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Abstract. In this paper, the daily solar radiation incident at the top of Saturn’s atmosphere and taking 
into account both the oblateness of the planet and the shadow of the ring system is calculated. It is found 
that the decrease of the daily insolation in winter is important near the solstices up to mid-latitudes and 
in the neighborhood of the equinoxes for equatorial and low latitudes. The combined effect of Saturn’s 
rings and its flattening on the mean winter and annual daily insolations is also studied. The numerical 
results show that the mean wintertime insolation falls gradually in the (O-20”) latitude region to a peak 
value of about 50%. Beyond 20” the loss of insolation decreases and from approximately 45” up to polar 
region latitudes the decrease reaches a practically constant level of 35%. The mean annual daily insolation 
is maximally reduced by about 20% at localities of 20”. 

1. Introduction 

The effect of the major rings (A, B, and C) on the direct solar radiation at the top 
of Saturn’s atmosphere has been calculated and briefly discussed by Brinkman and 
McGregor (1979). The oblateness of the planet was also taken into account. 

In their paper, the data for the Saturnian ring system (inner radius, outer radius 
and optical depth) were taken from Allen (1963) and Cook and Franklin (1973). Since 
the encounter of the Voyager spacecrafts with the planet, new and more accurate data 
for the distances from Saturn and the optical thickness are available. Although most 
of the values used by Brinkman and McGregor (1979) are close to the more recent 
ones, it is to be emphasized that the B-ring optical depth is found to be higher than 
previously published values, the difference being of the order of 20 (inner B-ring) to 
approximately 80% (outer B-ring) (Esposito et al., 1983). The exact value of the 
effective B-ring optical thickness is, however, poorly determined due to the presence 
of relatively small regions of extremely low optical depths within an overall highly 
opaque layer (Smith et al., 1981). 

The present work differs from that of Brinkman and McGregor (1979) in that the 
rings are divided into two (A and C) or three (B) regions of different optical 
thicknesses and that we also took into consideration the Cassini division which has 
been ignored by the above mentioned authors. (The other rings are neglected because 
they are assumed to be transparent). Moreover, our calculations are based on the 
data recently published by Esposito et al. (1983). It has also to be noticed that in the 
paper of Brinkman and McGregor (1979) some expressions were slightly in error. 

In a first section we briefly present the calculation scheme for the upper-boundary 
insolation including the flattening effect and the shadow effect of the ring system. 
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Then, taking into account the planetary and orbital data of Saturn, we determine the 
daily insolation and the mean (summer, winter or annual) daily insolations. In the 
Figures, the incident solar radiations are given in calories per square centimeter per 
Saturnian day; insolation values expressed in Watt per square meter may be obtained 
by multiplying the unit used by a factor of about 0.484. 

2. Calculation Scheme for the Daily Insolation 

In calculating the ring contribution, the rings are treated as infinitely thin, 
homogeneous annuli and are assumed to be in the equatorial plane. 

We have followed the method of Brinkman and McGregor (1979) in adopting a 
rectangular coordinate system: the z-axis coincide with the spin axis of the planet, 
the y-axis is perpendicular to the Sun’s rays and the x-axis is defined so as to form 
a right handed coordinate system. The origin 0 is located in the center of the planet 
and z = 0 represents the expression of the equator. 

The coordinates of a point P on the rings may now be written under the following 
forms: 

x = R cos a, (1) 

y = R sin (Y, (2) 

z = 0; (3) 

where R is the radial distance (in units of Saturn radii R, = 60000 km) of P from the 
origin 0 and (Y is the angle between the line connecting the point to the origin and 
the x-axis. 

