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Abstract. A new approach to the study of future dynamical evolution of the Neptune-Triton system 
is here presented. After the analytical development of the model, the final results are compared with 
those drawn by previous works on the same subject. 

1. General 

The dynamical evolution of Neptune-Triton system was studied following a general path 
of analysis, concerning the planet-satellite system, by some authors (Goldreich and Soter, 
1966). Furthermore, McCord (1966) starting from a previous study of MC Donald 
(1964), worked out the differential equations which gave the changes of orbital elements 
of the satellite as functions of the perturbing force field arising from tidal effects. Hence, 
the solution of the problem provided the complete dynamical history of the system. 

In the present paper a quite different approach is proposed in order to obtain the 
analysis of the system evolution; the results partially confirm those of McCord and 
partially provide some improvements in the description of this astronomical 
phenomenon. 

2. First Approach to the Model 

The system under study is schematically outlined in Figure 1. The two-body problem is 
perturbated by tidal effects on Neptune. The planet is to be considered as an extended 
deformable body; and its shape will be regarded as that of a prolate spheroid an account 
of tidal action exerted by Triton (a mass-point in the model). The motion of this last 
mass-point T will be considered around the mass centre of Neptune 0. The polar co- 
ordinates of T, in the orbital plane, are Y and CL The motion of Triton is retrograde and 
the osculating orbit is assumed circular, owing to its present very low eccentricity. 
Neptune’s own prograde rotation motion is described by the angle $ between the 
spheroid semi-major axis and x-axis. In fact the plane of Triton’s orbit is not perpendicu- 
lar to Neptune’s spin axis; this will be considered later. 

Since the satellite’s revolution period is longer than the planet’s rotation period, the 
lagging tide is carried ahead of the satellite by an angle e. The relation of the tidal dissi- 
pation parameter Q to this lag angle E is of MacDonald, given by 

Q=‘,L 
tan2e - 2e ’ 
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Fig. 1. Qualitative sketch of the Neptune-Triton system geometry. 

Starting from the to-day system situation there is an action of the tidal torque to retard 
Neptune’s rotation rate and to exert a tangential force (of resisting type) on Triton. The 
calculation of this tidal torque C provides the formula (cf. Goldreich, 1966) 

(2) 

in which 
G = constant of gravitation 
m 2 = Triton’s mass, 
A = Neptune’s average radius, 
a = Triton’s osculating orbit radius. 

A simple differential equation is established expressing the energy balance. If V, is the 
tangential component of Triton’s velocity, in the unperturbed Keplerian motion, i.e., 
v, = JG(rnr + mz)/a z dm (ml = Neptune’s mass), the product FRTv, dt is the 
work done by resisting force FRT = C/a (exerted on Triton by tidal effects) during the 
time interval dt. This work is done at the expense of the binary system bounding energy. 
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Therefore, the equation is 

“’ m2 A5 -__ 
Q a’Ii2 
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(3) 

Differentiation of Kepler’s third law n2a3 = Gm, gives the expression 

dn 3nda 
dt= 2adt’ 

(4) 

which, combined with (3) provides the differential equation 

dn 27 ASm2 

iii= 4 -Ge,8. 
(5) 

Equations (3) and (5) represent the simplest approximate relationships which contain 
secular changes of osculating radius a and of satellite mean motion n. 

The present model endeavours to improve considerably Equation (3). More precisely, 
the angle E is considered, instead constant during the evolution, variable and also Q-’ 
which becomes a certain function f(e). The choice of functionf(e) is achieved by means 
of the calculus of variations. In other words, it is assumed that during a complete 
evolution of the motion of the system - till Triton plunges into Neptune - the energy 
dissipation into heat, because of tidal effects, will be a minimum. On the basis of this 
principle, a fundamental differential equation, which describes the secular variations of a, 
is obtained. The equation solution allows to point out the basic features of the evolution 
under study. 

3. Analytical Development of the Model 

At any instant or epoch t the power dissipation of the system is given by 

p(t) = Cz +&is, 

in which 
@ = rotation angle of Neptune (Figure I), 
C = tidal torque, 
F RT = tangential force on Triton (in modulus), 
v, = Triton tangential velocity (in modulus). 
Using the (2), since v, = flrn Ja, 

where E = @ - (Y. Then the term C(d@/dt) becomes 

(6) 

c$ = c&Y+E) = c$+c$. 
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Furthermore, since v, = a(da/dt), we will have 

Writing de/dt so that 

(7) 

(8) 

and substituting (8) into (7) we have 

The dissipated power p, as a function of CY, will be given by 

~(a) = C&=I$ = K,fi-$ 2f(e)+f(4; [ 1. (9) 

