aalen estimator of the cumulative hazard function Ayh for 

direct transitions from j to h(j 5~ h) and let A j j ( t )  -~ - ~ Ajh(t). The Aalen-Johansen 
j4h 

estimator for the matrix of transition probabilities in non-homogeneous Markov processes 
(Aalen & Johansen, 1978) is given by 

P(s, t) = I - I  (I + d.~(u)), 
u~(s,t) 

with A = {Ajh}. Because the Nelson-Aalen estimator is a step function with a finite 
number of jumps in (s, t) the Aalen-Johansen estimator is a finite product of matrices. 
The estimator was proposed by Aalen and Johansen (1978) as a product-limit estimator 
generalising the Kaplan-Meier estimator for the survival function in the two-state model 
(Kaplan & Meier, 1958). The Aalen-Johansen estimator is almost unbiased and may be 
interpreted as a nonparametric maximum likelihood estimator (Andersen et al., 1993). In 
case of no censoring before the end of follow up the Aalen-Johansen estimator for the 
probability of being in state h at time t is just the fraction of sample paths observed in state 
h at time t. 

5. Estimation of Prolongation of Hospital Stay Attributable to Nosocomial Infections 

Attempts have been made to estimate the additional time spent in hospital by "expert rat- 
ing". An independent observer examines (retrospectively) the patients' files to determine 
the extra length of hospital stay attributable to an acquired infection. The resulting estimate 
is regarded as being not very reliable due to its subjective nature and is believed to under- 
estimate the extra hospitalization time (McGowan, 1982). In consequence, we have to rely 
on statistical methods to estimate the extra stay in hospital realising that the additional time 
is not observable. 

For each patient the time of admission to the hospital and the time of discharge is observ- 
able. For patients who acquire an infection, the time can be observed at which the infection 
becomes manifest. For patients who develop an infection, however, the duration of stay 
"had they not acquired the infection" is not observable. Similarly, for patients who were 
discharged without having acquired infection during hospital stay, the duration of stay "had 
they acquired an infection" is not observable. 

We now describe two approaches which, in an ad-hoc manner, have been applied to 
estimate the extra hospitalization time on an empirical basis. Two non-parametric estimators 
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for the effect of nosocomial infection will then be proposed which are based on functionals 
of the transition probabilities in multistate models. They will be illustrated and compared to 
the ad-hoc approaches for the example data. Finally, a fifth approach based on G-estimation 
in structural nested failure time models will be described and compared to the others using 
the same example data set. 

5.1. The "Naive" Approach 

With the simplest method, we like to call it "naive" approach, patients are retrospectively 
stratified into two groups according to whether they have acquired nosocomial infection(s) 
or not. The mean duration of hospitalisation in the two groups of infected and non-infected 
patients is to be compared (see for example McGowan, 1982 or Brawley et al., 1989). This 
method disregards the time infected patients are "ahead" compared to patients who are 
discharged without having acquired an infection. Patients who are discharged early and 
who therefore have a lower chance to acquire an infection are classified as non-infected. 
This naive method will lead to biased results in that it overestimates the effect of nosocomial 
infection on duration of hospitalisation (Freeman et al., 1979; Haley et al., 1980; Green et 
al., 1982; Freeman & McGowan, 1984). 

The same effect is known from phase II and phase III cancer clinical trials evaluating 
efficacy of chemotherapeutic agents where the effect of response to therapy on survival 
time is grossly overestimated when a simple comparison of responder and non-responder 
is performed and, in addition, a treatment comparison based on duration of response in 
the responders would give misleading results (Morgan, 1988; Weiss et al., 1983; Simon & 
Makuch, 1984; Temkin, 1978; Begg & Larson, 1982). Similarly, in studies on the effect of 
heart transplantation on survival time using patients who are accepted for transplantation 
but still waiting for a suitable donor as control group for transplanted patients in a simple 
two-group comparison would lead to an overestimate of the transplantation effect because 
early deaths would automatically be counted in the control group (Gail, 1972; Turnbull et 
al., 1974; Mantel & Byar, 1974; Aitkin et al., 1983). 