For an oblate planet, characterized by a flattening f, the line throughout P and 
parallel to the Sun’s rays intersects the planet at the point S, the coordinates of which 
are given by 

xs = zs cot 6, + R cos a, (4) 

y, = R sin (Y, (5) 

zs= (-Rcosa!cot60k((Rcoscrcot60)2- 
- [cot2 6, + (1 -f)-2] (R2 - 1))1’2)/[cot2 6, + (1 -f)-21, (6) 

where 6, is the solar declination. 
Expression (6) can also be written as 

z$ = ( - R cos a cot 6,)-t [(R cos a cot 8o)2 - 

- (1.256 + cot2 A@) (R2 - 1)]“2) /(1.256 + cot’ ho), (7) 

where the factor 1.256 represents, in a very good approximation, the numerical value 
of the expression (1 -f )-2 (see Table I). 
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In (6) or (7) the smallest absolute value has to be taken as z-coordinate, the largest 
one representing the theoretical intersection on the unilluminated side of the planet. 

Furthermore, it is easy to see that the planetocentric latitude (o’ and the longitude 
X (with respect to the rotating x-axis) of the intersection point can be calculated using 
the relations 

cp’ = tan-l [zs/(x$ + #‘*I, (8) 

X = tan-t (vs/xs). (9) 

The shadow profiles, for a solar declination 6, (taken to be constant over a 
Saturnian day) and a radial distance R, can be determined by combining (4), (5), (7), 
(S), and (9). The Sun’s rays throughout points on the ring system for which 

CY > cos-’ ((tan 6@/R)[(1.256 + cot* 6@) (R* - l)]“*] (10) 

do not intersect the planet. After rearrangement, Equation (10) can also be written 
in a more simplified form as 

CY > cos-l [(l + 1.256 tan* 6@) (1 - l/R*)]“*. (11) 

The expression of a plane parallel to the equator, in terms of the planetocentric 
latitude cp’ can be written as 

z = + (1.256 + cot* p’)-I’* (12) 

where the plus sign is used for the northern hemisphere ((o’ > 0), and the minus sign 
is taken for the southern one (cp’ < 0). The above mentioned plane intersects the 
shadow profiles for angles cx which are given by 

cY= + cos-’ ([(1.256 + cot* IS@) (1.256 + cot* cp’)-’ 
+ (R* - 1)]/2R cot 6, (1.256 + cot2 (p’)“‘]. (13) 

Finally, relationships (4), (5), (7), (9), and (13) allow the integration angles for the 
calculation of the daily insolation to be determined for any declination angle 6, (or 
for any specific day) as a function of the planetocentric latitude cp’ and the radial 
distance R. 

The instantaneous insolation (I) of the outer planets, neglecting the oblateness 
effect or any other effect, may be expressed (see, e.g., Ward, 1974; Vorob’yev and 
Monin, 1975; Levine et al., 1977; Van Hemelrijck, 1982a, b, c, 1983a) as 

I=Scosz’, (14) 

with 

s = so/r& (15) 

and 

r. = a@(1 - $)/(l + e cos w). (16) 
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In expressions (14) to (16) S, z’, Se, aa, e, and Ware, respectively, the solar flux 
at an heliocentric distance ro, the zenith angle of the incident solar radiation, the 
solar constant at the mean Sun-Earth distance of 1 AU taken at 1.96 cal cmw2 
(min)- ’ (Wilson, 1982), the planet’s semimajor axis, the eccentricity and the true 
anomaly which is given by 

w= A, -A,, (17) 

where h, and X, are the planetocentric longitude of the Sun (called solar longitude 
in the figures) and the planetocentric longitude of the planet’s perihelion. 

For a spherical planet, the cosine of the zenith angle z’ may be written as 

cos z’ = sin cp’ sin 6, + cos p’ cos 6, cos h, (1fJ) 

where h is the local hour angle of the Sun; 6, can be computed from the relation: 

sin 6, = sin E sin X,. (19 

The daily insolation ZD (see also Van Hemelrijck, 1983b, 1985b) can now be 
obtained by integrating relation (14) over time during the light time of the day and 
is given by: 

ZD = (ST/n) (h, sin cp’ sin 6, + sin h, cos cp’ cos A@), (20) 

where T is the sidereal day and where the local hour angle at sunrise (or sunset) h, 
may be determined from: 

if 

h,=cos-’ (- tan 6, tan cp’) (21) 

Ip’l <a/2- Icy. 

