NUMERICAL DETERMINATION OF ASYMMETRIC PERIODIC SOLUTIONS IN THE PLANAR GENERAL THREE BODY PROBLEM AND THEIR STABILITY

T. TSOUROPLIS and C: G. ZAGOURAS
Dept of Appl. Mathematics, University of Patras, Greece

(Received 7 November, 1983)

Abstract

A numerical study of asymmetric periodic solutions of the planar gencral threc body problem is presented. The equations of variation are integrated numerically and the algorithms for the numerical determination of families of such periodic orbits are given. These orbits refer to a rotating frame of reference. The linear isoenergetic stability is examined through the stability parameters while the results are given in tables and figures.

1. Introduction

The significance of periodic solutions in the study of nonintegrable dynamical systems has been pointed out by many investigators since Poincaré.

The most work on periodic solutions has been done on the Restricted Three-Body Problem, a simplified version of the Three-Body Problem. But whilst there have been numerous investigations into the symmetric periodic solutions only a few articles have dealt with asymmetric periodic solutions (e.g. Message, 1970; Hénon, 1965; Taylor, 1983). This is due to the greater complexity in the numerical procedures and the large amount of computing time required to determine asymmetric periodic solutions.

In the more complicated general three-body problem families of periodic solutions were computed only when it was proved that families of periodic solutions exist with fixed masses of all the bodies, with respect to a rotating frame (Hénon, 1974; Hadjidemetriou, 1975). Since then, several families of symmetric periodic solutions of this problem have been determined.

In this paper the algorithms for the numerical determination of periodic solutions of the general 3 -body problem which are not symmetric with respect to the axis joining the two more massive bodies, are developed. Then, five familics of such solutions are computed and their linear isoenergetic stability is examined. The study of the stability character of each orbit contains the numerical integration of the variational equations simultaneously with the equations of motion. The results are presented in tables and figures.

2. Numerical Determination of Asymmetric Periodic Solutions

We use a rotating system of dimensionless coordinates with origin at the center of mass of the two more massive bodies P_{1} and P_{2}.

The position of the three-body system is fully determined in terms of the coordinates x, y of the third body P_{3}, the distance x_{2} of P_{2} from the origin and the angle θ between the rotating and non-rotating system.

In the rotating coordinate system the Equations of motion of the planar general three body problem are

$$
\begin{align*}
& \ddot{x}=B x+x \dot{\theta}^{2}+2 \dot{\theta} \dot{y}+\ddot{\theta} y+\mu A x_{2}, \\
& \ddot{y}=\left(B+\dot{\theta}^{2}\right) y-x \ddot{\theta}-2 \dot{x} \dot{\theta} \tag{1}\\
& \ddot{x}_{2}=\left(m_{3} B^{*}+\dot{\theta}^{2}\right) x_{2}-\left(1-m_{3}\right)(1-\mu)^{3} / x_{2}^{2}+m_{3}(1-\mu) A x, \\
& \ddot{\theta}=-2 \dot{\theta} \dot{x}_{2} / x_{2}+m_{3}(1-\mu) A y / x_{2} ;
\end{align*}
$$

or, in first-order form,

$$
\begin{align*}
& \frac{\mathrm{d} X_{1}}{\mathrm{~d} t}=X_{4} \triangleq f_{1}, \quad \frac{\mathrm{~d} X_{2}}{\mathrm{~d} t}=X_{5} \triangleq f_{2}, \quad \frac{\mathrm{~d} X_{3}}{\mathrm{~d} t}=X_{6} \triangleq f_{3} \\
& \frac{\mathrm{~d} X_{4}}{\mathrm{~d} t}=B X_{1}+X_{1} X_{8}^{2}+2 X_{8} X_{5}+\dot{X}_{8} X_{2}+\mu A X_{3} \triangleq f_{4}, \\
& \frac{\mathrm{~d} x_{5}}{\mathrm{~d} t}=\left(B+X_{8}^{2}\right) X_{2}-X_{1} \dot{X}_{8}-2 X_{4} X_{8} \triangleq f_{5}, \\
& \frac{\mathrm{~d} X_{6}}{\mathrm{~d} t}=\left(m_{3} B^{*}+X_{8}^{2}\right) X_{3}-\left(1-m_{3}\right)(1-\mu)^{3} / X_{3}^{2}+m_{3}(1-\mu) A X_{1} \triangleq f_{6}, \tag{2}\\
& \frac{\mathrm{~d} X_{7}}{\mathrm{~d} t}=X_{8} \triangleq f_{7}, \\
& \frac{\mathrm{~d} X_{8}}{\mathrm{~d} t}=-2 X_{8} X_{6} / X_{3}+m_{3}(1-\mu) A X_{2} / X_{3} \triangleq f_{8},
\end{align*}
$$

where

$$
\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}, X_{7}, X_{8}\right)=\left(x, y, x_{2}, \dot{x}, \dot{y}, \dot{x}_{2}, \theta, \dot{\theta}\right)
$$