5.2. The Matching Approach 

A matching procedure is frequently applied to estimate the extra stay attributable to noso- 
comial infections (Leu et al., 1989; Kappstein et al., 1992a, 1992b; Pittet et al., 1994). For 
each infected patient (case) one or several control patients are selected from the pool of 
patients who are discharged from hospital without having acquired an infection and who 
are as similar as possible to the case with respect to specified risk factors for duration of 
hospitalisation. The matching approach consists of an individual comparison of length of 
hospital stay of patients who acquire an infection at some time during hospital stay (cases) 
with those who are discharged (alive) without having acquired an infection (controls). To 
account for factors which influence the duration of hospital stay, those factors should be 
considered as matching criteria. Furthermore, a suitable control patient should still be "at 
risk" for developing an infection until the time at which the infection becomes manifest 
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in the corresponding case. This requirement corresponds to what is known as "incidence- 
density sampling" in epidemiological case-control studies (Clayton & Hills, 1993). Hereby, 
some part of the positive bias in the naive method should have been eliminated. In contrast 
to the classical matched case-control study, where past exposure is of interest, the aim is 
to compare cases and controls with respect to a quantity (time until discharge) which can 
only be assessed future to development of disease. For this reason, in contrast to the nested 
case-control study within a cohort (Clayton & Hills, 1993), it is not sensible to allow cases 
to be used as controls at a time prior to their infection. In consequence, a suitable control 
has to fulfil the condition that (s)he will not become a case in the future. This necessary 
condition violates the basic principle in the counting process framework, that conditioning 
is only allowed on past events. Therefore an induction of bias by applying the matching 
approach is unavoidable. 

5.3. Nosocomial Infection as Time-Dependent Covariate 

One approach deserves to be mentioned which can be used to judge whether there is an 
effect of infection on time to discharge at all. However, this approach does not lead directly 
to an estimate of the extra days in hospital but should be applied before trying to estimate 
the extra time in hospital due to nosocomial infection by more elaborated methods. The 
approach avoids the drawback of the ad-hoc approaches, i.e. the retrospective stratification 
in infected and non-infected individuals and can be applied using widely available stan- 
dard statistical software. The approach consists in fitting a proportional hazards model 
(Cox, 1972) to the discharge hazard with nosocomial infection included as time-dependent 
covariate (Andersen, 1986). The effect of this covariate can be tested by a test for the 
corresponding regression coefficient to be zero (Wald test; Kalbfleisch & Prentice, 1980). 
The size of the estimated regression coefficient gives a first impression of the effect that 
nosocomial infection has on prolongation of hospital stay. However, it does not lead to an 
estimate of the extra time because the model is formulated in terms of the hazard and not 
the actual time to discharge. 

5.4. Nonparametric Estimation of the Extra Stay in Hospital Based on Functionals of 
the Transition Probabilities in Multistate Models: Approach A 

In the following we will propose an estimator which is based on functionals of the transition 
probabilities in multistate models. In addition to the model assumptions mentioned in 
section 4 (independence of individual event times; non-homogeneous Markov model) this 
approach requires the assumption of independence of the risk of infection and the risk of 
death or discharge or, at least, independence conditional on measured covariates. 

Let 7r0(0, t) denote the probability of an individual admitted to hospital at time 0 to be 
alive and in hospital (or ICU) from time 0 to time t. This probability is a composition of 
transition probabilities in the multistate model: 

Zro(O, t) = Poo(O, t) + Pol(O, t) + Po2(O, t) 
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fo' + (Poo(O, u)otol(U)Pll(U, t))du 

+ (Poo(O, u)o~o2(u)P22(u, t))du. 

~0(0, t) denotes the probability that an individual (i) either stays in the initial state until 
time t without acquiring an infection and without being discharged or dieing before t, or, 
(ii) that the individual acquires pneumonia or sepsis at some time before t and stays in the 
infection state until t without being discharged or dieing before t. Jr0(0, t) can be estimated 
by inserting the Aalen-Johansen estimator for each of the component probabilities. ~0(0, t) 
integrated over all times t is then the expected (or average) duration of hospital stay of a 
patient admitted to hospital at time 0. 