In regions where there is no sunrise (cp’ < - a/2 + 6, or ~0’ > 7r/2 + ho) we have 
h, = 0; in regions where the Sun remains above the horizon all day ((p’ > a/2 - 6, 
or cp’ < - */2 - 6&, we may put h, = ?r. 

Finally, the mean (summer, winter or annual) daily insolations, hereafter denoted 
as (ZD)s, (ZD)w and (ID), respectively, may be found by integrating relation (20) 
within the appropriate time limits, yielding the total insolation over a season or a 
year, and by dividing the obtained result by the corresponding length of the summer 
(T,) or winter (T,) or tropical year (T,). For the calculation of T, or T, we refer to 
e.g. Van Hemelrijck (1982~). 

In this paper, and for the northern hemisphere, the summer is arbitrary defined 
as running from vernal equinox over summer solstice to autumnal equinox and 
spanning 180“; on the other hand, it is obvious that X, = 180” and X, = 360” mark 
the beginning and the end of the winter period. In the southern hemisphere, the solar 
longitude intervals (0- 180’) and (180-360”) divide the year into astronomical winter 
and summer. 
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In the case of an oblate planet, there is an angle v = cp - cp’ , the so-called angle of 
the vertical, between the planetographic latitude(p) and the planetocentric latitude 
(cp’). In terms of the latter, this angle can be written as 

v = tan-’ (1.256 tan cp’) - (D’. (22) 

If we define Z as the zenith angle for an oblate planet, the following relation can 
be obtained by applying the formulas of spherical trigonometry (Van Hemelrijck, 
1982a, b, 1983a) 

cos Z = cos v cos 2’ + sin v ( - tan cp’ cos z’ + sin 6, set cp’). (23) 

The daily insolation of an oblate planet IDo can now be obtained by integrating 
relation (14) within the appropriate time limits, where cos z’ has to be replaced by 
expression (23), yielding 

IDo = (ST/n) (cos u (/I,, sin cp’ sin 6, + sin h, cos ~0’ cos 6@) + 
+sinv[- tancp’(h,sincp’ sin60+sinh,coscp’ cos6&+ 
+h,sin60 seccp’]], (24) 

where h,, the local hour angle at rising or setting of the Sun for an oblate planet, 
is generally slightly different from h,. As for a spherical planet, h,, may be derived 
from Equation (23) which gives: 

h, = cos- l ( - tan 6, tan cp), 

which is similar to Equation (21). 

(25) 

Obviously, in areas of permanent darkness and continuous sunlight we have 
h, = 0 and h, = ?r, respectively. 

The oblateness effect on the solar radiation at the top of the atmosphere of Saturn 
(and other planets) has been analyzed in detail by Van Hemelrijck (1982a). It has 
been found that the flattening causes significant variations in both the planetary-wide 
distribution and the intensity of the daily insolation and, of course, in the latitudinal 
variation of the mean daily insolations. 

The shadows cast by the ring system of Saturn cause the insolation to decrease by 
an amount depending upon the latitude, the oblateness and the solar declination via 
cos Z and evidently, upon the optical depth 7 of one or more than one ring (if there 
is no intersection or if a point on the planet is outside of any ring shadow it is clear 
that the optical depth equals zero). 

The daily insolation IDor, taking into account both the shadow effect and the 
influence of the oblateness, may then be expressed (Levine et al., 1977; Brinkman 
and McGregor, 1979; Van Hemelrijck, 1985a) as: 

I DOT = (ST/a) 
s 

cos Z exp( - 7 set Z) dh. (26) 
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TABLE 1 
Elements of the planetary orbit of Saturn 

Semimajor axis aa VW 9.539 

Eccentricity e 0.05561 

Longitude of perihelion A, (“) 279.07 

Obliquity f (“1 26.73 

Oblateness f 0.1076209 

Sidereal day T (Earth days) 0.44 

Tropical year T,( >. 1 10759.20 

Length of summer TsC 93 1 5755.56 

Length of winter Tw( 9, 1 5003.64 

In winter and for a given latitude it is evident that, in general, the integration 
interval (0 - h,) has to be divided into two or more regions depending upon the 
number of rings that, during the day, casts a shadow on the latitude under 
consideration. Furthermore, it is also obvious that 7, figuring in expression (26), 
represents the optical thickness corresponding to the ring which attenuates the solar 
radiation. 