A periodic solution $\mathbf{X}\left(\mathbf{X}_{0} ; t\right)$ of the above Equations will satisfy

$$
\begin{equation*}
X_{i}\left(\mathbf{X}_{0} ; t+T\right)=X_{i}\left(\mathbf{X}_{0} ; t\right), \quad i \neq 7 \tag{3}
\end{equation*}
$$

where T is the period and $X_{0}=\left(X_{01}, \ldots X_{08}\right)$ is the initial-conditions vector. Further, without loss of generality, we shall fix initial values of $y, 0$ and $\dot{0}$ as follows: $y_{0}=0$, $\theta_{0}=0, \dot{\theta}_{0}=1$. The periodicity conditions are written in the form:

$$
\begin{align*}
& x\left(x_{0}, x_{20}, \dot{x}_{0}, \dot{y}_{0}, \dot{x}_{20} ; T\right)=x_{0} \tag{a}\\
& y\left(x_{0}, x_{20}, \dot{x}_{0}, \dot{y}_{0}, \dot{x}_{20} ; T\right)=y_{0} \tag{b}\\
& x_{2}\left(x_{0}, x_{20}, \dot{x}_{0}, \dot{y}_{0}, \dot{x}_{20} ; T\right)=x_{20} \tag{c}\\
& \dot{x}\left(x_{0}, x_{20}, \dot{x}_{0}, \dot{y}_{0}, \dot{x}_{20} ; T\right)=\dot{x}_{0} \tag{d}\\
& \dot{y}\left(x_{0}, x_{20}, \dot{x}_{0}, \dot{y}_{0}, \dot{x}_{20} ; T\right)=\dot{y}_{0} \tag{e}\\
& \dot{x}_{2}\left(x_{0}, x_{20}, \dot{x}_{0}, \dot{y}_{0}, \dot{x}_{20} ; T\right)=x_{20} \tag{f}\\
& \dot{\theta}\left(x_{0}, x_{20}, \dot{x}_{0}, \dot{y}_{0}, \dot{x}_{20} ; T\right)=\dot{\theta}_{0} \tag{g}
\end{align*}
$$

In practice, the condition (4b) is satisfied 'by force' since we start and terminate the numerical integration when the orbit crosses the $O x$ axis. Further, due to the integrals of the problem only four of the remaining six periodicity conditions are truly independent. Essentially, therefore, the periodicity conditions are only four and in this work we have used the conditions ($4 \mathrm{a}, \mathrm{c}, \mathrm{d}, \mathrm{f}$).

From these periodicity conditions corrector-predictor algorithms can be established for the numerical determination of entire series of asymmetric periodic solutions. In the corrector phase we assume an initial state vector \mathbf{X}_{0} which approximately leads to a periodic orbit of (approximate) period T, and seek to adjust this state vector by differential corrections to improve iteratively the accuracy of periodicity.

If we integrate the Equations of motion and stop at the second crossing with the $O x$-axis (after one full revolution) we have, in general,

$$
\mathbf{X}\left(\mathbf{X}_{0} ; T\right) \neq \mathbf{X}_{0} .
$$

We seek corrections $\delta \mathbf{X}_{0}=\left(\delta \mathbf{x}_{0}, 0, \delta \mathbf{x}_{02}, \delta \dot{x}_{0}, \delta \dot{y}_{0}, \delta \dot{x}_{20}, 0,0\right)$ such that

$$
\begin{equation*}
\mathbf{X}\left(\mathbf{X}_{0}+\delta \mathbf{X}_{0} ; T+\delta T\right)=\mathbf{X}_{0}+\delta \mathbf{X}_{0} \tag{5}
\end{equation*}
$$

Expanding in Taylor series and neglecting terms of order higher than the first, we have

$$
\begin{align*}
X_{i} & +\frac{\partial X_{i}}{\partial X_{01}} \delta X_{01}+\frac{\partial X_{i}}{\partial X_{03}} \delta X_{03}+\frac{\partial X_{i}}{\partial X_{04}} \delta X_{04}+\frac{\partial X_{i}}{\partial X_{05}} \delta X_{05}+\frac{\partial X_{i}}{\partial X_{06}} \delta X_{06} \\
& +\frac{\partial X_{i}}{\partial T} \delta T=X_{0 i}+\delta X_{0 i}, \quad(i=1,2,3,4,6) . \tag{6}
\end{align*}
$$

