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Abstract. HBmeen-Anttila’s (1954) analytical treatment of self-gravitating collisional particle disks is 
extended to include the particle spin. The equations derived for the coupled evolution of random velocities 
and spins indicate that friction and surface irregularity typically reduce the local velocity dispersion. 
Friction, and especially irregularity, also transfer significant amounts of random kinetic energy, E,,,, to 
rotational energy, E,,,. The equilibrium ratio f&,/E,,, = 20/(14 - 50) if the particles are spherical, and 
2(1 + 0()/7 if they are irregular but frictionless, 01 and /3 being the coefficients of restitution and friction. 
These results are not only exact for identical, non-gravitating mass points, but are rather accurate even 
if finite size, self-gravitational forces, or size distribution are included. Applications to the dynamics of 
Saturn’s rings suggest that the inclusion of rotation is able to reduce the geometrical thickness of the layer 
of centimeter-sized particles to about one half, at most. Large particles are less affected. 

1. Introduction 

The collisional evolution of a cloud of particles revolving around a central body has 
been widely studied during the last fifteen years. The early theoretical studies 
(Goldreich and Tremaine, 1978; Hgmeen-Anttila, 1978) as well as numerical 
simulations (e.g. Trulsen, 1972a, b; Brahic, 1977; Lukkari, 1978) concentrated on 
the evolution of Keplerian systems consisting of non-rotating, identical particles. In 
later analytical studies the effects of gravitational encounters were also taken into 
account (Cuzzi et al., 1979; Htimeen-Anttila, 1983), as well as the influence of 
satellite perturbations (Borderies et al., 1983), or an arbitrary axially symmetric 
potential (HBmeen-Anttila, 1983). Analytical treatments have also been extended to 
the case of a distribution of particle sizes (Htimeen-Anttila, 1984; Stewart et al., 

1984). 

These studies have cIearly demonstrated the importance of the elasticity model. If 
the coefficient of restitution, 01, is a constant independent of the impact velocity, the 
system either rapidly disperses through growing eccentricities and inclinations, or 
flattens to a near monolayer state. On the other hand, if 01 is a decreasing function 
of impact velocity, the system may attain a stable equilibrium state, resulting from 
the balance between energy loss in partially inelastic impacts, and the gain of energy 
from the viscous shear of differentially rotating particles (Goldreich and Tremaine, 
1978; Htimeen-Anttila, 1978). These results have been confirmed by numerical 
simulations (Hameen-Anttila and Lukkari, 1980). This more realistic collision model 
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has also been used in the recent simulations of collisions and gravitational encounters 
between non-identical particles (Lukkari and Sale, 1984; Salo and Lukkari, 1984; 
Salo, 1985). 

The collisional evolution of rotating particles has received little attention. Friction 
enables the transfer of energy between translational and rotational degrees of 
freedom, thus modifying the collisional balance (Hameen-Anttila, 1978). Brahic and 
Henon (1977) have simulated the effects of friction, but did not take into account 
the feedback of energy from rotation. Recently Shukmann (1984) has analytically 
studied the influence of rotation on the collisional evolution of identical particles, 
while Clairemidi (1984) has reported some simulation results performed with 
particles having different radii and masses. However, in these simulations CY was 
treated as a constant. The aim of the present study is to derive the equations 
governing the local evolution of the dispersion of random linear and rotational 
velocities, for systems of non-identical particles. The treatment is based on Hameen-, 
Anttila’s (1984) more general investigation, and allows for a velocity dependent 01, 
and the gravitational interactions between particles, as well as general axisymmetric 
central potential. However, external perturbations due to satellites have not been 
considered. The results of corresponding numerical simulations are published in a 
separate paper (Salo, 1987). 

2. Impact Model 

The collisional changes in velocity and spin vectors are assumed to be determined by 
three factors: elasticity, friction, and irregularity in the impact point. Only binary 
impacts are considered, and the colliding particles are distinguished by primed and 
unprimed symbols, while the post-collisional quantities are denoted by subscript 1. 
The derivation of basic equations is similar to that of Hameen-Anttila (1978) except 
that the irregularity is introduced in a more precise manner, and the particles are 
allowed to have different radii, o, and masses, p. 

Let R and R’ be the radius vectors of the particles at the instant of impact 
(Figure la). The pre-collisional velocity difference at the contact point is given by 

V toll = v - (uw + u’w’)*c, (1) 

where v = k’ -- k is the relative velocity of the particle centres, o stands for the spin 
vector, and c = (R’ - R)/(a + 0’) for the unit vector in the direction joining the 
centres of colliding particles. In the case of smooth, spherical particles, c would also 
be perpendicular to the tangent plane of impact. The influence of small 
irregularities is taken into account by allowing the actual normal vector of the tangent 
plane, c,, differ from the vector c (Figure lb). At the same time it is assumed that 
the particles can otherwise be treated as spheres, as was already done in Equation (1). 
The change in the relative velocity during impact is caused by the pressure and the 
friction at the impact area. The former reduces the perpendicular component of the 
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a) 

Fig. 1. Schematic representation of the impact model. 

relative velocity, while the latter affects the component of vCO,, in the tangent plane 
of impact. Hence, 

(v,)co,, = --01 C,C,~Vco~~ + (1 - P)ct*(vco,,*q, (2) 

where cx is the coefficient of restitution and ,l3 describes the action of friction. Totally 
elastic impacts correspond to 01 = 1, while cy = 0 implies a completely inelastic 
collision; /3 = 0 correspond to frictionless impacts while if p = 1 the whole tangential 
component of v,,~, is lost. 

In order to relate the 6 post-collisional velocity components and 6 spin components 
to the corresponding quantities before the impact, a similar number of conditions 
must be specified. The above expression for the (v~)~~,, implies three conditions, and 
six more are provided by the conservation laws of linear and angular momentum, 

pit + pk = pk, + pk;, (3) 

pR& + p’R’ .k’ + (2/5)(pa20 + /~‘a’~w’) = 

pR*itl + p’lt’ ,k; + 2/5(po2w, + p’d2w;), (4) 
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where the coefficient 2/5 corresponds to homogeneous spheres. The remaining three 
reIations are obtained by determining how the change in spin is distributed between 
the particles. The force at the point of contact is opposite but of equal magnitude 
for both particles, and therefore the torques are proportional to the radii. Since the 
moment of inertia is proportional to u2p, it follows that 

pJ(o, - 0) = j.l’u’(w; - cd’). 