Consider now the (hypothetical) situation that by introducing infection control programs 
or by establishing a certain vaccination procedure, one type of infection, e.g. nosocomial 
pneumonia, could be prevented. Dependent on the efficacy of the intervention, the hazard 
for nosocomial pneumonia may ideally be completely eliminated or may at least be reduced 
by a certain proportion. Let 7r0 ° (0, t) denote the probability of an individual admitted to 
hospital at time 0 to be alive and in hospital (or ICU) from time 0 to time t in this hypothetical 
situation, where 0 (0 < 0 < 1) denotes the reduction in the hazard ofnosocomial pneumonia 
by the prophylactic measure. Then let ~r0°(0, t) be given by: 

Jr°(0, t) = P°(0 ,  t) +/9o°1(0, t) + ,°0°2(0, t) 

= e x p { - f o t ( 0  xotm(u)+oto2(u)+oto3(u)+oto4(u))du} 

I' + (P°(0,  u) × O × ot01(u ) × Pn(u,  t))du 

I' 
+ (P°(0 ,  u) x ~o2(u) x P22(u, t))du. 

~o (0, t) denotes a hypothetical probability for hospital stay up to time t in the situation 
where the intervention only affects the hazard of nosocomial pneumonia. This approach 
fits into a competing risk framework where one would ask the question of how many 
days in hospital can be saved when, as an extreme case, nosocomial infections could 
completely be eliminated (0 = 0). This "partial" probability (Andersen et al., 1993) is only 
interpretable under the assumption that the risk of infection and the "risk" of discharge act 
independently from each other, and that by eliminating nosocomial infection, the intensity 
of the other events are not altered. This assumption would be violated if, for example, 
special prophylactic measures would prevent nosocomial infections, but side effects of this 
prophylactic treatment would prolong hospitalisation. Another scenario would be, that only 
less severe infections can be prevented and the more severe infections with a possibly higher 
intensity of death still occur; this would also violate the above assumption. 

Then the hypothetical expected (or average) duration of hospital stay of a patient admitted 
to hospital at time 0 when the hazard of nosocomial pneumonia is reduced by a certain 
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factor 0 is rr°(0, t) integrated over all times t. Also zrg(0, t) can be estimated by the 
Aalen-Johansen estimator for the component "O-partial" probabilities. The Aalen-Johansen 
estimator/3o (0, t) for the matrix of the "O-partial" transition probabilities is given by 

m 
/3°(0, t) = H(I + APl°(Tv)), 

v=l 

I + A./i°(Tv) = 

with 

AN~(I',,) 0xalVo~(T<,) tx,V~(T.) ANo~(T,,) A.,V~(T,,) 

ANIa(Tv) 0 1 -  AN~(To) 
YI(Tu) YI (Vu) YI ( V u ) A Y I  (Vo)v) .~4(  T 

0 0 1 - -  AN2(To) ANT~(T.) 
Y2(Tu) Y2(Tu) 112(/'o) 

0 0 0 1 0 
0 0 0 0 1 

where 

AN°(Tv)  = 0 × ANo1(Tv) + ANo2(Tv) + ANo3(Tv) + ANo4(Tv) 

and Yj(To) denotes the number of patients at risk in state j at time To, where To denote the 
observed event times. 

In the computations, only the terms including the number of individuals moving from 
state 0 to state 1 are affected by the reduction factor. All the other transition intensities 
remain unchanged according to the above assumptions. 

An estimator for the extra stay in hospital attributable to nosocomial infection (here: 
pneumonia) can now be constructed based on the difference between the "observed" average 
duration of hospital stay and the "hypothetical" average duration of hospital stay dependent 
on 0. An estimator of the extra hospitalisation timed per patient of the cohort is given by: 

/0 f; E°(8) = fro(O, t) dt - fr°(O, t) dt, 

where r denotes the last observation time. Note, that when the largest observation time is 
censored the estimate of the mean is biased. 

In cost-benefit analysis of infection control programs for a postulated reduction of noso- 
comial infections, the number of hospital days saved per 1000 admissions, for example, 
and the corresponding reduction in cost can be calculated by this approach. Now/~° (8) is a 
population measure for the effect of nosocomial infections on length of hospital stay. It can 
be transformed into a measure for the individual infected patient. Dividing the estimated 
extra time per patient of the cohort by the rate of infections that hypothetically is prevented 
one obtains an estimate of the extra length of stay for the individual infected patient. 

5.5. Nonparametric Estimation o f  the Extra Stay in Hospital Based on Functionals o f  
the Transition Probabilities in Multistate Models: Approach B 

While Approach A used a hypothetical quantity to estimate the extra time attributable to 
nosocomial infections, which is only valid under additional assumptions, Approach B relies 
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on observable quantities only and requires only the assumptions mentioned in section 4 
(independence of individual event times; non-homogeneous Markov model). 

