INDEPENDENT SELENOCENTRIC SYSTEM OF COORDINATES BY LARGE-SCALE STAR-CALIBRATED LUNAR PHOTOGRAPHY

SH. T. HABIBULLIN and N. G. RISVANOV Department of Astronomy, University of Kazan, U.S.S.R.

(Received 27 July, 1983)

Abstract. The selenocentric coordinates of 263 craters and one mountain are given. The scale and orientation of the selenocentric coordinates system is determined by star-calibrated lunar photographs obtained with the long-focus horizontal telescope. The origin of the system is defined by the theory of the motion of the Moon. The physical libration is taken into account for the reduction of the coordinates system to the principal axes of the lunar inertia. The reference stars coordinates are reduced to the FK4 system. The position of the lunar mass centre is determined by LURE-2 theory, the rotation parameters are taken from the Migus tables (Migus, 1980).

1. Introduction

For a long time the lunar photographic observations have been carried out at the Kazan University with the horizontal long-focus telescope. These observations are used for the solution of certain lunar problems. The elaboration of methods for obtaining large-scale star-calibrated lunar photographs was stimulated by the wish to avoid the insufficiencies typical for previous lunar study methods based on the photograph measurements made with long-focus telescopes of large apertures. In these works the distinctive particularity is a plate constants definition with respect to the lunar points with known selenocentric coordinates. This calibration of lunar photographs was subject to the systematic errors to the coordinates of the measured points on the lunar surface (Schimerman *et al.*, 1973). The reduction method with reference to the stars surrounding the Moon provides a calibration independence of astrophotography from previous selenocentric systems. It determines an absolute barycentric coordinates system referred to the principal directions of the axes of lunar inertia with an accuracy of the errors of measurement, of the theory of lunar motion, the rotation, and of the coordinates of the reference stars.

2. Observational Material

The method of taking large-scale star-calibrated lunar photographs by means of the horizontal telescope (F = 8000 mm, D = 200 mm) on separate plates is based on the photography of the Moon and stars on two separate plates (Bistrov and Risvanov, 1973; Habibullin *et al.*, 1974). The lunar plate is located in front of the star plate 3 mm closer to the objective. At the time of exposure, the lunar plates moves in regard to fixed stars

plate with velocity of the lunar image relative to stars images in focal plane of the telescope. The diurnal rotation of the celestial sphere is compensated by a precise rotation of the coelostat mirror. In order to establish a connection between the lunar and stars plates, one prints simultaneously marks at four points of both plates. The location of mutual location of the points of reference is found separately with the aid of the star and reference point photography.

To obtain a qualitative observational material a special scientific mountain expedition was organized in the Ordubad district of the Nakhichevan Autonomous Republic. The observations were carried out in 1970–1975. The stars were photographed on the ZU-2 plates, and the Moon on the FU-5 plates. The first plates were treated with D-19 developer; the second, with fine-grained D-25 developer. The exposure times – depending on the phase of Moon and its zenith distance – oscillated between 15 to 180 s. The number of the stars was several dozens on some photographs; and were seldom completely absent. On the whole, more than 950 pairs of star-calibrated photographs have been secured.

The astro-climatic conditions of the place of observation are characterized by the following data. The average size of the atmospheric seeing discs was 1''-2'' - i.e., comparable with the photographic angular resolution of the horizontal telescope of $p_f = 0''.95$; the resolution of photographic emulsion about 70 lines per millimetre; and diffraction limit of the aperture 0''.56. The resolution of FU-5 photographic emulsion was much higher: if equal to 200 lines per millimetre, then $p_f = 0''.70$. This corresponds to 1.3 km on the lunar surface at its mean distance from the Earth. Thus on average quality photographs the craters of diameter 1-2 km can be distinguished; and this was confirmed by actual examination of the photographs.

In the choice of the photographs for measurements the first priority was given to the quality of reference points, of details on the lunar surface, to the number of control stars and the distribution of observations in libration and phases of the Moon. In Table I the information has been collected on 52 pairs of photographs selected for the treatment. The table gives, successively, the running number, number of observation on the telescope, epoch (year), date and month, observation moment (UT), exposure (Δt) , quantity of lunar disc lighting part (E), total estimate of photographs quality by images of point marks, stars, craters (k) (1, satisfactory; 2, good; 3, perfect), quantity of stars, choosing as reference (n).

Both stellar and lunar photographs have been measured on a semi-automatic "Ascorecord" apparatus. The settings were carried out for the centre of crater photographic image, symmetrically to the crater walls.

3. Selenocentric Construction of the System by Stars Arrangement

The coordinates of the selected reference points fixed by special stars define the matrix of the transformation of the measured coordinates system on the lunar plate -x', y' - into the system of measured coordinates on the star plate -x, y - of the form