After some manipulation, Equations (l)-(5) yield 

(5) 

&-R = -Ed...- 
i 
-?- 

cL+p’ 7 
[Cl + cd - P)v,,*~ * CtCt + Pv,,,,l + 

+ $ [Cl +a -P>v,,~~ * CtCt * cc + Pvco,* ’ ccl 
1 

, 

a(w,-o) = P”’ 5 ~ - [Cl + Q - m,,,, 
P+P’ 7 

* ctc*ct + Pc*v,,,,l 

(6) 

(7) 

The corresponding changes for the other particle are obtained by the multiplication 
with - p/p’ and P/F’, respectively. In the case of spherical identical particles these 
expressions lead to 

Ii-H = $(l+a) v . cc + ; [c*(v*c> + ac*(w+w’)J, 

a(o, -w) = $ [c*v - ac*[(w+ o’)*c]], (9) 

which are similar to those of Hameen-Anttila (1978) if we set his /3* = 0. Shukman’s 
(1984) equations for collisions without slippage correspond to the special case @ = 1. 
The impact model of Shu et al. (1985) assumes that the tangential velocity difference 
retains its magnitude but is reversed, and therefore it corresponds to the case p = 2 
(notice that their n corresponds to -c, while K, = 2/5). 

The above model for the irregular shape in terms of c( is rather crude. Hence the 
specific choice of c, is not very crucial, and we assume that c, is obtained from c by 
tilting this vector independently in the directions of c * (v *c)/ 1 v * c 1 and (v * c)/ 1 v * c 1 
by angles [ and 4. To the second order in k = sin j+ and I = sin <, 

c, = (1 - k2/2 - 12/2)c + k cu(v*c)/Iv*cI + I (vrc)/jv*cl. 

If this expression is inserted into Equations (6) and (7) we finally obtain 

(10) 

k,-R = 1-11 
F”fP’ 

[(1+&l) [(l-l’-k2)v . cc + k Ivwlc - 
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- + [k c*(v*c)/ I c*vI + /v*c/Iv*cl] v * c + 

2 
+ T [k* c*(v*c) + kl VW] + 

+ (uw+u’o’) - [kc*v/lc*vl + Ic*(v*c)/Ic*vl] c + 

+ +v + +pv l cc - +qow+uw)*c 

1 

) 

P’ 5 U(W] - cd) = ~ - 
PfP’ 7 

(l+(~-6) (v-c [kc+v/lc+vI + 

+ fc*(v*c)/ lcav I] + kl c*(v*c) + k* c*v - 

- (au + u’w’) - [k2(cw)(c*v) + /*c*(v*c)c*(v*c)]/ I c*v I* ) + 

+ p [c*v-cc*[(uw+u’w’)*c]] . (12) 

3. Construction of Collisional Equations 

Hameen-Anttila (1984) has investigated the general collisional evolution in systems 
of unequal sized particles, and derived equations for both the evolution of local 
velocity dispersion and the radial particle flux. In the present study, the simultaneous 
evolution of rotational states is incorporated into his equations, although attention 
is restricted to the local evolution of eccentricities and inclinations. Some of the 
relevant aspects of the general theory are here briefly summarized, for further details, 
see Hgmeen-Anttila (1984). 

In an axially symmetric potential field, U( r, Z) , the orbits of individual particles 
can be represented with the following truncated series expansions (Hsmeen-Anttila, 
1983, 1984), 

R = r - (rr + 2r*r*Gru,,y3(i,) -5 - Nr* -1 + . . . . (13) 
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iz = Jrr* + (r*r-rr*r”;y--) .;I + 

+ Nr.16 + . . . . (14) 

The vector r corresponds to a point moving along a circular reference orbit in the 
central plane of the system with a constant angular velocity m, while vectors e 
and I are related to the epicyclic deviations of individual particles. For Keplerian 
systems e and 1 would correspond to vectors pointing to the pericenter and the 
ascending node, with absolute magnitudes of eccentricity and inclination. The 
derivatives of the central field, U’ = dU/ar, U” = d2Ular2, and h = a2U/az2, are 
evaluated in the central plane. The unit vector perpendicular to this plane is denoted 
by N. 

The local state of the system can be described by giving the particle density, n, and 
the dispersion tensors P = i% - Z, and Q = ii - n for each r, where the bar refers ‘to 
the local mean over particles belonging to this coherently moving group. The 
dispersion of random velocities for pairs of intersecting orbits, T, is related to P and 
Q by 

- r*r 
> 

+ Xr-Q-rNN. (15) 

In the absence of particle accretion or fragmentation, the collisional evolution of 
dispersion tensors is determined by the equations (Hameen-Anttila, 1984) 

dP 
z= 

- H&k) - (2) + ($y - W(RR). (g) + 

dp’ +P, (16) 

dQ -= 
dt 

* W(RR) * (2) + ($y . W(itR). (f-) + 

dp’ + d, (17) 
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W(XY) = ; 
L 

(2(X,-X)(Y,-Y)-(X,-X)(Y’-Y)- 

- (X’ -X)(Y, -Y)) + 

- 
+ ((X,-X)(C+C’-2C)) * s + 

0 

ax 
+ ac (-> 

* ((C+C’ -2C)(Y,-Y)) , 1 
u = fi’, n-(a+o’)2g 

8( T+ T’ ) 

it 37r 

g= [1 -~jfi;d3dpy; 

(18) 

(19) 

(20) 

(21) 

where the integrations are carried out over the particle size distribution or some other 
property distinguishing between particles. The frequency of impacts between 
different types of particles is denoted with V, while g represents the filling factor 
(unity for mass points), and Ar is the vertically averaged space density. The quantity 
T stands for trace T. The vector C includes the components of e and 1. The operation 
( > denotes averaging over impacts, 

<f(v, cl> = j I-@, cl (v - c)/u d$ (v * c)/u d$, (22) 

where the integration is carried out over those solid angles $ where impacts are 
possible, v . c < 0. The derivatives de/JR etc. follow from Equations (13) and (14), 

aT (-1 = 
aR 

rU”+u’ LJ~!T, 
r(rU”+3U’) r2 

(23) 
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z 
( > 

Nr” ;ii - =-- 
aR l-2 ’ ( > 

NT - I- 
aR VT 9 ’ 

The perturbations corresponding to the precession of apsidal lines and nodes in a 
general axisymmetric potential are accounted for by Hameen-Anttila (1984) 

i = (I” . P - P l I”)(G7% - J(rUIJ + 3U’)/r), 

a = (I* . Q - Q l I*)(&?% - fi), 

where I* = (r*r - rr*)/r2. 
In Hameen-Anttila’s (1984) original work the collisional change of velocity was 

modelled by Equation (6) with c, = c, and 0 = 0. In this case, the quantities IV&k) 
etc., consisted of various integrals of v and v . c, all of which could be evaluated in 
terms of (vv) and (u2)13, where I, is the three-dimensional unit tensor 
(rr + r*r*)/r2 + NN. By assuming a Gaussian distribution function for velocities, 
the mean values were then related to T and therefore also to P and Q. Now the 
rotational state enters into the equation for k, - k (Section 2). If we denote 
U = a*(= - z) as the dispersion tensor of spin velocities, it turns out that all the 
collisional integrals can now be evaluated in terms of P, Q, and fi. The behaviour 
of D and aG can be constructed by generalizing Hameen-Anttila’s (1978) treatment 
of rotating identical particles to include the dispersion of sizes, giving 

din 
Tt= s 

v [(02qwl-c72ww) - (awl - m~)(Tw - Ti&~w~ -cm>] dp’ ,(25) 

duo --= 
dt s 

v (act+ -5~) dp’. 