The mean daily insolations (jbor)*, (fb&, and (&,)w may, as earlier, be found 
by integrating equation (26) over the appropriate time periods. 

Table I represents the numerical values of the orbital and planetary data (Van 
Hemelrijck, 1982a; Davies et al., 1983) used for the computations, whereas 
parameters for the ring system are given in Table II (Esposito et al., 1983). It has to 
be pointed out that T, and T,, figuring in Table 1, represents the lengths of the 
summer and winter corresponding to the northern hemisphere. For the southern one, 
the two values have to be interchanged. 

TABLE II 

Parameters of the ring system 

Region Boundaries (R,) Mean r 

Inner C I .24-l .39 0.08 

Outer C 1.39-1.52 0.15 

Inner B 1.52-1.66 1.21 

Middle B 1.66- 1.72 1.76 

Outer B 1.72- 1.95 1.84 

Cassini 1.95-2.02 0.12 

Inner A 2.02-2.16 0.70 

Outer A 2.16-2.27 0.57 
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Fig. 1. Seasonal and latitudinal variation of the daily insolation at the top of the atmosphere of Saturn. 
The planet is assumed to be spherical and the shadow effect of the ring system is neglected. Solar 
declination is represented by the dashed line. The areas of permanent darkness are shaded. Values of the 

daily insolation in calories per square centimeter per Saturnian day are given on each curve. 

3. Discussion of Calculation 

3.1 DAILY INSOLATION 

For the daily insolation, as already mentioned, we have followed the method adopted 
by e.g. Levine et al. (1977) and Brinkman and McGregor (1979) in presenting our 
results in the form of contour maps giving the incident solar radiations in cal cme2 
(Saturnian day)- l as a function of latitude and heliocentric longitude of the Sun 
taken to be equal to 0” at the northern hemisphere vernal equinox. 

Figure 1 illustrates the latitudinal and seasonal distribution of the daily insolation 
(see also Vorob’yev and Monin, 1975; Levine et al., 1979). The planet is considered 
as a sphere and the influence of the ring system is neglected. The calculations reveal 
that the maximum solar radiations occur near the solstices. This is due to the fact 
that the perihelion position X, is located in the vicinity of the south summer solstice. 
The insolation at the solstices reaches about 5.5 (north pole) and 6.8 (south pole) cal 
cm - 2 (Saturnian day)- I. The ratio of both insolations, in terms of e and A,, may be 
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expressed (cf. Van Hemelrijck, 1982~) as 

(‘D)NP(,,,‘(‘D)SP(,,, = [( 1 + e sin A,)/( 1 - e sin A,)]*, (27) 

where the subscripts NP, SP, and ss refer respectively to the north pole, the south 
pole, and the summer solstices. Expression (27) indicates that (ZD)NP(ss) c (ZD)sp(ss) if 
?r < A, < 2n which is true not only for Saturn, but also for the Earth (A, = 282”) 
and Mars (248”). For the outer planets Jupiter, Uranus, and Neptune the opposite 
effect is found. 

The ratio of the polar solar radiation at summer solstice (ZD)pus) to the equatorial 

One (zD)E(ss) can be written by the well-known relationship 

VD)P(ss~4~D)E(ss~ = H tan 6 (28) 

stating that VD)p(ss~ > VD)E(ssj for E > 17’7. For Saturn, this ratio amounts to about 
1.6. Based on the above mentioned values for the polar summer solstice insolation 
it follows that the corresponding equatorial insolation is approximately equal to 
3.5(X, = 90”) and 4.3(h, = 270”) cal cm-* (Saturnian day)-‘. 

One can also determine mathematically the solar longitude intervals where 
(I& > (I&. Indeed, from (20) it is easy to show that 

(Z&/(Z& = f ?r tan 6, = f ?r sin E sin X0/(1 - sin* E sin 2 Ao)1’2; (29) 

the plus sign being used for the north pole, the minus sign for the southern one. 
Introducing E = 26”73 in Equation (29) it follows that, in the northern hemisphere, 
(I&, > (Z& if A, ranges from approximately 42 to 138”. In the southern 
hemisphere the polar daily insolation exceeds that of the equator in the approximate 
solar longitude interval (222-318”). 