This remains substantially constant during a unique revolution, Let K be the total num- 
ber of Triton’s revolutions till the future encounter with Neptune; furthermore pi is the 
dissipation power relevant to the i-th revolution having period Ti. The total dissipated 
energy will be 

fipiTi = Ed. 
1 

The time interval of the complete evolution of the system is 

Then we will have 

Pm = i$ipiTi (10) 

in which P, is the average dissipated power during the motion complete evolution. From 
(10) we deduce that 

P,r = E,. (11) 

Let us apply not the principle just said. Among all the evolution configurations, logically 
possible and of time duration 7, the natural one is characterized by the minimum of Ed, 
i.e., following the (1 l), of P,. This last quantity is expressed by 

P, = KIfi--- yf(f) 
p2 1 &j 

' (1% 

where da = -do owing to retrograde motion of Triton. 
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The statement is very similar of that in many other fields of physical sciences. In fact, 
for instance, in dynamics there is the Gauss’ minimum constraint principle. Also in the 
theory of electricity this principle is demonstrated: “When a steady current flows 
through a network of conductors, the currents are distributed in such a way that the rate 
of generation of heat in the network is a minimum” (Jeans, 1948). 

The integral 1, which will be minimized choosing the extremal function f(e), is 
provided by the expression 

because a is a function of 13 and 6 = (de/db). 
The Euler-Lagrange equation yields 

Let us calculate the relative terms: 

aF -= 1 
ae 

d f(e) c + 2 df(e) 
de a*“’ de a15/2 ’ 

aF f(f) -= 
ai a15/2 ’ 

= 

F(E, t, 8) da, (13) 

Equation (14) becomes 

and then 

1 df(e) E’ + 2 df(e) 1 _ df(e) . 1 
a”‘* de de al”’ de E pi73 -f(E) 

df (f) 15 1 da ~ = --- 
de 4 a dS. 

(14) 

(15) 

(16) 

(17) 

The extremal function f(e) satisfies the differential Equation (17). Coming back to (3) in 
paragraph 2 and putting f(e) in place of Q-’ and also n dt = d6, K. = g(m2/ml)A5, we 
obtain 

f(e) = -gg. 
0 

We can establish then the following system of differential equations: 
\ 

df(c) 1.51da de __ = ---- 
d6 4 a d29dS’ 

> 

f(e) = -Eg, 
I 

(19) 

(20) 
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in which the unknown functions f(e) and a(O) appear. By elimination of function f(e), 
we deduce this differential equation in the unknown function a(8), in terms of the 
derivative de/d8 as 

Let us study now the behaviour of the term de/di+ to eliminate; and consider the angle 
E and its nature. The relative mean motion n,, resulting from Triton’s retrograde motion 
and from angular velocity of Neptune’s rotation is simply 

nr = n+wN, 

in which 
n = Triton’s mean motion, 

(22) 

oN = angular velocity of Neptune’s rotation. 
Instead of considering the angular lag, after which the maximum of tide is felt on 
Neptune, let us point out the corresponding time delay At. Then we shall have 

e = n,At. (23) 

Thus a new concept is introduced namely, as a first approximation, At is considered 
constant during the entire evolution of motion. Then we shall write 

de 
- = At-$wN+n) = At 
dt 

Using the following formula which provides the rate of despin of a planet due to tidal 
torque from its satellite (Goldreich, 1966) 

d‘JN 9 rni A3 - = --G-- 
dt 4 mlPQa6’ 

in which the numerical coefficient fl is assumed to be f, we get 

de - = At 
dt 

. 

(25) 

(26) 

In the expression (26) we also used the (5) of section 2. From the (26) it should be very 
easy to deduce de/d9, however it is better, in view of the successive calculations, to trans- 
form (21) in order to mean t as independent variable. The final result is 

in which 
k 

1 
= 27 At 112 4 5 G m;1i2m2A5, 

(27) 
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and other symbols have already been defined. 
Equation (27) is the desired fundamental equation which describes the secular 

variation of a. The assumptions underlying its derivation are: 
(1) the condition of minimum energy dissipation during the entire evolution of 

motion, 
(2) the time delay At is considered constant as well as Q (equal to inital value), within 

the expressions of kr and kz. 
As regards to point (2) it is assumed Q constant, instead of equal to I/f(e) as it should be 
rigorously. It is to be noted that the form of Equation (27), and the initially high value of 
Q (order of 104)allow to consider the resulting error to be small, owing to the minor 
influence of third term or (27). In any case this is the risk for the present model; in fact 
there is a compromise between a not too complicated differential equation and a very 
rigorous analytical description of the physical problem. 