There is no need to assume any specific functional form for the distribution of spins 
as long as they are not correlated to random velocities, since there is no difference 
between Ww - GW and the average over impacts, (ww> - (o)(w). 

In the next Section the collisional time derivates are constructed by assuming that 
the particles can be treated as mass points. In Section 5 the corrections due to finite 
size are included, while Section 6 considers gravitational interactions between 
particles. 

4. Mass Point Approximation 

As long as the velocity difference between colliding particles is dominated by the local 
dispersion of velocities, and is not greatly affected by the systematic velocity 
gradient, all the terms proportional-to particle radii, except those including CJW may 
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be ignored. Previous computer simulations of non-rotating particles have shown that 
this mass point approximation is valid as long as the thickness of the system, 
measured by r @, is larger than a few particle diameters (Hameen-Anttila and 
Lukkari, 1980). 

Therefore, after setting R = R’ in Equation (18), the components of W are 

W(RR) = + 
L 

(2(R, -R)(R, -Ii) - (Ii, -R)(R’ 3) - 

- (Ii’ -R)(K,-Ii)) + ((Ii,-H)(C+C -2C)) * 

pi) + (icy - (c+c’-2c(i,-k), 
I 

) 

W&R) = $ ((Rt-R)(C+C’-2C)) . $ , 
0 

(27) 

W(RR) = W&R)?, W(RR) = 0. 

By assuming that there is no correlation between rotational and translational 
velocities the mean values following from Equations (11) and (22) are 

((Ii1 -li)(lv-Ii)) = ((R’ -Ii)& -li)) = 

= -$ [(1+(~+2/3/7) - 

w 
+ 5/7 <k2>>1 2, 

(1 +a+P)((12> + 

(28) 

((R,-R)(C+Cf-2C)) = ((C+C’-2C)(R,-R))’ = 

= ~ [(l +ol+20/7)- (1 +cY+~)((/~) t-5/7 (k2))] (v(C+C’ -2C)), 
P+P’ 

(29) 

((it, -R)(l$ - k,) = [ $1’ [[(l+ry+ZP/7)“-(1 +u-P)~ 

5 (f2) + + (k2) 
> 
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(l+c~-20/7)~ - (l+c~-p)~ $ (12) + 

+ $ (k2) 
> 

- y /3(1+(X-P) (12) + 

+ +- (k2) I + I, + (1 +cY-P)~ (k2+12) 

x 21, tr(n + D’) - (Q + Q’) + 
15 

+ (2w7) 
2 I, tr(O + a’) - (a + Q’) 

3 1. 
(30) 

Table I lists various collisional integrals, calculated according to Equation (22) 
needed in the construction of the above, and some later expressions. The above 
equations also assume that k and I are independent of c and v, so that all the mean 
values over k and I can be separated from those over v . c. Moreover, (k), (I), and 
(kl) are assumed to vanish. 

TABLE 1 

Collisional integrals calculated according to Equation (22) 

((c. v)*cc) = 1/4(w) + 1/12(v91, 

(v CCV) = l/2 (vv) 

(c*(v*c)) = 1/2(w) 

(c*vc*v) = -1/4(w) + 1/4(v2)13 

(c*(v*c)v .cc) = 1/4(w) - 1/12(v2)13 

( Iv*c12cc) = 1/6(v’)I, 

((c~v)~/~~*c/*c~(v~c)c*(~*c)) = 1/6(v’)I, 

((c ~v)*//v~c~*v~cv~c) = ~ 1/4(w) + 1/4(v2)13 

(((7~+u’~‘)*~(u~+u’~‘)*c)= 1/3(tr(fl+fI’)I,-(n+Q’)) 

((ix0 + 0’0’) (c*(v*c))/~v*c~2(ow + o’w’)c*(v*c) = 

= ((mc + u’u’) ~v*c/lv*c~* (uw + o’w’)v*c) = l/15 (2tr@ + fl’)I, - (fl+ Q’)) 

(c*((uw+u’w’)*c)c*((uw+~7’w’)*c)) = l/lS{tr(f!+fI’)I,+7(Q+Q’)~ 

(x*(ow*x)ow) = 1/3Q, with x = c and x = c*(v*c)/lv*cl 
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As can be seen from Equation (12) for a( w, - w), daG/dt = 0 for mass point 
approximation, indicating that randomly oriented particles do not acquire any 
systematic alignment of spin axis. Therefore, in order to construct dWdt, it is 
sufficient to consider only the term ~~(w,wi - ww), which can also be written into 
form aw(aw, - aw) + (aw, - aw)aw + (aw, - aw)(ow, - aw). From Equations (12) 
and (22) it follows that (see Table I) 

((awl - aw)(ao, - uw)) = [*I2 [‘i-l2 [[az+ (@)I(1 +u)‘-fi21] 

<a(wpJ)aw> = (awu(w,-w)) = 

y + [3p2 + 2(12)(1 +a-bP)2l q + 

+ P2 
7(Q+n’) + tr(Q+O’)I, 

15 I3 (31) 

2lc;;p,J [(k2+12)(1 +a-/3) + 2/3] n (32) 

Before the construction of the final equations for dP/dt, dQ/dt, and dR/dt, there 
are still some expressions which must be approximated. Following Hameen-Anttila 
(1984) we take 

4 
(vv) = - (T + T’), 

3 (33) 

= +T) . 

(rU” + U’)r*r* + 2U’rr - 
I (rU”+3U’)r2 ’ (34) 

The above formula for impact velocities would be exact for an isotropic distribution 
of random velocities, nevertheless it gives a good approximation for more general 
case. 

Equations (15)-(18), (23), and (25)-(34) then disclose that 

+ 01~ tr(O++‘) ) + 3a,(P+P’) - 
“5 U’ 

( 
2rr* r*r __-- 

r(rU” +3U’)2 r2 r2 
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(36) 

+ P2 
7(Q+Q’)+tr(Q+Q’)Z, 2ov/L ’ - 

15 21b++‘l) 
P3 i-i 

1 
dp’, (37) 

where CY-01~’ PI-/3, are shorthand notations for certain expressions of 01, 0, (P), 
and (k2), 

a1 = (1 + cy - 2@/7)2 - (1 + CL- /3)2(S6/49(P) + 48/49(k2)) 

- 10/7/3( 1 + o( - p) ((12) + 9/7(P)), 

a2 = (1 + CY + 2P/7)2 - (1 + CY - P)2(102/49(P) + 6/7(k2)) 

- 18/7P( 1 + IY - /3)((p) + 5/7(k2)), 

a3 = (1 + CY + 2P/7) - (1 + 01 - /3)((P) + 5/7 (k2>), 

01~ = 3[(2/3/7)2 + 2/5(1 + CY - ,Q2((p) + (k2))], 

01~ = 3[(2p/7)2 + l/5 (1 + CY - /3)2 ((p) + (I?~),], 

PI = P2 + (k’)Kl + cd2 - P21, 

p2 = PI + 2/3 (P)(l + 01 - fl)2, 

p3 = 2p + l/2 (k2 + r-)(1 + CX - p>. 