For $i=2$ we obtain, in particular,

$$
\begin{align*}
& \frac{\partial X_{2}}{\partial X_{01}} \delta X_{01}+\frac{\partial X_{2}}{\partial X_{03}} \delta X_{03}+\frac{\partial X_{2}}{\partial X_{04}} \delta X_{04}+\frac{\partial X_{2}}{\partial X_{05}} \delta X_{05}+\frac{\partial X_{2}}{\partial X_{06}} \delta X_{06}+ \\
& \frac{\partial X_{2}}{\partial T} \delta T=0 \tag{7}
\end{align*}
$$

since, for $t=T, x_{2}=y=0$ while $\delta X_{02}=\delta y_{0}=0$. Solving now Equations (7) for δT and substituting into relations (6) we get

$$
\begin{align*}
& X_{i}+u_{i 1} \delta X_{01}+u_{i 3} \delta X_{03}+u_{i 4} \partial X_{04}+u_{i 5} \delta X_{05}+u_{i 6} \delta X_{06} \\
& \quad=X_{0 i}+\delta X_{0 i}, \quad i=1,3,4,6 . \tag{8}
\end{align*}
$$

where

$$
\begin{equation*}
u_{i j}=\frac{\partial X_{i}}{\partial X_{0 j}}-\frac{\partial X_{2}}{\partial X_{0 j}} \frac{f_{i}}{f_{2}}, \quad i=1,3,4,6 \tag{9}
\end{equation*}
$$

('variations at the crossing'; Markellos, 1977)
If we assume X_{04} constant or equivalently $\delta X_{04}=0$, Equations (8) become

$$
\begin{align*}
& \left(u_{11}-1\right) \delta X_{01}+u_{13} \delta X_{03}+u_{15} \delta X_{05}+u_{16} \delta X_{06}=X_{01}-X_{1} \\
& u_{31} \delta X_{01}+\left(u_{33}-1\right) \delta X_{03}+u_{35} \delta X_{05}+u_{36} \delta X_{06}=X_{03}-X_{3} \\
& u_{41} \delta X_{01}+u_{43} \delta X_{03}+u_{45} \delta X_{05}+u_{46} \delta X_{06}=X_{04}-X_{4} \tag{10}\\
& u_{61} \delta X_{01}+u_{63} \delta X_{03}+u_{65} \delta X_{05}+\left(u_{66}-1\right) \delta X_{06}=X_{06}-X_{6}
\end{align*}
$$

This system is the corrector of the algorithm. It is solved for the corrections δX_{01}, $\delta X_{03}, \delta X_{05}, \delta X_{06}$, which are then added to the corresponding components of the initial state vector to obtain a better approximation to the periodic orbit with period $T+\delta T$. After repeated applications to the corrector we find (assuming convergence) the periodic (to the desired accuracy) solution characterized by the value X_{04} which is kept constant during the correction process. We then proceed to a single application of the predictor:

$$
\begin{align*}
& \left(u_{11}-1\right) \Delta X_{01}+u_{13} \Delta X_{03}+u_{15} \Delta X_{05}+u_{16} \Delta X_{06}=-u_{14} \Delta X_{04}, \\
& u_{31} \Delta X_{01}+\left(u_{33}-1\right) \Delta X_{03}+u_{35} \Delta X_{05}+u_{36} \Delta X_{06}=-u_{34} \Delta X_{04}, \tag{11}\\
& u_{41} \Delta X_{01}+u_{43} \Delta X_{03}+u_{45} \Delta X_{05}+u_{46} \Delta X_{06}=\left(1-u_{44}\right) \Delta X_{04}, \\
& u_{61} \Delta X_{01}+u_{63} \Delta X_{03}+u_{65} \Delta X_{05}+\left(u_{66}-1\right) \Delta X_{06}=-u_{64} \Delta X_{04} .
\end{align*}
$$

This predictor is designed to obtain the approximate initial state vector $\mathbf{X}_{0}+\Delta \mathbf{X}_{0}$ corresponding to another periodic orbit (along the family), characterized by the value $X_{04}^{*}=X_{04}+\Delta X_{04}$, where the 'increment' $\Delta \mathbf{X}_{04}$ is arbitrary but small so that convergence of the subsequent application of the corrector is secured. The values of the 'sensitivities' $u_{i j}$ involved in Equations (10) and (11) are computed from relations (9), where the 'variations' $\partial X_{i} / \partial X_{0 j}$ are known through numerical integration of the linear variational Equations:

$$
\frac{\mathrm{d} V}{\mathrm{~d} t}=P V
$$

where
and

$$
V=\left(v_{i j}\right)=\left(\partial X_{i} / \partial X_{0 j}\right)
$$

$$
\boldsymbol{P}=\left(\frac{\partial f_{i}}{\partial x_{j}}\right), \quad i, j=1, \ldots, 8
$$

3. Stability

If \mathbf{X}_{0} is the vector, in phase space, corresponding to a periodic orbit and $\mathbf{X}_{0}+\delta \mathbf{X}_{0}$ is the vector of a neighboring orbit corresponding to the same value of the energy and angular momentum integrals, then a transformation T is constructed which transforms the initial state X_{0} to the state X when the orbit crosses the surface of section $X_{2}=Y=0$ for the second time (simple orbits). This transformation is expressed as
where

$$
\begin{equation*}
\mathbf{X}=\boldsymbol{\sigma}\left(\mathbf{X}_{0}\right) \tag{13}
\end{equation*}
$$

$$
\begin{equation*}
\boldsymbol{\sigma}=\left(\sigma_{1}, \sigma_{3}, \sigma_{4}, \sigma_{6}\right) \tag{14}
\end{equation*}
$$