Let zr0(s, t) denote, analogously to Approach A, the probability of an individual to be 
alive and in hospital (or ICU) from time s to time t. ~r0(s, t) is a conditional probability, 
namely the probability of hospital stay at t given that the individual is still alive, in hospital 
and without nosocomial infection at time s, i.e. conditional on the individual is still in state 
0. For each time s we can then define the expected "residual" duration of hospital stay given 
the individual has not moved out of state 0 until time s but may well acquire nosocomial 
infection later on: 

fs 
/7 

ro(s) = zro(s, t )dt .  

Let Jr1 (s, t) denote the probability of an individual who acquired pneumonia at or prior to 
s and who is still alive and in hospital at time s, to be still alive and in hospital at time t 
and possibly having acquired sepsis prior to t in addition to nosocomial pneumonia. Then, 
Jrl (s, t) can be expressed as: 

rq(s ,  t) = Pl l (s ,  t) + Plz(s ,  t) 

= exp{-fst(Otl2(U)-k-Otl3(U)-k-Otl4(U))du] 

+ Pll (S, u)~12(u)P2:(u, t )du .  

The expected "residual" duration of hospital stay given the individual is in the nosocomial 
pneumonia state at time s is then defined as 

fs  ~" 
rl (s) = 7q (s, t )dt .  

We can now compare the expected duration of hospital stay of an individual who acquired 
pneumonia at time s (or prior to s) with the expected duration of stay of an individual who 
is free of infection at s, but---different from the matching approach---will possibly acquire 
pneumonia future to s. An alternative estimator of the expected extra hospitalisation time 
8 of an infected individual dependent on time s may therefore be constructed as: 

/~I(~, S)  = ffl (S, t )d t  -- :?to(s, t )d t  = ?1 (s) - ~o(s), 

where estimates are obtained by inserting the corresponding Aalen-Johansen estimator for 
the component transition probabilities. In the computations the state of the system is fixed 
at time s, i.e. the number of patients "at risk" in the various states as it is observed at time s 
is kept, but all transitions which occurred prior to time s are ignored. To obtain a summary 
measure we compute a weighted average of the extra hospital stay over all times s, weighted 
by the subdistribution function for the time of infection among those infected. 
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5.6. Confidence Intervals for Approach A and B 

To derive confidence intervals for the extra time spent in hospital due to nosocomial infection 
we would need an estimate of the asymptotic variance-covariance matrix for the matrix of the 
transition probabilities. Computation of this matrix would require extensive computational 
work to be implemented. Therefore we choose to use bootstrap confidence intervals (Efron 
& Tibshirani, 1986) based on percentiles of the bootstrap distribution of/~o (3) and/~t ° (3), 
respectively. By means of a Monte Carlo algorithm we draw 2000 bootstrap samples 
(random sample of size n drawn with replacement from the actual sample of size n) to 
approximate the bootstrap distribution using the random number generator CALL RANUNI 
in SAS. The percentile method interval is the interval between the 100 x (or/2) and 100 x 
(1 - or/2) percentiles of the bootstrap distribution. 

5.7. G-estimation in Nested Structural Failure Time Models: 
A CounterfactualApproach 

One approach to estimate prolongation of hospital stay attributable to nosocomial infections 
which uses a completely different reasoning compared to the previously described ones, is 
based on a class of estimators referred to as G-estimators of parameters of a new class of 
causal models, the structural nested failure time models (SNFTM) (Robins et al., 1992), 

Let T/- and T/+(v) be defined as counterfactual variables. Let T~.- be the duration of 
hospital stay of subject i if, possibly contrary to fact, no infection is acquired during 
hospital stay and let T/+(v) be the time to discharge of subject i if nosocomial infection 
becomes manifest at time v. On the individual level, T/+(v) - T/- then is the extra hospital 
stay due to infection. 

A simple SNFTM formulated in terms of the counterfactual variables assumes that resid- 
ual duration of hospital stay after having acquired nosocomial infection is expanded or 
contracted by a certain factor exp(-rD, where O is unknown and has to be estimated: 

(T/- - v) × exp(-r / )  = Ti+(v) - v. 

If  r/ < 0 nosocomial infection prolongs residual hospital stay, otherwise if 17 > 0 residual 
duration of hospital stay would be decreased by nosocomial infection. The factor exp(-O) 
is called the expansion factor and exp(-r / )  - 1 is the fractional increase in residual hospital 
stay due to nosocomial infection. 