(38) 

In the construction of these expressions 01 and p have been treated as constants, 
and terms containing them have been taken outside the integrals over impacts. 
Therefore if 01 and 0 depend on impact velocity, they must now be considered as 
certain effective mean values. The same procedure has previously been succesfully 
used in the case of non-rotating particles (Hameen-Anttila, 1984), and the 
comparison to simulations has shown that the resulting accuracy is tolerable, only 
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about 20% at most (Salo, 1985). A simple approximation for the effective 01 is 
obtained if its argument is replaced by the mean value over impacts. In the case 
oU = a,( Ic .vl), the effective 01 is obtained with 

a0 = a,(G)2)) = &I?.( T + T ‘)/3), 

while if 01, = a,(v), then 

a0 = a,(&&) = olU(J4 ( f + T ‘)/3). 

Actually, instead of ((c . v)~> one should use 

((c.v,,,J2)=2/3(T+T’)+2/3(k2)(Q++’-T-T’), 

and instead of (u*> the average 

( u~~,~) = 4/3(T + T ‘) + 2/3(Q + a’). 

5. Corrections Due to Finite Particle Size 

The above mass point approximation is valid only if the dispersion of random 
velocities is much larger than the relative velocity component due to the differential 
rotation. However, the dense parts of the Saturn’s rings are probably very flattened, 
violating the above assumption. An approximate method was developed by Hameen- 
Anttila (1982, 1984) for the inclusion of finite particle size, and his technique is here 
modified to the case of rotating particles. In order to obtain tolerable expressions 
irregularity is neglected (c = I$. 

The velocity difference in impact, caused by the systematic velocity gradient is 
Av = (a + a’)~. Vi, where (Hameen-Anttila, 1984) 

Vi = [(t-U” + U’)rr* - 2U’r*r]/(2r2&Ej. (39) 

This contribution to the total impact velocity is assumed to be statistically 
independent of the velocity difference due to random velocities. Therefore the 
contributions of finite size to collisional mean values may be calculated from the 
relation 

A(f(c, v)) = 
s 

f(c, v)Av -cd+/ 
s Av . cd$, Av . c < 0, (40) 

corresponding to Equation (22). In the case c, = c Equations (11) and (12) yield for 
the additional collisional changes 

A@-k) = L (~+cY-22p/7)c l vi . cc + 2/J/7 c 0 vi 
CL’ +cL 1 , (41) 

P’ A(awt --a~) = - ~ 2 p (a+a’) c - vi*c. 
P!fP 7 
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TABLE II 

Collisional integrals calculated according to Equation (40) 

o+o’ 3U’+rU’ 
(c*Av) = ~ ~ N 

5 &tig 

(CC) = i 
lrU”-U’I rr*+r*r 

41 + 2NN ~ ?r 
10 rU”- U’ 1.2 > 

2 
(c * vi * ccc) = - 

rU"- U' rr* +r*r 7r Id/"-U'I 
~-- 

JrlJ’ r2 
(31 + NN) 

35 8 rU”-U’ 

7r Ii-U”-U’I rr*+r*r 

8 rU”-U’ r2 > 

(c * vi*cc * vi*c) = l 
135rU’ i 

(fall + f~~)~ 5 + 4~12 F 

+ 4 [4U’2+(rU”+U’)2+2U’(rU”+U’)] NK 

7r IrU”-U’ IU’(rU”+UI’) rr*+r*r 

2 i-U”- U’ I.2 I 

Since the calculation of correction factors is based on the omission of random 
velocities, we can set C’ = C = C in Equation (18). On the other hand, the difference 
between R and R’ must be taken into account. The nonzero corrections for various 
components of W thus become 

A W(lili) = + (2A(li, - R)A(& - k) - A(& - R)Av - AvA(Rt - R)), 

(43) 
A W(Rit) = AW(RR)+ = - f ((R’ -R) A& -Ii)}. 

Equations (16)-(18), (23), and (39)-(43) (see also Table II) then yield the 
corrections for dP/dt and dQ/dt, 

A$= s’(*)’ (a+~‘)~ [(l +cv-~P/~)~S, + 

+ 20/7(1 + a - 2p/7)S2 + (2/3/7)2 S 
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(~+a’)~ [(l +cY-~P/~)~S,] - 

V P’ - - ~ (a+~‘)~ (l+ol-2@/7)S, 
2 P-tP’ 

where S, - S, are shorthand notations for 

1 dP’ 

s, = __ 4 (rU”-U’)(rU”+U’) 2 rr rU”+3U’ r*r* 

35r2 (rU” + 3 U’)2 L r2 
-+ 

rU”fU’ r2 

+ $ ‘,“,‘:,,;,I Jv r*r;rr*], 

s, = 2 (rU” + U’)2 

[ 

_TT_ + U’(rU”+3U’) r*r* ~ - 
5r2 (rU”+3U’)2 r2 (rU” + U’)2 r2 

7i rU”+3U’ It-U”- U’ I U’ r*r + rr* 
4 rU”$U’ rU”- U’ rU”+3U’ 1 2 ’ 

(46) 

1 (rU”- U’)2 rr s, = __ 
35r2 9rU’X r2 ’ 

s, = I IrU”-U’I 7r r*r+rr* 

35r2 Jrxur 8 r2 ’ 

In the case /3 = 0 these simplify into the form given by Htimeen-Anttila (1984). 
Due to the systematic velocity gradient, (c * Av) does not vanish (see Table II), and 

the nonzero expression for dow/dt follows from 
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d&i 

s 

50 P’ U+U’ 3U’ +rU” -= -v- 
dt 7 P+P’ 5 m N- 

- (u,+&‘) * (I3 + (cc)) 
I 

dp’. (47) 

The equilibrium solution, da&dt = 0 is thus determined by 

u&i. (Is - (cc)) = (3U’ + rU” )/&!?I UN/~. 

In the case of flattened systems, we may use the integral listed in Table II for (cc), 
yielding 

ij = (3U’ + rU”)l(4m’)N. . (48) 

However, this expression for (cc) takes into account only the systematic velocity 
field. If the system is very thick (cc) might be better approximated by assuming an 
isotropic distribution of impact velocities, (cc> = I/3. This gives a slightly larger 
estimate for the equilibrium W, namely ti = 3(3U’ + rU” ) / (lOm’)N. 