After linearization, the transformation (13) is written as
where

$$
\begin{equation*}
\delta \mathbf{X}=A \delta \mathbf{X}_{0} \tag{15}
\end{equation*}
$$

$$
\begin{align*}
& \delta \mathbf{X}=\left(\delta X_{1}, \delta X_{3}, \delta X_{4}, \delta X_{6}\right)^{T}, \\
& \delta \mathbf{X}_{0}=\left(\delta X_{01}, \delta X_{03}, \delta X_{04}, \delta X_{06}\right)^{T} \tag{16}
\end{align*}
$$

and A is the 4×4 matrix with elements the first partial derivatives of the functions (σ_{1}, $\sigma_{3}, \sigma_{4}, \sigma_{6}$) with respect to the initial conditions - i.e.,

$$
\begin{equation*}
A=\left(\alpha_{i j}\right)=\left(\frac{\partial \sigma_{i}}{\partial X_{0 j}}\right), \quad i, j=1,3,4,6 \tag{17}
\end{equation*}
$$

The conditions for stability are:
where

$$
\begin{equation*}
\Delta>0, \quad|p|<2, \quad|q|<2 \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta=\alpha^{2}-4(\beta-2), \quad p=\frac{1}{2}(\alpha+\sqrt{\Delta}), \quad q=\frac{1}{2}(\alpha-\sqrt{\Delta}) \tag{19}
\end{equation*}
$$

$$
\begin{align*}
\alpha= & -\left(\alpha_{11}+\alpha_{33}+\alpha_{44}+\alpha_{66}\right) \tag{20}\\
\beta= & \left|\begin{array}{ll}
\alpha_{11} & \alpha_{13} \\
\alpha_{31} & \alpha_{33}
\end{array}\right|+\left|\begin{array}{ll}
\alpha_{11} & \alpha_{14} \\
\alpha_{41} & \alpha_{44}
\end{array}\right|+\left|\begin{array}{ll}
\alpha_{11} & \alpha_{16} \\
\alpha_{61} & \alpha_{66}
\end{array}\right| \\
& +\left|\begin{array}{ll}
\alpha_{33} & \alpha_{34} \\
\alpha_{43} & \alpha_{44}
\end{array}\right|+\left|\begin{array}{ll}
\alpha_{33} & \alpha_{36} \\
\alpha_{63} & \alpha_{66}
\end{array}\right|+\left|\begin{array}{ll}
\alpha_{44} & \alpha_{46} \\
\alpha_{64} & \alpha_{66}
\end{array}\right|, \tag{21}
\end{align*}
$$

(Hadjidemetriou, 1975). The elements $a_{i j}$ can be determined as functions of the elements $v_{i j}$ of the 'variational' matrix from the expressions

$$
\begin{align*}
& a_{1 i}=\left(v_{1 i}-\frac{x_{4}}{x_{5}} v_{2 i}\right)+\left(v_{15}-\frac{x_{4}}{x_{5}} v_{25}\right) D_{i 5}+\left(v_{18}-\frac{x_{4}}{x_{5}} v_{28}\right) D_{i 8}, \\
& a_{3 i}=\left(v_{3 i}-\frac{x_{6}}{x_{5}} v_{2 i}\right)+\left(v_{35}-\frac{x_{6}}{x_{5}} v_{25}\right) D_{i 5}+\left(v_{38}-\frac{x_{6}}{x_{5}} v_{28}\right) D_{i 8}, \\
& a_{4 i}=\left(v_{4 i}-\frac{\dot{x}_{4}}{x_{5}} v_{2 i}\right)+\left(v_{45}-\frac{\dot{x}_{4}}{x_{5}} v_{25}\right) D_{i 5}+\left(v_{48}-\frac{\dot{x}_{4}}{x_{5}} v_{28}\right) D_{i 8}, \\
& a_{6 i}=\left(v_{6 i}-\frac{\dot{x}_{6}}{x_{5}} v_{2 i}\right)+\left(v_{65}-\frac{\dot{x}_{6}}{x_{5}} v_{25}\right) D_{i 5}+\left(v_{68}-\frac{\dot{x}_{6}}{x_{5}} v_{28}\right) D_{i 8}, \\
& (i=1,3,4,6) \tag{22}
\end{align*}
$$

where

$$
\begin{aligned}
& D_{i 5}=-\left(F_{1 i} F_{28}-F_{2 i} F_{18}\right) / D \\
& D_{i 8}=-\left(F_{2 i} F_{15}-F_{1 i} F_{25}\right) / D, \\
& D^{\prime}=F_{15} F_{28}-F_{18} F_{25}
\end{aligned}
$$

and

$$
\begin{equation*}
F_{1 j}=\frac{\partial F_{1}}{\partial x_{j}}=\frac{\partial E}{\partial x_{j}}, \quad F_{2 j}=\frac{\partial F_{2}}{\partial x_{j}}=\frac{\partial P}{\partial x_{j}}, \quad j=1,3,4,6 \tag{24}
\end{equation*}
$$

with $F_{1}=E$ and $F_{2}=P$ denoting, respectively, the energy and angular momentum integrals.
TABLE I
The series $A_{20}^{g}\left(\mu=0.25, \dot{x}_{0}=-0.17292\right)$