This model implies that if Vi is the observed time of nosocomial infection of subject i (if 
infection is acquired) and T/is the observed duration of hospital stay then 

T~- = V~ + (T~ - V~) x exp(,7)  
r , -  = r ,  

if (Vi < Ti) 
otherwise. 

For a series of values of 77 we can compute a new variable Li ( r l )  = Vi -F (Ti - Vi) x 
exp(0) for patients who acquire infection and L i  (17) =- Ti for patients who were discharged 
without having acquired nosocomial infection. Robins et al. (1992) propose a G-test of the 
hypothesis that the "true causal parameter" 0 equals some particular value r/* by fitting a 
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proportional hazards model to the hazard for nosocomial infection with L(0) as time fixed 
covariate, 

ainf(t I Ft-, Ti) = ao,inf(t) exp(/3 x L(r/)), 

and testing for the parameter fl = 0. An asymptotic 95%-confidence interval (Olow, Ohigh) 
for r/* is given by those values of ~7 which are consistent with the null hypothesis/3 = 0 at 
the 5% level; an unbiased and asymptotically normal distributed point G-estimate for the 
value of O is given by that particular 0 which leads to the score test statistic being equal to 
zero (Robins et al., 1992). 

Having obtained an estimate of 0, we can estimate the counterfactual duration of stay T i- 

for each individual who acquired infection as T/- = V/+ ( T / -  Vi) × exp(~). An estimate of 
the extra hospital stay per infected patient attributable to nosocomial infection is then given 
by the average of the individual differences between the observed duration of stay T/(v) and 
the estimated counterfactual duration of stay ~ - .  Constructing a 95%-confidence interval 
for the extra stay by using the upper and lower limits of the 95%-confidence interval for 
O* would not take all sources of sampling variation into account (as noted by referee I). 
Therefore, we choose to use bootstrap confidence intervals for the extra stay as described 
in section 5.6. 

6. Application of the Approaches to the Example Data Set for Nosocomial Pneumonia 

6.1. The "Naive'Approach 

Patients without acquiring nosocomial pneumonia during hospital stay are discharged alive 
from ICU on average 11.9 (4- 19.2) days after admission, while patients who acquired 
nosocomial pneumonia have an average duration of ICU stay of 26.4 (+  21.4) days. The 
estimated extra stay due to nosocomial pneumonia would therefore be (over) estimated as 
being 14.4 days using the "naive" method. By applying a logrank test one would conclude 
that nosocomial pneumonia significantly prolongs ICU stay (p < 0.001). 

6.2. The Matching Approach 

The matching approach uses as matching criteria age (within ten years) and sex of the 
patients, and time to manifestation of nosocomial pneumonia in the case. The maximum 
number of controls per patient is restricted to five. For all but one case, control patients 
are available; in total 450 patients serve as controls. Duration of hospital stay is estimated 
to be prolonged by nosocomial pneumonia for 8.2 (4- 13.1) days which is about one week 
less than the corresponding estimate obtained by the naive approach. 
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Figure 3. Probability of hospitalisation a.) with risk of nosocomial pneumonia acting (upper solid curve) and b.) 
with risk of nosocomial pneumonia removed completely (lower broken curve). The extra time due to nosocomial 
pneumonia per patient of the cohort is the area between the curves (Approach A). 

6.3. Time-Dependent Covariate 

Fitting a proportional hazards model to the discharge hazard with a time dependent covariate 
for nosocomial pneumonia which is coded "0" as long as no infection is acquired by the 
patient and "1" at the time the infection becomes manifest yields the following result: The 
effect of the time dependent covariate is highly significant (p < 0.0001). Nosocomial 
pneumonia significantly reduces the discharge hazard [RR = 0.6; 95%-CI: (0.4--0.7)], i.e. 
prolongs ICU stay. 

6.4. Approach A 

Figure 3 illustrates the Aalen-Johansen estimates for zr0(0, t), the probability of being 
hospitalised at time t in the situation where the risk of nosocomial pneumonia is acting 
(upper solid curve), and for the "0-partial" probability Jr°(o, t), the probability of being 
hospitalised at time t in the hypothetical situation where the risk of nosocomial pneumonia 
is removed completely, i.e. 0 = 0 (lower broken curve). 