By assuming that the above equilibrium, da&/dt = 0, is already obtained, the 
correction terms for dWdf become (Equations (25), (42), and Table II) 

A$ = s v [-&-I2 (a+a’)2(5/3/7)2S6 dp’, 

s 
6 

_ 2 (rU”+U’)2 

135 rU’ 

2U’ 
1 + 2U’ )I NN - 

rU”+rU’ rU” + U’ 
(49) 

T It-U”--‘I U’ r*r + rr* -- 
2 (rU”-U’) rU”+U’ r2 ’ 

These corrections terms, added to the equations for mass point systems give a 
complete description of the local collisional evolution of rotating particles in the 
absence of self-gravitational forces. However, a few minor modifications are still 
needed. In the above formula for v (Equation (19)) the contribution of the systematic 
velocity field must be included by adding 3(rU” - U’)2/70rU’ (a + ~7’)~ to T + T ’ 
(Hameen-Anttila, 1984). The argument of eye must undergo the same modification. 
The proper value of the filling factor g must also be used. 

6. Corrections Due to Self-Gravitation 

Gravitational encounters correspond to totally elastic impacts, and therefore provide 
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an additional source of energy. Their contribution becomes significant in the case of 
flattened systems, where the average random velocities are of the same order as the 
escape velocities of the largest particles (Cuzzi et al., 1979). A quantitative model for 
the treatment of gravitational encounters was devised by Hameen-Anttila (1983) who 
treated them as random fluctuations in the average gravitational field. The inclusion 
of rotation does not change the gravitational interactions, and the results are not 
altered in any way. However, since the terms arising from encounters were of the 
same general form as the collisional terms, Hameen-Anttila (1984) accounted for 
them by redefining 01, u, and (O + u’)~ in a suitable manner as effective values over 
both encounters and physical collisions. Although being very elegant, this 
nomenclature can not be used here because friction and irregularity change the 
collisional terms. Therefore, we rewrite Hameen-Anttila’s (1984) correction terms in 
explicit form, 

+ 3(P +P’) + 9a%, 1 (50) 

+ 9a2S, 
1 

CL’ -u ___ 
2r - Q - r rr + a2S g PfP’ 3r2 r2 5 11 dp’, (51) 

where yg is the frequency of encounters, and Ta2 the gravitational cross-section, 
given by 

a(T + T’ + H2a2) = G ~y(p+ F’)~ &%, (52) 

(53) 

where Hz = 3(rU” - U’)2/70rU ‘. 
The gravitational forces modify the physical impact processes, since the particles 

are mutually accelerated during their approach, and correspondingly decelerated 
after the impact. This may be accounted for by calculating the effective coefficient 
of restitution as 

(y2 zz ($ - 
3Y(P+t’r(l -q12 

’ 2(a+ o’)(T+ T’ + H,(a+ u’)~) (54) 
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The same effect must be included in the calculation of the argument of (me. In the 
case of 01, = (~&lc.vl) we have 

010 = Q-\/2/3(7.+ T’ + H2(u + o’)~) + y(p + ~‘)/(a + o’)), (55) 

where H2( u + u’)~ corresponds to the additional velocity differences due to the 
finite size (Section 5). 

The average gravitational potential is also affected. According to Poisson’s 
equation, written for the equatorial plane of the system, 

U” + U’/r + X = 47ry~p’n,.‘dp’. 

As long as the sharp radial density variations are not considered, only the vertical 
component is significantly modified by self-gravitation. If we denote with X0 the 
contribution of external potential, the correction due to self-gravitation, 
Ah = X - ho is simply 

AX = 47ry 
s 

p’A:dp’. (56) 

The vertically averaged space density is used instead of that in the equatorial plane, 
since it is expected to yield better results for inclined orbits (Hameen-Anttila, 1984). 
This approximation also takes into account the possibility that different particle 
types may occupy layers of different vertical thickness, thus only partially feeling 
each others contributions. 

According to computer simulations of non-rotating particles (Lukkari and Salo, 
1984; Salo, 1985) these correction terms give good agreement between the numerical 
experiments and analytical results as long as the average post-collisional velocities 
exceed the escape velocities from particle surfaces. Violation of this restriction, 
equivalent to a2 < 0 means physically an excessive formation of local transient 
particle groups, not accounted for by the theoretical equations. Inclusion of rotation 
should not cause any additional limitations for the validity of gravitational terms. 

7. Numerical Results 

a) Qualitative Analysis 

The equations derived in the earlier Sections are highly non-linear, and must 
therefore be numerically integrated. However, before doing this it is useful to study 
qualitatively the behaviour of random velocities and spin velocities with the inclusion 
of friction and irregularity. This can be done by calculating the average rate of energy 
loss due to impacts, and the rate of energy transfer between linear and rotational 
random velocities. 

For identical particles the change in kinetic energy, A.!&, and rotational energy, 

4ot in each binary impact, are determined by 
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Fig. 2. a) The equilibrium ratio v’%? for identical mass points as a function of /3, the coefficient of 
friction. Different amount of irregularity, described in terms off, are studied, while 01 is assumed to have 
a constant value of 0.68. b) The ratio of average energy loss (A&,) to that without any friction or 

Irregularity, (AI&,),,. 

AErot = 5 
[ 
w’,2 + aI2 - cd’2 - d 

I 
. 

These changes can also be written in the form 

AfTkin = p[(R, - ky - (k, - it). v], 
AZ& = 2p/5[(m1 - cJw)2 + (CJq - aa) . (@cd + aw’)]. 

(57) 

(58) 

For mass points, the averaging over impacts yields (see Table I) 

(As!&) = - pT/3 [ (1 - 01~) + 2/3/7(2 - 2/3/7) + 

+ (/?>/49[139(1 + O! - p>2 + 

+ 188(1 + 01- /3)P - 168(1 + 01- /3)]) + 

+ @/3[(1 + cy - P)2(k2> + (2P/7j21, 

(A.&) = 4PT/15(5/7)2[(k2)(1 + (Y - p)(l + a) +p2/2] - 

- 4/.&/21[/3 + (k2>(1 + a - 0) - 5p2/14], (60) 

where it has been assumed that (12) = (k2>. The first term in the expression for 
A,?&, (1 - 01~) arises from inelasticity, and is always positive, corresponding to 
energy loss. The same holds true for 2p/7(2 - 2/3/7), so that friction enhances energy 
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dissipation. The third term in brackets, due to irregularity, is also positive for typical 
values of CY. However, there is also a feedback of energy from rotation, described by 
the term proportional to 3, so that the net effect of friction, and especially 
irregularity, depends on the ratio between a and T. This ratio in turn is determined 
by the expression for A/&,,. In the equilibrium state (UT,,) vanishes, which fixes 
the ratio Q/T independently of T (Figure 2a). In Figure 2 we have assumed that in 
each impact ct varies symmetrically around c so that both k and I attain independent 
random values from the interval (-f, f). Hence (k2) = (?-> = f 2/3. As can be 
seen, both the increased friction and increased irregularity enhence the ratio WT. 
Figure 2b shows the dependence of (A/&,> on 0 and f, once the equilibrium ratio 
of LX/T is inserted into Equation (59). As expected, both friction and irregularity 
typically increase energy dissipation for a fixed 01, but if p is close to zero irregularity 
may also reduce / (A&,,) ) because of the feedback of energy from large spin 
velocities. 

