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Abstract. The Voyager images have shown that Mimas and Enceladus have “regular” shapes, with 
topography of the order of 1% of the diameter. Therefore, we can compare the global shapes of these 
satellites with the corresponding figures of gravitational equilibrium. In the case of Mimas, this com- 
parison rules out a homogeneous interior, but implies the existence of a denser, presumably rocky core 
within this small icy satellite. 

The Saturnian satellites Mimas and Enceladus, with mean radii of about 200 and 250 km 
respectively, represent the first couple of solar system bodies in this size range for which 
detailed images are now available, as obtained during the encounter of the Voyager 
probes with Saturn’s system (Smith et al., 198 1, 1982). These images are of great interest 
because it was not possible to predict in advance whether such objects would have pre- 
sented a regular, gravity-dominated shape close to an equipotential figure, or they would 
have resembled rigid, irregular fragments shaped mainly by their collisional history. Since 
we do not know the solid-state strength of celestial bodies, a similar dilemma occurs for 
all satellites and asteroids a few hundred kilometers in size; the available evidence does 
not allow any unequivocal conclusion since, for instance, the large asteroids seem to have 
nearly-equilibrium shapes (Farinella et al., 1982), whilst Hyperion displays a strongly 
irregular appearance (Smith et al., 1982). 

In the case of Mimas and Enceladus the Voyager images have revealed nearly-spherical, 
regular shapes, with minor topographic features (craters, peaks, ridges, etc.) not higher 
than 5-10 km for Mimas and l-2 km for Enceladus. This topography gives obviously a 
lower limit to the strength of the material forming the surface layer of the satellites. In 
the case of Mimas, this limit is of the order of 5-10 x 106dynes cm-*; since the surface is 
heavily cratered, it is plausible to assume that this gives also a good estimate of the actual. 
value of the strength (because the main factor in limiting the impact-generated topo- 
graphy has been probably the failure of the crust under any too large gravitational load). 
This conclusion is not valid for Enceladus, whose thermal history has clearly affected the 
surface features reducing the topographic relief. At any rate, even if thermal mechanisms 
have reduced the topography in the past, this should cause a better fit to the equilibrium 
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figures; thus, no doubt is possible on the fact that the global shape of both the satellites 
has been moulded by gravitational forces, due to the bodies themselves and (at a minor 
extent) to Saturn. Thus, as suggested originally by Morrison and Burns (1976) and by 
Dermott (1979), we should be able to obtain from the theory of gravitational equilibrium 
figures informations on the physical properties and internal structure of these satellites. 

In the first place, we know that for bodies with a homogeneous interior, the tidal 
deformations due to Saturn’s gravity gradient would give rise to triaxial ellipsoids having 
the longest axis directed toward the planet and the shortest axis normal to the orbit 
plane. These are the so-called Roche figures, described in detail by Chandrasekhar (1969): 
for them, a classical theory allows to derive in an unequivocal way the shape parameters 
(i.e., the differences between the ellipsoid axes) from the knowledge of the density and 
the spin rate of the body. Soter and Harris (1977) applied to the Martian moon Phobos a 
well-known linearized version of this theory, yielding for the deviations from sphericity 
of the satellite’s shape the simple equations 

(a - c) % 3.75 Ci2R/nGp, (1) 

(b - c) z (a - c)/4, (2) 

where a > b > c are the ellipsoid’s semiaxes, fi is the rotational (and orbital) angular velo- 
city of the satellite, R = (abc) 1’3 is its mean radius, p is its density and G is the gravita- 
tional constant. This linearized treatment is accurate to within few percents as long as 
Q2/rGp < 0.02. If we assume for the Saturnian satellites the densities derived by Tyler et 
al. (1982) from the Voyager radio-tracking observations, i.e., 1.44 + 0.18gcms3 for 
Mimas and 1.13 + 0.55gcm-3 for Enceladus, a’/nGp lies in the range from 0.0175 to 
0.0225 for Mimas and from 0.0080 to 0.0231 for Enceladus. Hence, at least for the 
smaller density values, we have to correct for non-linear effects by applying 
Chandrasekhar’s full theory; in this case, by using the mean radii obtained by Davies and 
Katayama (1983) we get that (a-c) ranges from 13.8 to lS.Okm for Mimas and from 
7.6 to 23.4 km for Enceladus (the large- uncertainty is due in this case to the poorly deter- 
mined density). The corresponding values of (b - c) are too small for a meaningful com- 
parison with the Voyager images, because of the limited resolution (2.2 to 14.0 km for 
Mimas and 1.9 to 8.2 km for Enceladus) and also of the topographic reliefs. 