At first sight, the difference between the two curves does not look very impressive. 
However, the extra time per patient of the cohort attributable to nosocomial infection is 
estimated to be 0.54 days for 0 = 0, corresponding to the area between the curves in Figure 3. 
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Table 2. Result of Approach A for the data on nosocomial pneumonia: values of the 
hypothetical reduction factor 0 (column 1) between 1 (no reduction) and 0 (complete 
removal of risk) in steps of 0.1; estimated rate of nosocomial pneumonia (column 
2); estimated hypothetical rate of nosocomial pneumonia (column 3); estimated ex- 
pected duration of ICU stay (column 4); estimated hypothetical duration of ICU stay 
(column 5). 

Extra days Days saved Extra days 
per patient per 1000 per infected 

0 -~.s Pf.s f ~o f ~00 of cohort patients patient 

1.0 16.4% 16.4% 10.85 10.85 0.000 0 
0.9 16.4% 15.1% 10.85 10.80 0.046 46 3.41 
0.8 16.4% 13.7% 10.85 10.75 0.093 93 3.39 
0.7 16.4% 12.2% 10.85 10.71 0.141 141 3.36 
0.6 16.4% 10.7% 10.85 10.66 0.191 191 3.34 
0.5 16.4% 9 . 1 %  10.85 10.61 0.242 242 3.33 
0.4 16.4% 7 . 5 %  10.85 10.55 0.295 295 3.31 
0.3 16.4% 5 . 8 %  10.85 10.50 0.351 351 3.30 
0.2 16.4% 3 . 9 %  10.85 10.44 0.410 410 3.29 
0.1 16.4% 2 . 0 %  10.85 10.38 0.472 472 3.28 
0.0 16.4% 0 . 0 %  10.85 10.31 0.538 538 3.28 

In the situation that the risk of  nosocomial pneumonia can completely be removed one could 
save 538 ICU days per 1000 patients (ICU admissions). If  the risk can be reduced by 50% 
(0 = 0.5) one could save 242 days of  ICU stay per 1000 patients. Table 2 summarises the 
results for the data on nosocomial  pneumonia for values of  0 (first column) between 1 (no 
reduction) and 0 (complete removal of  risk) in steps of  0.1. 

The est imated expected duration of  ICU stay in the cohort is 10.85 days (column 4); 
the rate of  nosocomial  pneumonia is 16.4% (column 2). For 0 e.g. equal to 0.6, that is, a 
reduction of  the hazard of  nosocomial  pneumonia of  40%, one would expect the average 
duration of  ICU stay to be 10.66 days (column 5) and the rate of  infection to be 10.7% 
(column 3). A reduction of  40% would therefore result in saving of  191 hospital days per 
1000 patients (column 7). In the last column the estimated extra time spent on ICU for 
an infected patient is given. We observe a slight dependency of/~0 (3) on 0. The estimate 
varies between 3.41 and 3.28 extra days of  ICU stay attributable to nosocomial  pneumonia  
per infected patient. For  0 = 0 we obtain a 95%-confidence interval for the extra stay per 
infected patient due to nosocomial  pneumonia of  (0.8 days, 6.0 days). For the cohort effect 
our data are consistent with nosocomial pneumonia causing 137 to 969 extra days per 1000 
ICU admissions at the ~ = 0.05 level. 

6.5. Approach B 

As a result of  Approach B Figure 4 illustrates the estimated expected duration of  ICU stay 
condit ional  on being alive, hospitalised and infected at time s (solid line) and not infected 
at t ime s (broken line), respectively, up to day 50 on ICU (for later points in time, the risk 
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Figure 4. Estimates of the expected duration of ICU stay (days) given nosocomial pneumonia is acquired at or 
prior to time s and patient is alive and in hospital (solid line) and the expected duration of hospital stay (days) 
given the patient is alive, in hospital and free of nosocomial pneumonia at time s (broken line). 

set in state 0 is empty). We observe that the two curves cross. The crossing of curves might 
have occurred by chance but may possibly also indicate a selection effect. 

Weighting the difference between the curves in Figure 4 by the subdistribution function 
for the time of infection among those infected, which is illustrated in Figure 5, we obtain an 
estimate for the extra hospital stay per infected patient attributable to nosocomial pneumonia 
of 3.44 days, which is of the same order of magnitude as the estimate obtained with Approach 
A. We obtain a 95%-confidence interval (based on 2000 bootstrap replications) for the extra 
hospital stay of (1.44, 5.40). 