In the equilibrium state the collisional energy loss is balanced by the viscous shear. 
In order to keep (A./Z,,,) constant while the dissipation due to friction and 
irregularity is included, the elasticity term (1 - a2) must be reduced. Hence larger 
values of CY are required, and due to the relation between CY and the impact velocity, 
equilibrium velocity dispersion must be reduced. Only if p is close to zero, irregularity 
reduces CY and increases T. 

For smooth spherical particles the equilibrium ratio &/J!&, = 2W5T becomes 
2p/ ( 14 - Sp), while in the case of irregularity but no friction it is 2(1 + a)/7. The first 
result agrees with the calculations of Shukman (1984) who obtained E,,,/f&, = 0.23 
for /3 = 1. On the other hand the special case 6 = 2, as considered by Shu et al. (1985) 
leads to an equipartition between rotational and translational energies. In the latter 
case the change of kinetic energy is again proportional to (1 - CY~) as shown by Shu 
et al. (1985). 

b) Numerical Solution 

The above simple analysis, although revealing the general effects of friction and 
irregularity, does not tell how the different components of the velocity tensor behave, 
or how the equilibrium states of different sized particles are related. It also ignores 
the effects of finite particle size. The complete information can only be obtained by 
solving the set of Equations (19)-(21), (24), (35)-(38), and (44)-(56). We shall first 
shortly describe the numerical method of solution, and then give a few examples of 
how the local state of collisional systems depends on optical thickness. 

The practical calculations are arranged by writing the two-dimensional tensors P 
and Q in the form (Hameen-Anttila, 1981) 

rr - r*r* ~ + z r2 + z 
* rr* + r*r 

r2 , Z = P, Q, (61) I 
while the three-dimensional tensor s2 has in addition the nonzero component flZNN. 
The time-scales of P, Q, n, and 0, are short, of the order of few tens of impacts per 
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particle, and therefore in principle it is quite easy to follow the asymptotic behaviour 
of these quantities. However, in the case of low collision frequency some numerical 
difficulties follow from the fact that the steady evolution of z and z* towards their 
equilibrium values is superponed with periodic, slowly decaying oscillations having 
the time-scale of the orbital period. In dense systems the rapid decrease of T with 
growing 7 causes some difficulties, since for example the importance of self- 
gravitation depends on both these quantities. 

The relation between these quantities and the more commonly used principal axis 
components of velocity tensor (see e.g. Goldreich and Tremaine, 1978) are easy to 
derive from Equation (61). The expression for T (Equation (16)) can be written in 
the form 

T = A m/r2 + Br*r*/r2 + C(rr* + r*r) lr2 + DNN, (62) 

with 

A = r(rU” + 3U’)2/4U’ (P + p)/2, 
B = r(rU” + 3U’) (P - p)/2, 

C = - 1/4r(rU” + 3U’)J(rU” + 3U’)/U’P”, 

D = hr2(Q i- 4)/2. 

The principal axis components are then obtained by setting 

T = c;ss/s2 + c~s*s”/s2 + c;NN, 

giving 

(63) 

(64) 

c; = 1/2[A + B + J (A - B)2 + 4C2] , 

G=1/2[A+B-J(A-B)2+4C2], 

c;=D, 

tan(26) = 2C/ (A - B), 

where 6 is the angle between r */r and the largest principal axis. The dispersion tensor 
for rotational velocities can be treated in a similar manner. 

For low collision frequency the tensorial equations for the evolution of P, Q, and 
Q can be replaced with scalar equations for dP/dt, dQ/dt, dWdt, and dQJdt, since 
all z, z*- 0 if Y - 0. In Salo (1987) this simplified set of equations (without self- 
gravitational terms) is compared to numerical simulations of rarefied Keplerian 
systems, made with the same impact model including friction and irregularity. In 
general, good quantitative agreement is found. This confirms the validity of the 
rotational equations, although due to the smallness of the u-terms the results are not 
very sensitive to possible inaccuracy of these terms. 

c) Numerical Models for Identical Particles 

The asymptotic behaviour of P and Q depends strongly on the assumed elasticity 
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Fig. 3. The dependence between the optical thickness, 7, and the effective geometrical thickness, h, 
calculated for the Saturnocentric distance of 100000 km. Equation (66) is used for CL, both with 
v, = 10og(a), and with uC = us (b). Solid lines are for CJ = 1 m, while dashed lines correspond to the case 

where u-terms are insignificant (u = 0.01 m). 

model (Salo, 1985). If the particles are hard, characterized by 01% 0, and a slowly 
decreasing a! (v)-relation, the equilibrium state is a many particle thick multilayer, the 
thickness of which is determined by the exact dependence between 01 and u. On the 
other hand, softer particles, characterized by a sharply decreasing 01 (v)-relation, are 
likely to flatten to a near monolayer state. For numerical models of Saturn’s rings 
we adopt the function 

ol= lc.VI -p 
( > > 0.25 < a < 1.0, 

UC 

which describes the laboratory measurements of Bridges et al. (1984) if p = 0.234 and 
u, = vg = 0.0077 cm/s. Actually, Bridges et al. (1984) experiments were performed 
for head-on collisions only, so that there was no difference between the absolute 
magnitude of the impact velocity and its different components. However, like Shu 
et al. (1985), we assume that CY depends only on the perpendicular component 1 c . v I. 
In the case of rotating irregular particles one should use 1 c, . vCO,, / (Section 4), but a 
few numerical calculations showed that the resulting difference is insignificant. Also 
the use of u or u,,,, instead of Iv . cl would not cause any large qualitative 
differences. 

Figure 3 depicts the dependence between the optical thickness, 7 = ng(r2, and the 
effective geometrical thickness, defined by h = m) (Hameen-Anttila, 1984). 
These curves, like all the subsequent figures refer to the Saturnocentric distance 
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stand for no irregularity, while the solid lines represent the case f + 0.5, corresponding to a maximum 

deviation of about 35” between c and cr. 

r = 100000 km. The central potential has been replaced with that of a point mass, 
ym = 3.7942. 1016 m3/s2, so that U’ = ym/r2, U” = - 2ym/r3, and X, = ym/r3. 

The above formula for Q! (0) is used, but instead of taking the measured value for vC, 
we have preferred a ten-fold value v, = lOv, = 0.077 cm/s. The reason for this is 
that the measured value ug implies rather soft particles, and therefore the resulting 
equilibrium thickness would be very small. Indeed, if we neglect the u-terms (dashed 
lines in Figure 3), the value of h would be only a few meters. This same result was 
obtained by Bridges et al. (1984) who estimated that h < 5 meters for non-rotating 
mass points. Therefore if we replace the actual distribution of sizes by an effective 
radius of the order of 1 meter (Shu and Stewart (1985) suggest oeff = 1.8 m), it is 
clear that the average impact velocities are dominated by the systematic velocity field. 
The resulting geometric thickness would be of the order of few particle radii, and not 
very sensitive to the impact model. In fact, the flatness of the system would render 
the effects of extra dissipation due friction almost negligible (Figure 3b). With the 
use of larger vC, although perhaps corresponding to unrealistically hard particles, a 
more general insight into possible types of behaviour should be obtained. 
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Fig. 5. The influence of gravitational interactions on h (7). Two different values of friction (p = 0.0 and 
0.5) are studied both with (solid lines) and without (dashed lines) self-gravitation. The internal density of 

particles is 0.9 gr/cm3, while uC = 100, and CJ = 1 m. 