A / A	m_{3}	x_{01}	x_{03}	x_{05}	x_{06}	E	T	p	q
1	0.000103	-2.33048	0.749905	1.90139	-0.000337	-0.093803	12.4773	-1.998	-39.19
2	0.001203	-2.32672	0.749145	1.89876	-0.002430	-0.094241	12.3959	-2.037	-36.25
3	0.007607	-2.31680	0.746023	1.89317	-0.008955	-0.096140	12.1764	-2.316	-35.33
4	0.014009	-2.31258	0.743557	1.89264	-0.013446	-0.097700	12.0441	-2.629	-36.98
5	0.021809	-2.31058	0.740923	1.89486	-0.017850	-0.099396	11.9264	-3.075	-39.80
6	0.036509	-2.31138	0.736489	1.90284	-0.024301	-0.102142	11.7723	-3.983	-46.22
7	0.050629	-2.31501	0.732556	1.91394	-0.029892	-0.104733	11.6526	-5.030	-54.27
8	0.060149	-2.31833	0.729997	1.92195	-0.033118	-0.106298	11.5880	-5.759	-60.14
9	0.078649	-2.32598	0.725141	1.93860	-0.038778	-0.109138	11.4803	-7.234	-73.04
10	0.087649	-2.33300	0.722809	1.94704	-0.041305	-0.110 .434	11.4339	-7.996	-80.06
11	0.100269	-2.33609	0.719556	1.95911	-0.044647	-0.112165	11.3737	-9.119	-90.75
12	0.11689	-2.34171	0.716622	1.97017	-0.047492	-0.113645	11.3230	-10.16	-101.3
13	0.119689	-2.34574	0.714556	1.97801	-0.049404	-0.114642	11.2891	-10.93	-109.3
14	0.134089	-2.35307	0.710838	1.99217	-0.052676	-0.116338	11.2313	-12.37	-124.7
15	0.150109	-2.36131	0.706676	2.00797	-0.056093	-0.118088	11.1706	-14.07	-143.9
16	0.160569	-2.36671	0.703940	2.01829	-0.058211	-0.119155	11.1327	-15.25	-157.6
17	0.170189	-2.37167	0.701409	2.02777	-0.060084	-0.120083	11.0989	-16.38	-171.2
18	0.179809	-2.37662	0.698862	2.03723	-0.061891	-0.120961	11.0659	-17.56	-185.5
19	0.185809	-2.37970	0.697265	2.04312	-0.062985	-0.121484	11.0457	-18.32	-195.0
20	0.190009	-2.38185	0.696143	2.04723	-0.063737	-0.121838	11.0318	-18.87	-201.8
21	0.194849	-2.38432	0.694846	2.05196	-0.064589	-0.122234	11.0159	-19.52	-209.9
22	0.2000	-2.38694	0.693459	2.05699	-0.065480	-0.122642	10.9992	-20.21	-218.9

Fig. la-c. Typical orbits of the series A_{20}^{g} with the initial conditions: 1(a). $x_{01}=-2.33048, x_{03}=$ $0.749905, E=-0.093803 ; 1(\mathrm{~b}) . x_{01}=-2.33609, x_{03}=0.719556, E=-0.112165 ; 1$ (c). $x_{01}=$ $-2.38694, x_{03}=0.693459, E=-0.122642$.

4. Results

Following the considerations and techniques described in the previous paragraphs, we started the computation of asymmetric periodic solutions of the general three body problem using initial conditions of such solutions of the restricted problem given by Markellos (1977) and Hénon (1965) for values of the mass parameter $\mu=0.25$ and $\mu=$ 0.5 . This can be done since Hadjidemetriou (1975) has proved that almost all the periodic orbits of the restricted problem can be continued to the general problem by increasing the mass of the originally massless body.
(i) Series A_{20}^{g} for $\dot{x}_{0}=-0.17292$.

The starting point ($x_{0}=-2.3310, \dot{x}_{0}=-0.17292, \dot{y}_{0}=1.9017$) belongs to the bifurcations series A_{20} given in Markellos (1977). The series presented here is formed by gradual increase of the mass m_{3} of the third body, while μ is kept constant ($\mu=0.25$). In Table I we list the initial conditions, the energy constant E, the period T and the stability parameters p and q of the selected orbits of this series.