6.6. The Counterfactual Approach 

A proportional hazards regression analysis for the time to manifestation of nosocomial 
pneumonia including time to discharge as time fixed covariate gives a Score statistic of 
8.92 so that the hypothesis of "no causal effect of nosocomial infection on duration of ICU 
stay" can be rejected (p < 0.0028) under the assumption of no unmeasured confounders. 
Table 3 summarises the results obtained in the SNFTM. 

A subject's residual hospital stay after having acquired pneumonia is estimated to be 
prolonged by the expansion factor 1.48, resulting in absolute terms in an estimated extra 
hospital stay of 4 days attributable to nosocomial pneumonia. 
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Figure 5. Distribution of the time to nosocomial pneumonia among those infected. 

Table 3. Results of counterfactual approach for nosocomial pneumonia based on the 
structural nested failure time model (SNFTM): point estimates and 95% confidence 
intervals (CI). 

Estimated parameter Expansion Estimated extra 
of SNFTM factor hospital stay 

95%-CI exp(-~l) 95% CI mean 95% CI 

-0.39 (-0.69, -0.13) 1.48 (1.14, 1.99) 3.98 days (1.23, 6.71) 

6.7. Summary o f  Results 

Table 4 summarizes the results obtained for the example data set for all approaches. 
The "naive" approach leads to the highest estimates of  the extra hospital stay attributable to 

nosocomial  infections. The matching approach results in an estimate which is considerably 
below the "naive" one. Including nosocomial infection as t ime dependent covariate in a 
proportional hazards model  for the discharge hazard results in a significant effect of  this 
t ime dependent covariate, indicating that nosocomial  infection prolongs hospital stay. The 
approaches based on functionals of the (partial and influenced) transition probabil i t ies result 
in estimates which are again considerably below the matching estimate and are very close 
to the estimate based on the counterfactual approach. 

The same relative behaviour of  the approaches has been observed in two other appli-  
cations concerning the effect of  postoperative wound infections and ventilator-associated 
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Table 4. Summary of the results of the discussed approaches for the data 
on nosocomial pneumonia: estimated extra days on ICU with 95% confi- 
dence interval; p value, estimated relative risk (RR) and 95% confidence 
interval for nosocomial pneumonia as time dependent covariate in a Cox 
model for the discharge hazard. 

Estimated extra 95% - confidence 
Approach stay (days) interval 

"Naive" Approach 14.4 ( 10.7, 18.2) 
Matching Approach 8.2 (5.9, 10.5) 
Time-dependent covariate p < 0.0001, RR = 0.6 (0.4, 0.7)* 
Multistate Approach A 3.4 (0.8, 6.0) 
Multistate Approach B 3.4 (1.4, 5.4) 
Counterfactual Approach 4.0 ( 1.5, 6.1) 

*.for RR 

nosocomial pneumonia on prolongation of  hospital stay (Schulgen, 1995), although the 
absolute effect was quite different in the two studies (Kappstein et al., 1992a, 1992b). 

7. Discussion 

In the early seventies a publication of  a study on the effect of  heart transplantation on survival 
time (Clark et al., 1971) used the "naive" approach to estimate the effect of  transplantation 
on prolongation of  life. In the sequel, starting with the paper by Gail (1972), a discussion 
about the adequate statistical analysis of  the transplantation data was set offin the statistical 
community. In the eighties, the discussion was resumed with respect to the problem of 
evaluating the relationship between survival and attainment of  tumour response in cancer 
clinical trials. In this context, Simon & Makuch (1984) suggested an approach for graphical 
display of  the relation between survival and occurrence of  response which is some kind of  
mixture between our multistate approaches A and B. 

Published literature as well as the results of  this work suggests that the use of  the "naive" 
and the matching approaches are not adequate to estimate the extra hospitalisation time due 
to nosocomial infections. The new approaches with "working titles" A and B are based 
on functionals of  the transition probabilities. They are embedded in a sound methodology, 
estimators of  their component parts exist with properties that are already known. Approach 
A compares the observed duration of  hospitalisation of  the study cohort with the hypothetical 
duration that would result from partial prevention of  nosocomial infections. This approach 
avoids the drawback of  retrospective stratification and yields population based estimates that 
can be used in cost-benefit analyses. Approach B compares the residual hospital stay of  a 
currently infected patient with the residual hospital stay of  a currently non-infected patient. 
This approach also avoids the drawback of  retrospective stratification and uses observable 
quantities for the estimation of  the extra stay on a per patient basis. The approach fits 
into the concept of  dynamic predictive causality in longitudinal studies (Arjas & Eerola, 
1993). Klein et al. (1994) applied this concept in a multicenter study on bone marrow 
transplantation in acute leukaemia patients. Within the class of  structural nested failure 
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time models an additional approach to estimate the extra stay due to nosocomial infections 
has been developed. This approach is based on the counterfactual principle in causality 
and relates model based hypothetical to observed discharge times (see Eerola (1994) for a 
summary and discussion of philosophical theories in statistical analysis of causality). 