The case p = 0 in Figure 3a describes the typical h (7) dependence for non-rotating 
mass points. The decrease of h with r is due to the reduced mean free path between 
impacts, which leads to a less effective gain of energy from the systematic velocity 
field. At large optical thicknesses the flattening is finally prevented by the finite size 
of particles. Notice that h is proportional to fi at low T, while if the system is more 
dense it takes into account the finite space needed by particles. Therefore for very 
large T, while nis almost constant, h would increase since the particles can not 
penetrate each other. As was qualitatively shown in Figure 2, random kinetic energy 
is effectively dissipated by friction, which leads to strongly reduced fi and h. With 
u,, = uB (Figure 3b) the behaviour of h(r) is much less dramatic. 

For frictionless particles the terms arising from finite size are almost insignificant 
if u, = lOu,, as can be seen by comparing dashed and solid lines in Figure 3a. 
However, in the presence of friction the balancing effects of u-terms are needed even 
for rather low optical thickness in order to avoid rapid flattening. If /3 = 1, the critical 
7 after which h - 0 without u-terms would be about 0.6, while for /3 = 0.5 it would 
be about 1.3. The first value is in a close agreement with Shukman’s (1984) 
calculations, who found rCrir = 0.73 for his impact model. However, because of the 
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In case e) u, = uB, so that a-terms are important. 

finite size of particles, these critical values of r have no practical significance for the 
local equilibrium state of Saturn’s rings. 

The influence of irregularity (Figure 4) turns out to depend on the amount of 
friction in the way anticipated in Section 7a. In general, irregularity enhances the 
effects of friction, and only if @ = 0, it leads to increased random velocities. Even a 
very small amount of friction is able to counteract this tendency: for example if 
f = 0.5, all the values fi > 0.02 yield an increased energy dissipation as compared to 
the case /3 = f = 0. 



174 

1.0 

0.9 

0.8 

0.7 

0.6 

0.5 

,- 

I- 

I- 

H. SAL0 

I I, i I I I 
a 

I I I I I I 

40’ 

3oa 

20” 

10” 

0” 

r- 

>- 

L 

I I I I I I 
Cl 

I I I I I I 
0. 0 0.5 1. 0 1.5 2. 0 2.5 

I 
Fig. 7. The behaviour of the velocity ellipsoid as a function of 7. Curve a) approximates non-gravitating 
mass points (uc = 10vB), while in b) friction (/3 = 0.5), and in c) self-gravitation (p = 0.9 gr/cm3) are 

included. The curve d) represents the influence of finite size (u, = ZJ,). 



COLLISIONAL EVOLUTION OF ROTATING PARTICLES 175 

The mutual gravitational forces (Figure 5) affect the dynamical state by three 
different, partially cancelling ways. Firstly, due to the self-gravitation, the vertical 
component of the average gravitational field is increased, leading to reduced vertical 
oscillations and increased impact frequency, which both reduce h (Salo and Lukkari, 
1982). On the other hand, individual gravitational encounters correspond to totally 
elastic impacts, and therefore increase velocity dispersion. However, in encounters 
leading to physical collision the average elasticity is decreased due to the mutual 
acceleration before impact. Therefore the third factor tends to cancel the second one. 
According to Figure 5 the factors tending to flatten the system dominate. For small 
r this is due to the acceleration before impact, while for large r the increase in X is 
more important. The gravitational scattering is important only if the system is rather 
flattened without being optically thick. In fact, if u, = uB, h (T = 0) would be slightly 
(20%) increased due to encounters. However, as will be shown in Section 7d, 
gravitational scattering has a much more important role if the actual distribution of 
sizes is taken into account. 

The influence of all these factors, friction, irregularity, finite size, and self- 
gravitation, is possible to interpret in terms of their effects on the relation between 
Q! and r (Figure 6). For mass point systems of identical particles, there is a unique 
cr (7) dependence, determined by the local collisional energy balance. Hameen- 
Anttila (1978) derived 

9a2(19cY - 13) 
64( 1 - a2)(3 - 01)~ 

= g2T2, (67) 

which is very similar to the corresponding result of Goldreich and Tremaine (1978). 
Our case a) (uC = 10~~) approximates fairly closely this formula. With friction (b 
and c), the effective value of cx is increased because part of the energy loss is 
accounted for by friction, and is not due to inelasticity. It is also possible to attain 
the state 01 = 1 with finite 7 if fi # 0, to some extent corresponding to rCrit in 
Figure 3. The inclusion of irregularity alone cf) decreases CY. The reason for this is 
the slightly diminished amount of the energy consuming head-on collisions in favor 
of more grazing impacts. In order to compensate for this, average impact velocities 
must be increased corresponding to reduced (Y. In fact, the effects of our irregularity 
model are rather similar to the effects attributed to rotation in the model by Shu et 
al. (1985). However, they ignore the dissipation due to friction, which is able to 
reverse the total influence of rotation. The finite size of particles (e) corresponds to 
an additional source of viscous energy so that it has to be balanced by increased 
collisional dissipation on lower CY. In general, the same should hold true for 
gravitational encounters, but due to the effects explained above, self-gravitation 
increases energy dissipation and allows for larger cy (case d). 

The behaviour of the velocity dispersion tensor is plotted in Figure 7. The case a) 
corresponds again to the mass point behaviour, and is in a good agreement with 
Figure 3 of Goldreich and Tremaine (1978). In rarefied systems 6 = 0” and 
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The dispersion tensor of rotational velocities was found to be almost isotropic for 
all values of 7. Typically fi2,, = 02,, and q,, = 1.1 in rarefied systems, which is 
in agreement with Shukman’s (1984) results for /3 = 1. It was also found that the ratio 
ErOt/E,i, is practically independent of 7, and also of the geometric thickness of the 
system, whether it is a mass point system, or a monolayer. Therefore the approximate 
considerations of Section 7a are also more generally valid. This is easy to understand 
since the correction terms for the influence of finite size on dWdt are much smaller 
than those in dP/dt and in dQ/dt, and since the gravitational forces do not directly 
affect the rotation. 

d) Models with Size Distribution 

All the above models have assumed that the actual distribution of sizes can be 
replaced with one effective radius. However, as was shown in the case of non-rotating 
particles (Salo, 1985), the inclusion of a realistic size distribution gives a rather 
different equilibrium solution, characterized by the clear differences in the random 
velocities of the smallest and largest particles. In this Subsection we consider the 
power-law distribution 

dN -4 
--a ) 
da 

1 cm < u < 5 m, q = 3, (68) 

derived from Voyager I radio occultation measurements (Marouf et al., 1983). The 
density of all particles is assumed to be 0.9 gr/cm3. 