90 

180 210 ZLD 270 300 330 360 

SOLAR LONGITUOE Idegrees) 

Fig. 2. Seasonal and latitudinal variation of the daily insolation (IDo,) at the top of the atmosphere of 
Saturn (northern winter hemisphere). Both the oblateness effect and the shadow effect of the ring system 

are taken into account. See Figure 1 for full explanation. 



EFFECT OF SATURN’S RINGS ON THE UPPER-BOUNDARY INSOLATION OF ITS ATMOSPHERE 225 

-90 
0 30 60 90 120 150 180 

SOLAR LONGITUOE (degrees1 

Fig. 3. Seasonal and latitudinal variation of the daily insolation (IDO> at the top of the atmosphere of 
Saturn (southern winter hemisphere). Both the oblateness effect and the shadow effect of the ring system 

are taken into account. See Figure 1 for full explanation. 

Finally in winter, as for practically all the outer planets, the iso-contours closely 
parallel the curve limiting the area of no sunrise. In summer, the parallelism between 
the insolation contours and the line bounding the zone of continuous sunlight 
vanishes almost completely. 

The seasonal and latitudinal variation of the solar radiation at the top of the 
Saturnian atmosphere, taking into account both the oblateness effect and the shadow 
effect of the ring system, is plotted in Figures 2 (northern winter hemisphere) and 3 
(southern winter hemisphere). The insolation pattern for the summer period is not 
plotted because it can easy be seen that the summer hemispheres are not affected by 
the ring system. For the influence of the oblateness on the daily solar radiation in 
this region we refer to Van Hemelrijck (1982a). This paper reveals that the effect of 
the oblateness increases the insolation over much of the summer hemisphere, 
especially near summer solstice, where a rise of the incident solar radiation on the 
order of 3% has been found. In the neighborhood of the equinoxes there is a loss 
of insolation which is of most importance for the mid-latitude regions. 

Comparing Figure 1 with Figures 2 and 3, we find it obvious that the ring system 
causes the daily solar radiation to decrease over an extensive part of the winter 
hemisphere. This characteristic feature is studied, in more details, in Figures 4, 5, and 
6 presenting the latitudinal variation (for some specific values of the solar longitude) 
of the ratio of the daily insolation taking into account both the shadow effect and 
the oblateness effect (ZDor) to the daily insolation without those effects (Z,) (full 
line). The ratio (Z&Z,) (dashed line) is also given. 

Near the autumnal equinoxes (Figure 4), where the solar declination (6@) is rather 

small, the shadows of the ring system are limited to equatorial latitudes and, as a 
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Fig. 4. Latitudinal variation in the winter hemisphere at a solar longitude of 20” (ZOO’) of the ratio of 
the daily insolation with the oblateness effect and the effect of the ring system (I,& to the daily 
insolation without the above mentioned effects (I,) (full line). The ratio (f&ID) is also represented 

(dashed curve). 

consequence, the attenuation of the solar radiation is confined to this low latitudes. 
This phenomenon is clearly demonstrated in Figure 4 for a solar longitude of 20” 
(southern hemisphere) or 200” (northern hemisphere). The loss of insolation reaches 
a maximum at a latitude of approximately 8” and equals a factor of nearly 10. At 
a latitude of about 20” the curves representing the ratios (ZDoi/ZD) and (ZDo/ZD) 
coincide which means that the shadow effect is no more applicable to latitudes 
beyond the above mentioned one and for a solar position of 20” (or 200’). 

The latitudinal ratio distribution at a solar longitude between autumnal equinox 
and winter solstice is shown in Figure 5. The ratio of both insolations (ZD and Z,,J 
amounts to about 20 (ZDO,/ZD= 0.05) at localities equal to 20” latitude. Past of 40”, 
the influence of the ring system is either unimportant and it is exclusively the 
oblateness which is responsible for the reduction of the insolation (ratio 20.76). 