Before comparing the predictions of the Roche model with the Voyager data, we have 
to say that if the satellites have a differentiated structure, with a denser silicate core and 
an icy mantle, the tidal deformations of the equilibrium figures are reduced with respect 
to the homogeneous case (for the same mean density). The reduction factor H can be 
computed by applying the theory developed by Dermott (1979). We shall use four differ- 
ent models for the interior of the satellites, with mean densities of 1.26 and 1.62 g cmm3 
(corresponding to the range of uncertainty of Mimas’ density), core densities of 2.2 and 
3.7 g cme3 (the “extreme” values for reasonable rocky materials, according to Smith et 
al., 1981) and a mantle density of 0.93 g cmm3 (uncompressed water ice). The resulting 
values of N(see Table I) show that it can be as small as 0.7, if a dense core of radius more 
than l/2 of the total radius is present within the satellite. 
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TABLE I 
Differentiated models for Mimas 

pc (g cm-3 

3.1 
2.2 
3.7 
2.2 

pm (scm-3) 

0.93 
0.93 
0.93 
0.93 

(p) (gem-“) RJR H (a - c)Mimas (W 

1.26 0.492 0.749 13.5 
1.26 0.638 0.694 14.3 
1.62 0.629 0.689 9.5 
1.62 0.816 0.809 11.2 

PC? Pm and (p) are the core, mantle and mean densities respectively; R,/R is the ratio between the 
core’s and the satellite’s radius; H is the reduction factor of the tidal deformations with respect to 
homogeneous models (see text); (a - c)bas is the resulting difference between the longest and the 
shortest semiaxis of Mimas. 

Now, the Voyager images allow us to compare the predicted (a -c) values with the 
actual shapes of the satellites. From a preliminary fit of Mimas’s limb profile as imaged by 
Voyager 1, Farinella et al. (1981) obtained an upper limit to the difference (a -c) of 
about 10 km. Subsequently, Davies and Katayama (1983) performed a systematic fit of a 
geodetic network of “control points” on the surface of the two satellites, getting 
(a - c) = 6 + 3 km for Mimas and 8 + 5 km for Enceladus. The differences (b - c) in their 
fits cannot be used as output data, because Equation (2) was assumed as a constraint of 
the fitting procedure (a reviewer pointed to us that this method is not entirely correct, 
because the non-linear effects discussed earlier can reduce the ratio (b -~)/(a -c) to 
about 0.21 when Q’/rrGp = 0.023; however, very probably the error is within the stated 
uncertainty of the results). 

The observed value of Mimas’s (a - c) leads to the surprising conclusion that the shape 
of this satellite is clearly (at the 3-u level) less elongated than predicted by the Roche 
model. This fact cannot be due to “irregular” topography sustained by the strength of the 
surface layer, which in case could explain an irregular shape but certainly not a surface too 
close to sphericity; neither we can solve the problem by the tidal evolution of Mimas’ 
orbit, because its semimajor axis is presently increasing, and thus if the “frozing” of the 
surface shape occurred long time ago, the tidal distortion would be larger than that corre- 
sponding to the present orbital distance, and not smaller as is observed (Soter and Harris, 
1977). 

The inescapable conclusion appears to be that Mimas has a differentiated core-mantle 
structure, causing a H value (i.e., a reduction factor of the “Roche” tidal distortion) not 
much larger than 0.7. In fact, the third model of Table I gives (a -c) = 9.5 km, higher 
than Davies and Katayama’s nominal value of 6 km, but consistent with its uncertainty. 
We note that the shape analysis seems to favour the models of Mimas with a mean density 
at the high end of the range given by radio-tracking data, and with a dense core including 
a significant fraction of the total mass. The conclusion of a differentiated structure for 
Mimas has probably far-reaching implications on the formation process and/or thermal 
history of this satellite (Consolmagno and Lewis, 1977). 

For Enceladus the conclusions have to be much less sharp. Enceladus can be expected 
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to fit the equilibrium shape even better than Mimas, because the lower topography and 
the extensive resurfacing processes indicate that the strength was much lower in the past, 
during some phases of a complex thermal history. Unfortunately the mass of Enceladus is 
not well known, and also the value of (a -c) has been determined with less accuracy than 
that of Mimas, mostly because the Voyager 2 pictures of Enceladus did not record a com- 
plete revolution of the satellite. Therefore we can only state that the available data are 
consistent with a homogeneous internal structure, even if the presence of a core cannot 
be ruled out. 
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