Figure 8 depicts the geometric thickness of layers occupied by different-sized 
particles h(u) for different total 7. The measured value vc = uB is used. As in the 
case of identical particles, the largest particles are confined almost to a monolayer. 
However, the centimeter-sized particles have a much larger h than before. 
Consequently, they are affected by the friction, which is able to reduce the maximum 
h to about one half. Therefore, the earlier use of the unrealistically large value of u, 
for identical particles gave a rather good description of the behaviour of the smallest 
particles of an extended size distribution. The same holds true for the velocity 
dispersion tensor: for a given r the velocity distribution of centimeter-sized particles 
is more isotropic than that of the largest particles, which are more affected by u-terms 
(see Figure 6, case e). 

The inclusion of gravitational forces increases the hsma,, by a large fraction. This 
is due to the gravitational scattering by the largest particles, which dominates over 
the increased dissipation in physical collisions. However, as r increases, the increase 
in the vertical field again becomes important, and h drops with growing 7, faster than 
in the case of purely collisional interactions. In dense systems the differences in the 
velocity dispersions of different sized particles are reduced, although h still typically 
decreases with growing 0. 
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Fig. 9. The equilibrium ratio I&/I&,, p lotted as a function of particle radius. Four different 
combinations of p and f were studied with (solid lines) and without (dashed lines) self-gravitation. In a), 

b), and c) f = 0, while /3 = 0.5, 1.0, and 2.0, respectively. In d) p = 0 and f = 0.5. 

The behaviour of rotational velocities is somewhat affected by the inclusion of 
size-distribution. The average value of E,,J&,, weighted with particle mass, is 
almost the same as it was for identical particles, but there is a clear difference between 
the smallest and the largest particles (Figure 9). The dispersion of rotational periods 
= 2~0/fi is nevertheless roughly proportional to CJ, since fivaries at most by a 
factor of 4 although (T changes almost by 3 magnitudes. Typical rotation periods are 
about 4 minutes for a 5 centimeter particle, and about 2 hours for 1 meter particle 
(/3 = 0.5, f = 0.0, r = 1, p = 0.9 gr/cm3), but they depend strongly on the parameter 
values (Table III). For the largest particles the average values of uwZ can become 
comparable to aZ = a. For example, in the above typical case with ,L3 = 0.5, 
AZ = 5. 10d4 m/s for a 5 meter particle, while 00, = lop3 m/s (Equation (48)). 
Therefore, if the system is rather flattened, and consequently the dispersion of spins 
is not very large, the meter-sized particles should have predominantly prograde 
rotation. This phenomenon was also observed in computer simulations (Salo, 1987). 
In fact, numerical experiments suggest that GZ might actually be about a factor of 2 
larger than predicted by Equation (48), so that the alignment might be even more 
pronounced. 



COLLISIONAL EVOLUTION OF ROTATING PARTICLES 179 

TABLE III 

Average rotational periods, - 27rcrl&, for different parameter combinations. The distribution of sizes 
extends irom 1 centimeter to 5 meters, with q = 3 

7 

without self-gravitation with self-gravitation 

P 5 cm Pl m P 5 cm P 
(min) (hours) (min) (2omUrs) 

p = 0.5 0.01 6.5 4.0 3.5 1.9 
f = 0.0 1.00 7.2 4.0 3.9 2.0 

p= 1.0 0.01 4.9 2.8 2.3 1.3 
f = 0.0 1.00 7.2 2.8 2.3 1.3 

p = 2.0 0.01 0.8 1.2 0.2 0.6 
f = 0.0 1.00 1.0 1.2 0.5 0.6 

t p f = = 0.0 0.5 0.01 1.00 1.7 1.9 1.3 1.4 1.2 1.4 1.0 1.0 

8. Conclusions 

The equations derived for the combined collisional evolution of random velocities 
and spins indicate that rotation can significantly modify the local equilibrium. 
Rotation can be induced both by friction and by surface irregularity of impacting 
bodies. The inclusion of friction, which reduces the tangential component of the 
relative velocity, increases energy dissipation. Therefore, in the collisional balance 
between the viscous gain of energy from the systematic velocity field, the losses due 
to inelasticity can be smaller. Due to the assumed monotonically decreasing relation 
between CY and u, the equilibrium state is attained with a smaller velocity dispersion, 
and correspondingly smaller geometric thickness. The irregularity tends to enhance 
the effects of friction, since it favors the more grazing impacts having larger 
tangential component of relative velocity. Rotation also increases tangential velocity 
differences. Only if the friction is negligible will the decreased fraction of head-on 
collisions reduce energy loss. 

The exchange of energy between translational and rotational degrees of freedom 
does not generally lead to energy equipartition, as assumed by Shu et al. (1985). 
Instead, the ratio Erot/Ekin turns out to depend on the amount of friction and 
irregularity: for smooth identical particles this ratio becomes 2p/ ( 14 - 5@, while 
for frictionless irregular particles it is 2(1 + a)/7. These ratios are practically 
independent of 7 or h. The result for smooth particles is in agreement with the 
corresponding cases considered by Shukmann (1984) and by Shu et al. (1985), namely 
/3 = 1, which leads to Erot/Eki, = 0.23, and 6 = 2, which leads to equipartition. An 
interesting point is the behaviour of the mean spin: wZ is estimated to obtain a 
positive average of about l/4 times the orbital angular velocity. For flattened systems 
GZ may exceed the dispersion fiZ, leading to clear alignment of spin axes, which 
was also verified by numerical simulations (Salo, 1987). 
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Applications to the dynamics of Saturn’s rings indicate, however, that the actual 
importance of rotation depends strongly on the elastic properties of particles. In the 
case of rather soft particles, as implied by the laboratory measurements of solid ice 
spheres (Bridges et al., 1984), the equilibrium thickness for identical particles is of 
the order of a particle diameter, and is not very sensitive to the details of the impact 
model. Consequently the effects of friction and irregularity are negligible, and they 
would be important only for considerably harder particles. However, the situation 
is changed if the distribution of sizes is taken into account, since the small particles 
occupy a many particle thick layer even if the measured CY(U) is assumed. The 
inclusion of friction is typically able to reduce the maximum thickness of rarefied 
regions from about 30 meters (/3 = 0) to about 15 meters (0 = 0.5), while for large r 
it is changed from about 15 meters to 10 meters. The inclusion of gravitational 
interactions increases these figures to about 45 and 30 meters, if 7 is small. For large 
7, h is almost independent of /3, and is about 6 meters. 

The calculated rotation periods are roughly proportional to particle size, typically 
of the order of 1 minute for 1 cm particles and about 10 hours for the largest 5 meter 
particles, but again they depend strongly on the optical thickness, and also on the 
parameter values chosen for friction and irregularity. 
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