The loss of the solar radiation at winter solstice in both hemispheres is even more 
spectacular as can be deduced from Figure 6. For example, at latitudes of 23,29, and 
38”, the corresponding ratios (ZD,/ZD) are equal to 10-l, lo-*, and 10m3, 
respectively. 

In winter, as for all planets, the effect of the flattening results in a more extensive 
polar region; the large oblateness of Saturn gives rise to a maximum difference of 
the two Arctic Circles (ID = 0 and IDo = 0), occurring at winter solstice of 
approximately 5” as can be seen from Figures 1 and 2 (or 3). 
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Fig. 5. Latitudinal variation in the winter hemisphere at a solar longitude of 45” (225”) of the ratio of 
the daily insolation with the oblateness effect and the effect of the ring system (IDoT) to the daily 
insolation without the above mentioned effects (I,) (full line). The ratio (IDO/ID) is also represented 

(dashed curve). 

Comparing our results with those of Brinkman and McGregor (1979) we should 
note that the general pattern of the insolation curves is in reasonable agreement, 
although near the solstices and for low- and midlatitudes there are some striking 
differences particularly for the isocontours 1 and 2 cal cm-2 (Saturnian day)- l. The 
higher optical depths used in our paper evidently yield attenuations of the solar 
radiation which are higher than those obtained by the above cited authors, who, for 
the optical thicknesses of the A, B, and C ring used 0.5, 1.0, and 0.1 respectively. 

3.2. MEAN DAILY INSOLATION 

The mean (summer, winter, or annual) daily insolations ID, IDo and IDoT as a 
function of latitude are plotted in Figures 7 and 9 (northern hemisphere) and in 
Figure 11 (both hemispheres), whereas the percentage differences 100 (IDo, - rD)/lb 
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Fig. 6. Latitudinal variation in the winter hemisphere at winter solstice of the ratio of the daily insolation 
with the oblateness effect and the effect of the ring system (IDo,) to the daily insolation without the above 

mentioned effects (Id (full line). The ratio (I,, /I ) is also represented (dashed curve). D 

and 100 (IDo - TD)/ID are illustrated in Figures 8, 10, and 12. In Figures 10 and 12 
the percentage difference 100(~Do, - &,)/ID, is also shown. As in Section 2, the 
bars over symbols signify seasonal (denoted by S and W for summer and winter) or 
annual (A) averages. 

The summer hemispheres being not affected by the ring system, it is obvious that 
(IDo,)s = (ID&, The increase of insolation between a spherical and an oblate planet 
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Fig. 7. Latitudinal variation of the mean summer daily insolations (lb,), (with oblateness) and (ID), 
(without oblateness) at the top of the atmosphere of Saturn. 

Saturn for latitudes less than the subsolar point (26’73) is clearly demonstrated in 
Figures 7 and 8 (see also Van Hemelrijck, 1982a), the maximum difference occurring 
at a latitude of about 12” and reaching a value of the order of 1%. Beyond the 
subsolar point, (rDoJs = (rDo)s < (ID)s and the maximum loss of insolation is found 
at mid-latitudes (50-55’) and is near 3%. 

The mean winter daily insolations are depicted in Figure 9, the corresponding 
percentage differences in Figure 10. Comparing the mean winter isolations between 
a spherical and an oblate planet it can be seen from Figure 10 that the percentage 
difference increases with increasing latitude up to about 60” and may attain values 
of about 36%. At higher latitudes the differences remain practically constant. The 
importance of the shadow effect on the mean winter daily insolation is particularly 
evident from the Figure. For latitudes between 0 and about 20” the loss of insolation 
enhances to approximately 50%, then decreases to about 36% at 45” and finally 
keeps a nearly constant value up to polar region latitudes where it drops extremely 
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Fig. 8. Latitudinal variation of the percentage difference 100 [(&& - (~D)s]/(~b)s. The bars over 
symbols signify seasonal averages. 

rapid to zero. It is worth noting that poleward of 62”, the two curces representing 
the mean wintertime insolation coincide, the ring effect being equal to zero. For the 
sake of completeness, the effect of the rings only is also illustrated by the curve 
denoted by ‘with rings’. The peak percentage difference attains a value of about 46% 
at X, = 20” and the latitude past which the loss of solar energy due to the oblateness 
effect is greater than the reduction by the ring effect is near 40”. 