The period of the orbits changes along the family decreasing from $T \simeq 12.4773$ to $T \simeq$ 10.9992. Also the energy constant varies along the family from $E \simeq-0.09380$ to $E \simeq$ -0.12264 . The values of the stability parameter p and q in the last two columns imply that no stable orbits exist in the part of the series A_{20}^{g} we computed. In Figures 1(a)-(c) selected orbits of this series are presented in the (x, y) plane. In Figures 3 and 4 projections of the series A_{20}^{5} characteristic curve, in the (m_{3}, x_{01}) and (m_{3}, x_{05}) planes, are given.

Fig. 2. Projection of the characteristic of the family A_{20}^{g} on the $\left(E, x_{01}\right)$ plane.

Fig. 3. Projections of the characteristics of the series A_{10}^{g} and A_{20}^{g} on the (m_{3}, x_{01}) plane.

Fig. 4. Projections of the characteristics of the series A_{10}^{g} and $A^{g}{ }_{20}$ on the (m_{3}, x_{05}) plane.
(ii) Family A_{2}^{g} for $m_{3}=0.2$.

This is a family of asymmetric periodic orbits with starting point the member of the series A_{20}^{g} which corresponds to $m_{3}=0.2$. The initial condition which varies in the predictor step and is kept constant during the corrector step of the algorithms is \dot{x}_{0}. The initial velocity of the third particle decreases, reaches a local minimum and then increases to the infinity.

Numerical data for this family are given in Table II. As it is seen in this table the period T varies in a large interval. All orbits are unstable since there is no member of the family for which both inequalities $|p|<2,|q|<2$ hold.

In Figure 2 we illustrate the characteristic curve of this family in the (E, x_{01}) plane. The shape of the orbits of this family are very similar to the shape of the corresponding orbits of the series A_{20}^{g}.
(iii) Series $A_{10}{ }_{10}$ for $\dot{x}=0.17430$.

This series is generated from an orbit ($x_{0}=-2.3214, \dot{x}_{0}=0.17430, \dot{y}_{0}=1.8922$), member of the bifurcation series A_{10} of the restricted problem given in Markellos (1977). The series is also formed by gradual increase of the mass m_{3} while μ is kept constant ($\mu=0.25$).

In Table III the initial conditions, the energy constant, the period T and the values of the stability parameters p and q of selected orbits of this series are listed. All orbits are unstable.

In Figures 3 and 4 projections in the $\left(m_{3}, x_{01}\right)$ and (m_{3}, x_{05}) planes of the characteristic curve of this series are presented.
(iv) Series b_{10}^{g} for $\dot{x}_{0}=-0.312$ and family b_{1}^{g} for $m_{3}=0.0052$.

We used as starting point an orbit of the restricted problem given by Hénon (1965) for $\mu=0.5$. This orbit is a member of the family bifurcated from the family b of symmetric periodic orbits originated from the collinear equilibrium point L_{3}. The initial conditions we started from, are $x_{0}=-1.7156, \dot{x}_{0}=-0.0312, E=2.03$ for $m_{3}=0$. Increasing the value of m_{3} from zero to about 0.0052 we obtain a series of periodic solutions. Numerical data for this series are given in Table IV. In Table V part of a family of periodic orbits which is continuation of the orbit with initial conditions given in the last entry of the Table IV, is given for $m_{3}=0.0052$. This series contains stable and unstable members. Illustration of an orbit of this family is given in Figure 5.
(v) Series c_{10}^{g} for $\dot{x}_{0}=0.0245$ and family c_{1}^{g} for $m_{3}=0.05$.

The starting point is an orbit of the restricted problem given by Hénon (1965) for $\mu=$ 0.5 . This orbit is a member of the bifurcated from the family c of symmetric periodic orbits originated from the collinear equilibrium point L_{1}.

The generating initial conditions for this series are: $x_{0}=-0.3057, \dot{x}_{0}=0.0245$,
TABLE II