4. Solution of Equation (27) and Discussion of the Obtained Results 

Let us integrate (27) after the substitution of numerical values concerning Triton- 
Neptune system. Then we have: 

ml = 10.6 x 10z8g A = 22.4 x 108cm 

m2 = 3.4 x 1026g at = 57 x 10-3s 

G = 6.67 x 10e8 cm3g-’ s-* Q = 7.2 x 104. 

It was assumed, as central value, Neptune’s Q equal to 7.2 x lo4 (Goldreich, 1966). 
Putting 

x 2, 
to 

y=;, 

in which to = lo8 yr = 3 1.54 x 1016 s, the (27) is rewritten in the normalized form 

1.76 dy 5.9 _ dy ----.-lo 3dx = 0. 
y’3 dx y” (28) 

For x = 0, we have y = 15.8 and also dy/dx = - 0.127 [related to before said central 
value Q in connection to formula (3)]. The analytical details of solution method are 
reported in Appendix. The results of integration are plotted in Figure 2 (assuming the 
central value of Q). It should be noted that some authors consider this central value low 
(Farinella et al., 1980). In the same Figure 2 there is the graph deriving from McCord cal- 
culations (1966), with the same Q value. Furthermore the Table I collectes the time 
intervals 7 necessary to Triton to plunge into Neptune, corresponding to the following 
values: f,Q, Q and 1OQ. 

As a first comment, it is to be noted that the present model provides lower values of 
the time interval 7; as a second comment there is an exact proportionality between Q’s 
and 7’s in McCord model, whereas we note a certain deviation from it in the present 
model (more deviation when dissipation is higher). 
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Fig. 2. The future variation of semimajor axis a of Triton’s orbit (in normalized form). A com- 
parison between the models. 

TABLE I 

Values of Q Present model McCord model 

7.2 x lo3 
7.2 x lo4 
7.2 x 10’ 

7 = 2.8 X 108yr 
7=2X109yr 
7 = 2.2 X 10”yr 

7= 1.11 X 109yr 
7= 1.11 X 10”yr 
7= 1.11 X 10”yr 

Since Equation (27) was written with minimal dissipation condition, &lcCord results 
seems to be less reasonable than those of the present model. Indeed the dissipation, 
during the complete evolution, cannot be less than minimum previously fixed. 

As a final observation let us come back to a matter seen in Section 2. Neptune’s spin 
axis is not perpendicular to Triton orbital plane; in fact there is an inclination angle of 
about 21” (Figure 3). The vector anr is split into the two components c&v and QNS. 
The former is the fundamental vector in the considered dynamical phenomenon; the 
latter has no influence in the process. In fact the planetary body, which is distorted by 
tidal effects, is of spheroidal shape (in the first approximation); furthermore this prolate 
spheroid has a symmetry (or revolution) axis directed as 6~~s. The demonstration of this 
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Fig. 3. Qualitative sketch to demonstrate the time-independance of inclination angle i during the 
complete evolution motion. 

fact follows also, starting from another analyticai point of view, from McCord paper; 
indeed in this study the inclination angle is proved to be time-independent during the 
complete evolution motion (McCord, 1966). 

Appendix 

The purpose of this appendix is to illustrate the solution method of Equation (28). Intro- 
ducing the auxiliary variable p defined by 

d2y dp - = -- 
dx2 dyp7 

the (28) becomes 

,~+yg+i+ 5.9 x 1o-3 

Y’l p = 0. 

If p # 0, dividing both members by p we have 

1.76 5.9 x 1O-3 dp+5jp = -13$ 
du Y Y Y” . 

(AlI 
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This is an equation readily integrable, in the unknown function p = p(y), of this type 
(Loiero, 1982) 

Assuming a solution of the following type 

p = Key) ,-bf(y)dy 

we deduce that 

Inserting dp/dy in (A2) we have 

-M(y) e-J”(ywqy) + -e dK(y) -Jil'I(y)dy 

dy 
+ Mj)K(y) e-@(y) dy = Nfjl), 

and then 

K(y) = j AI(‘y) eJMcy) dy dy + Co; 

with C, arbitrary constant of integration. Finally we have 

P= s 
I ,$‘f(Y) dYdy + co 1 e-b’f(y) dy 

SinceM(y) = .5S/y,N(y) = - 1.76/y13 + 5.96/y” 10W3, from (A3) we obtain 

p = g = 0,27y-**- 1.3 1 x 1 o-sy-‘0 + coy-=. 

(A3) 

Therefore we get the p = dy/dx versus y, in the field 1 -G y < 15.8. The constant Co is got 
putting dy/dx = - 0.127 for x = 0; the result for Co is - 0.5 x 106. Then (A4) becomes 

du -zz 0.27 - 1.31 x 10-3y2 - 0.5 x 106y6.5 

dx 
1 

Y 
12 

and this equation can be integrated by numerical or graphical methods. 
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