It is to be emphasized that the Figures 7 and 9 relate to the northern hemisphere. 
In order to obtain the corresponding values for the southern one, the ordinates of 
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Latitudinal variation of the mean winter daily insolations (fD,)w (with rings and oblateness), 
(with oblateness) and (f&v (without rings and oblateness) at the top of the atmosphere of Saturn. 
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Fig. 10. Latitudinal variation of the percentage differences 100[(rDfi)w - (rdw)]/(fJw (with rings and 
oblateness) and 100[(~D,)w - (rJw]/(FJw (with oblateness). The effect of the rings only is illustrated by 

the third curve denoted by ‘with rings’. 

Figure 7 have to be multiplied by the ratio T, (northern hemisphere)/Ts (southern 
hemisphere) which equals approximately 1.15, whereas the data of Figure 9 have to 
be multiplied by the factor T, (northern hemisphere)/Tw (southern hemisphere) 
which amounts about 0.87. Since the percentage differences are symmetric with 
respect to the planet’s equator, a value at a given latitude in Figures 8 and 10 applies 
to both hemispheres. 

The variability of the mean annual daily insolations as a function of latitude is 
shown in Figure 11; the corresponding percentage differences are plotted in Figure 
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Fig. 11. Latitudinal variation of the mean annual daily insolations (rDaA (with rings and oblateness), 
(IDo)* (with oblateness) and (Ib)* (without rings and oblateness) at the top of the atmosphere of Saturn. 

12. Note that the data from both Figures are valid for the northern as well as for the 
southern hemisphere. The difference between the mean annual daily insolations 
(ID)* and (Ino)* increases with increasing latitude and reaches a peak value of 
about 9% at a latitude of about 50”. Past of this latitude, the percentage difference 
reduces. The importance of the combined effect (rings + oblateness) on the mean 
annual daily insolation is particularly evident from Figure 12 where it can be seen that 
the percentage difference is strongly dependent upon the latitude. From 0 to 20”) the 
loss of insolation enhances nearly linear up to a maximum value of approximately 
20% (18% when taking only into account the rings). In their 1979 paper Brinkman 
and McGregor have noted that ‘for latitudes between 0 and 30” as much as 14% of 
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Fig. 12. Latitudinal variation of the percentage differences 100[(~Do,)A - (f$A]/(‘b)A (with rings and 
oblateness) and 100(~DO)A - (rD)A]/(lJ, (with oblateness). The effect of the rmgs only is illustrated by 

the third curve denoted by ‘with rings’. 

the total annual insolation is lost through the shadow effect’. At 30,40, and 50” we 
found, for the combined effect, percentage differences of 16.6, 13.1, and 11.4% (the 
corresponding values for which only the rings are responsible amount to about 11.8, 
5.6, and 2.1%). Based on the graph figuring int he paper of the above mentioned 
authors we get the impression that their values are considerably lower. Figure 12 also 
clearly indicates that the influence of the shadow is almost negligible between 55 and 
65’ (equal or less than about 1%). Finally, near 37” the influence of the oblateness 
is numerically equal to the effect of the ring shadow (- 7%). 
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4. Concluding Remarks 

This study clearly demonstrates that the shadow of the ring system of Saturn causes 
significant variations in both the planetary-wide distribution and the intensity of the 
daily insolation. The combined effect of the ring shadows and the oblateness 
decreases the daily solar radiation over much of the winter hemispheres mainly near 
the solstices (up to mid-latitudes). In the vicinity of the equinoxes the loss of solar 
energy is principally limited to equatorial and low latitude regions. Furthermore, it 
is obvious that the summer hemispheres are not affected by the rings. 

Concerning the mean winter and annual daily insolations it is found that the 
reduction reaches peak values of respectively 50 and 20% at a latitude of 20”. 
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