A / A	x_{01}	x_{03}	x_{04}	x_{05}	x_{06}	E	T	p	q
1	-5.42388	0.804888	-0.093180	5.06404	0.063152	-0.043549	59.3443	3.957	-205.5
2	-4.94283	0.798672	-0.099679	4.57029	0.068935	-0.047732	51.4879	2.192	-191.7
3	-4.53615	0.792384	-0.106680	4.15191	0.074868	-0.051992	45.0386	0.629	-179.7
4	-3.74235	0.776020	-0.127679	3.33277	0.094311	-0.063166	32.9453	-2.232	-152.4
5	-3.01328	0.752251	-0.166679	2.58270	0.106695	-0.079678	22.2347	-4.125	-112.5
6	-2.82401	0.743318	-0.181679	2.39151	0.106607	-0.086081	19.4884	-4.821	-102.6
7	-2.71663	0.737352	-0.190679	2.28477	0.103845	-0.090496	17.9356	-5.455	-99.42
8	-2.55464	0.726563	-0.203679	2.12818	0.092689	-0.098554	15.5751	-7.023	-100.8
9	-2.42706	0.715509	-0.210809	2.01312	0.070922	-0.107148	13.6167	-9.230	-112.8
10	-2.39947	0.712525	-0.211237	1.99052	0.062586	-0.109506	13.1536	-9.963	-118.2
11	-2.37112	0.708974	-0.210620	1.69933	0.050786	-0.112315	12.6368	-16.93	-128.3
12	-2.33072	0.699861	-0.200420	1.95689	0.054135	-0.119303	11.4916	-14.40	-160.1
13	-2.36418	0.694373	-0.180020	2.02400	-0.048940	-0.122500	11.0215	-18.75	-204.4
14	-2.38695	0.693459	-0.172920	2.05699	-0.065480	0.122041	10.9992	-20.22	-218.9
15	-2.39050	0.693356	-0.171920	2.06196	-0.067760	-0.122634	10.9993	-20.43	-220.9
16	-2.40517	0.693004	-0.168020	2.08206	-0.076561	-0.122547	11.0103	-21.26	-228.9
17	-2.42249	0.692675	-0.163220	2.10840	-0.087221	-0.122320	11.0399	-22.31	-238.7
18	-2.45515	0.692387	-0.156620	2.14751	-0.101647	-0.121810	11.1085	-23.82	-252.5
19	-2.61518	0.692775	-0.130020	2.34253	-0.158522	-0.117693	11.6983	-31.03	-312.5
20	-3.04762	0.697430	-0.088020	2.83131	-0.250358	-0.104777	13.9447	-49.98	-442.6
21	-3.82257	0.705469	-0.050200	3.66680	-0.339299	-0.085830	18.8456	-88.30	-659.4
22	-5.27009	0.715245	-0.025620	5.15853	-0.420948	-0.063478	29.6942	-176.6	-1107
23	-6.92307	0.721596	-0.014220	6.84028	-0.467523	-0.048778	44.1405	-300.5	-1726
24	-7.67275	0.723798	-0.011120	7.68948	-0.482906	-0.043628	52.2050	-371.4	-2090
25	-8.18670	0.724738	-0.009920	8.11746	-0.489381	-0.041418	56.4487	-409.1	-2287

TABLE III

A / A	x_{01}	x_{03}	x_{05}	x_{06}	x	E	T	p	q
$\mathbf{1}$	0.000103	-2.32150	0.749959	1.89229	0.000042	-0.093750	12.3018	-1.938	-15.07
2	0.000503	-2.32160	0.749793	1.89243	0.000138	-0.093880	12.3183	-1.960	-17.70
3	0.001503	-2.32101	0.749331	1.89207	0.000018	-0.094166	12.3235	-2.003	-22.48
4	0.007625	-2.31336	0.746429	1.88762	-0.004704	-0.095946	12.1895	-2.254	-30.96
5	0.010425	-2.31097	0.745272	1.88682	-0.006772	-0.09672	12.1287	-2.383	-32.49
6	0.015945	-2.30802	0.743209	1.88692	-0.010358	-0.097985	12.0285	-2.663	-35.07
7	0.024965	-2.30629	0.740215	1.89001	-0.015255	-0.099916	11.9025	-3.178	-39.23
8	0.034965	-2.30689	0.737195	1.89577	-0.019833	-0.101863	11.7952	-3.809	-44.20
9	0.059650	-2.31076	0.732697	1.90767	-0.026062	-0.104704	11.6622	-4.929	-53.15
10	0.069650	-2.31423	0.730002	1.91609	-0.029506	-0.106352	11.5937	-5.661	-59.43
11	0.075980	-2.32034	0.726044	1.92954	-0.034223	-0.108679	11.5041	-6.840	-69.83
12	0.085985	-2.32481	0.723443	1.93885	-0.037127	-0.110141	11.4508	-7.669	-77.49
13	0.100005	-2.33142	0.719818	1.95222	-0.040938	-0.12080	11.322	-8.886	-89.18
14	0.110050	-2.33632	0.717239	1.96190	-0.043499	-0.113390	11.3368	-9.796	-98.30
15	0.120005	-2.34131	0.714659	1.97166	-0.045944	-0.114641	11.2936	-10.74	-108.1
16	0.130050	-2.34636	0.712073	1.98142	-0.048285	-0.115835	11.2524	-11.72	-118.6
17	0.140425	-2.35169	0.709370	1.99173	-0.050621	-0.117019	11.2112	-12.79	-130.3
18	0.150025	-2.35660	0.706869	2.00120	-0.052690	-0.118056	11.1746	-13.82	-141.9
19	0.160245	-2.36185	0.704192	2.0128	-0.054808	-0.119104	11.1369	-14.90	-155.2
20	0.170445	-2.36709	0.701505	2.02132	-0.056841	-0.120094	11.1004	-16.15	-169.3
21	0.185465	-2.37478	0.697515	2.03606	-0.059697	-0.121448	11.0484	-18.01	-191.9
22	0.195085	-2.37968	0.694936	2.04547	-0.061445	-0.122250	11.0160	-19.26	-207.7
23	0.2	-2.38217	0.693612	2.05026	-0.062315	-0.122641	11.9999	-19.93	-216.1