In presenting methods for estimating prolongation of hospital stay attributable to nosoco- 
mial infections we have implicitly assumed that infections acquired in hospital are a causal 
factor for the excess stay. However, there may exist measured or unmeasured 'internal' 
covariates which may in part explain the occurrence of nosocomial infection, like the status 
of the immune system or the requirement for ventilation. These covariates may also be 
predictive for duration of hospital stay. Infection would then only be a marker of a pre- 
disposing condition and prolongation of hospital stay would be caused by these internal 
covariates. In this paper we have not considered any covariates (except for the matching 
approach) and we have presented only crude results. However, it is possible to include co- 
variates in the multistate approaches by inserting the so called 'Breslow estimator' for the 
cumulative hazard function in the estimator for the transition probabilities (Andersen et al., 
1993; Klein et al., 1994). Also for the counterfactual approach it is possible to let O depend 
on covariates (Robins et al., 1992). Adjustment of the estimates for measured influential 
covariates as well as application of methods which take unobserved heterogeneity (frailty 
models) into account have to be left to future work. It should also be noted that the new 
approaches allow for censored observations. 

Application of the proposed methods rely on complete observation for each individual 
under study of the time at which transitions between different states occur. In the study used 
as examples this requirement is fulfilled. Another basic assumption is that the individuals 
and the observed sample paths are independent from each other. Dealing with infectious 
diseases this assumption seems to be somewhat unrealistic. However, nosocomial infections 
are in their majority caused by microorganisms of the patients' normal flora due to the 
weakening of their immunesystem by severe underlying illness or due to invasive diagnostic 
or therapeutic measures. Therefore an infected patient usually does not carry the infection 
to other patients. If  an epidemic cannot be ruled out, then patients hospitalised in the same 
ward at the same time clearly can not be assumed independent. 

Another crucial point is related to the assumption of an underlying non-homogeneous 
Markov process, that is, the assumption that the transition intensities and probabilities 
depend only on the time elapsed since the defined starting point and on the currently occupied 
state. However, transitions from states other than the initial one may also depend on the 
time elapsed since entry into the current state which would be a violation of the Markov 
assumption. The existence of such a violation can be checked by including the time elapsed 
since entry into the current state into a regression model based on time since entry into 
the system (Farewell & Cox, 1979). If transitions depend only on the time elapsed since 
entry into the current state the underlying process is semi-Markov (or a Markov renewal 
model). Voelkel & Crowley (1984) showed that the class of hierarchical semi-Markov 
models fits into the multiplicative intensity model of counting processes. These models 
certainly deserve consideration in future work. 

The estimates for the extra hospital stay may become negative if infection results in a quick 
death of the patients. However, if this is the case or if infection contributes to a substantial 
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increase in mortality, like for nosocomial sepsis, analysing the impact on mortality should 
be the main issue of a statistical analysis. Analysing prolongation of hospital stay would 
then be pointless. 

Which of the multistate approaches should be selected for the estimation of the extra stay 
due to nosocomial infections is still an open issue and may also depend on the question 
to be answered. The additional assumptions underlying approach A allow to assess the 
potential benefit achieved by the reduction of infection rates on the overall duration of 
hospitalisation within the population. This information can be easily incorporated into 
cost-benefit analyses. Approach B directly addresses the prediction of the extra stay of an 
infected patient without making the additional assumptions required for approach A. 

In summary, multistate models based on multivariate counting processes were found to 
offer adequate tools and pave the way for new approaches to explore statistical problems 
arising in the dynamic process underlying occurrence and impact of nosocomial infections. 
In addition, the new class of structural nested failure time models seems to be a promising 
alternative. The relationship between approaches A and B based on the multistate frame- 
work and the counterfactual approach based on G-estimation in structural nested failure 
time models are not yet examined and further research is required. 
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