TABLE IV
The series $b_{10}^{g}\left(\mu=0.5, \dot{x}_{0}=-0.0312\right)$

A / A	m_{3}	x_{01}	x_{03}	x_{05}	x_{06}	E	T	p	q
1	0.000001	-1.71557	0.500	1.47855	0.0	-0.124999	5.8040	0.611	-1.775
2	0.000203	-1.71684	0.500100	1.47974	0.000026	-0.124947	5.8129	0.608	-1.777
3	0.01001	-1.72209	0.500490	1.48448	0.000130	-0.124737	5.8479	0.596	-1.786
4	0.003600	-1.73940	0.501769	1.50014	0.000464	-0.124041	5.9645	0.570	-1.817
5	0.005207	-1.75022	0.502549	1.50994	0.000666	-0.123601	6.0379	0.560	-1.835

TABLE V
The family $b_{1}^{g}(\mu=0.5, m$

A / A	x_{01}	x_{03}	x_{04}	x_{09}	x_{06}	E	T	p	q
1	-1.75022	0.502549	-0.0312	1.50994	0.000666	-0.123601	6.0378	0.560	-1.835
2	-1.75069	0.50668	-0.0433	1.50760	0.009623	-0.123578	6.0450	1.537	-1.831
3	-1.5186	0.502761	-0.6290	1.50230	0.005333	-0.123367	6.0957	1.759	-1.854
4	-1.75391	0.503038	-0.0842	1.49470	0.002380	-0.123067	6.1618	1.516	-1.888
5	-1.75573	0.503289	-0.0970	1.48955	0.003078	-0.122797	6.2148	2.081	-1.914
6	-1.75689	0.503448	-0.1034	1.48694	0.003501	-0.122628	6.2459	2.390	-1.927

TABLE VI

A / A	m_{3}	x_{01}	x_{03}	x_{05}	x_{06}	E	T	q
1	0.0001	-0.262428	0.500098	1.79296	-0.000007	-0.125026	5.2664	-0.432
2	0.001025	-0.263136	0.500976	1.79256	-0.000067	-0.125265	5.2753	-0.237
3	0.010027	-0.270154	0.509564	1.78925	-0.000698	-0.127526	5.3642	0.880
4	0.021229	-0.279209	0.520295	1.78668	-0.001605	-0.130147	5.4791	-1.068
5	0.030031	-0.286670	0.528785	1.78619	-0.002449	-0.132053	5.5745	2.485
6	0.05	-0.305990	0.548563	1.79475	-0.005289	-0.135782	5.8335	-1.769
7	0.058437	-0.319484	0.557989	1.81988	-0.008631	-0.136739	6.0517	3.440

TABLE VII
The family $C_{1}^{g}(\mu=0.5$,

A / A	x_{01}	x_{03}	x_{04}	x_{05}	x_{06}	E	T	q	
$\mathbf{1}$	0.306010	0.548580	0.026	1.79473	-0.005623	-0.135767	5.8335	3.629	-1.966
2	0.306160	0.548703	0.035	1.79455	-0.007668	-0.135655	5.8495	4.999	
3	0.306269	0.548789	0.040	1.79446	-0.008845	-0.135577	5.8594	5.946	
4	0.306555	0.549006	0.050	-1.955					
5	0.306966	0.549289	0.060	1.79431	-0.011794	-0.135381	5.8841	8.242	-1.952
6	0.307545	0.549657	0.070	1.79474	-0.014009	-0.135123	5.9165	11.087	-1.963
7	0.308438	0.550150	0.080	-0.017036	-0.134787	5.9591	$\mathbf{1 4 . 5 1 2}$		
8	0.309637	0.550705	0.088	1.79602	-0.020634	-0.134337	6.0163	18.523	-1.984

Fig. 5. Typical orbit member of the family b_{1}^{g}.

Fig. 6. Typical orbit member of the family c_{1}^{g}.
$E=2.373$. For $\dot{x}_{0}=x_{04}=0.245=$ const. we vary gradually the value of the third body m_{3} and compute a number of assymmetric periodic orbits for different values of m_{3}. The initial conditions thus obtained, are listed in Table VI. The last periodic solution included in Table VI is continued for $m_{3}=$ constant, to a family of such solutions. The numerical results obtained are listed in Table VII. In Figure 6 illustration of an orbit of the family $c_{1}^{\underline{E}}$ is given.

References

Hadjidemetriou, J. D.: 1975, Celes. Mech. 12, 155.
Hénon, M: 1965, Ann. Astrophys. 28, 992.
Hénon, M.: 1974, Celes. Mech. 6, 322.
Markellos, V. V.: 1977, Monthly Notices Roy. Astron. Soc. 180, 103.
Taylor, D.B.: 1983, Celes. Mech. 29, 51.