	N	Enoch		Δ <i>t</i>	 	ĸ	
	2V		01	Δι	<u> </u>	<u>л</u>	n
1.	4	1970 20.09	$00^{\mathbf{h}}.16^{\mathbf{m}}$	60 ^s	0.74	2	9
2.	31	15.10	18 .55	30	0.99	2	7
3.	44	13.11	20 .25	30	0.99	3	18
4.	45	13.11	20.38	30	0.99	3	15
5.	46	13.11	20 .55	30	0.99	3	13
6.	65	1971 8.02	19.35	15	0.97	1	12
7.	67	8.02	20 .09	20	0.97	1	9
8.	76	11.02	22 .27	20	0.98	2	7
9.	91	11.04	20.49	25	0.99	1	4
10.	92	11.04	21 .14	30	0.99	1	4
11.	138	8.07	20 .20	60	1.00	2	13
12.	161	1.09	17.12	55	0.84	2	20
13.	176	5.09	20 .54	25	0.99	2	8
14.	180	7.09	22 .05	35	0.87	2	11
15.	185	3.10	18.51	35	0.98	2	11
16.	188	5.10	20 .50	30	0.97	2	9
17.	194	5.11	21 .56	35	0.88	2	17
18.	195	5.11	22 .10	30	0.88	2	13
19.	197	6.11	22.43	45	0.79	2	14
20.	202	2.12	20 .51	20	0.99	2	6
21.	207	1972 26.03	19.45	50	0.92	2	13
22.	208	26.03	20 .05	50	0.92	2	11
23.	210	31.03	21 .31	70	0.96	2	8
24.	240	28.06	21 .22	70	0.96	1	16
25.	241	28.06	21 .31	70	0.96	1	16
26.	247	29.06	21 .50	70	0.90	2	14
27.	258	1972 3.07	00.06	110	0.63	3	5
28.	254	3.07	00.15	110	0.63	2	7
29.	261	22.07	18.36	103	0.87	2	10
30.	267	23.07	18.39	92	0.93	1	9
31.	268	23.07	18.49	97	0.93	1	9
32.	273	24.07	19.30	68	0.97	2	14
33.	274	24.07	19.40	75	0.97	2	9
34.	284	1.08	23.48	102	0.54	1	7
35.	285	1.08	23 .58	102	0.54	1	6
36.	303	21.08	18.18	92	0.83	1	16
37.	304	21.08	18.29	85	0.83	2	17
38.	307	22.08	17 .34	68	0.95	1	9
39.	356	27.08	21 .34	60	0.87	3	8
40.	357	27.08	21 .44	56	0.87	3	9
41.	358	28.08	21 .07	68	0.79	2	6
42.	359	28.08	21 .14	68	0.79	2	8
43.	406	16.08	17.16	92	0.76	1	13
44.	407	17.08	17 .05	56	0.85	2	10
45.	433	1973 18.01	18.28	15	1.00	3	11
46.	458	9.06	17.13	25	0.68	1	6
47.	468	16.06	21 .13	32	0.99	2	10
48.	478	14.07	19.20	39	1.00	2	13
49.	501	20.07	23.42	20	0.73	2	6
50.	526	18.08	22 .22	68	0.76	2	14
51.	542	9.09	18.19	68	0.91	2	7
52.	547	1973 10.09	19.13	42	0.96	2	8

 TABLE I

 Observation used for construction of catalogue

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \end{pmatrix} \begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix}.$$
 (1)

If a, b, c, d, e, f are constants of the star plate defined by the reference stars and x_k , y_k are the measured coordinates of the craters with reference to the star plate, its standard coordinates follow from the formula

$$\begin{pmatrix} X_k \\ Y_k \end{pmatrix} = \begin{pmatrix} a & b & c \\ d & e & f \end{pmatrix} \begin{pmatrix} x_k \\ y_k \\ 1 \end{pmatrix}.$$
 (2)

From the values X_k , Y_k the spherical equatorial crater coordinates α'_k , δ'_k are computed in the usual way. They will be apparent, topocentric ones.

Furthermore, we denote a selenocentric rectangular coordinates sytem by ξ , η , ζ , whose ξ -axis is directed to Mare Crisium, η -axis is directed along the Moon's axis of rotation to its north pole; ζ -axis, to the direction to the Earth; and U, V, W represent a selenocentric rectangular system coordinates, with U and V axes in the plane of projection. The U-axis is in the direction of increasing right ascension, while the V-axis coincides with the declination circle projection and is directed to the celestial pole; and the W-axis is directed to the observer. The transformation from the first to the second system of coordinates can be expressed as

$$\begin{pmatrix} U \\ V \\ W \end{pmatrix} = \begin{pmatrix} A_{22} & A_{32} & A_{12} \\ A_{23} & A_{33} & A_{13} \\ A_{21} & A_{31} & A_{11} \end{pmatrix} \begin{pmatrix} \xi \\ \eta \\ \xi \end{pmatrix}.$$
 (3)

The crater coordinates U_{obs} and V_{obs} are found from the observations. On the other hand, U_c and V_c can be computed from the ξ_c , η_c , and ζ_c coordinates taken from a catalogue. The differences

$$\Delta U = U_{\rm obs} - U_c, \qquad \Delta V = V_{\rm obs} - V_c, \tag{4}$$

allow to determine the corrections $\Delta \xi$, $\Delta \eta$, and $\Delta \zeta$ to the adopted values of ξ_c , η_c , and ζ_c from the equations of condition of the form

$$A_{22}\Delta\xi + A_{32}\Delta\eta + A_{12}\Delta\zeta = \Delta U,$$

$$A_{23}\Delta\xi + A_{33}\Delta\eta + A_{13}\Delta\zeta = \Delta V.$$
(5)

The values of U_{obs} and V_{obs} are defined by the coordinates of the observed craters and ephemeris topocentric coordinates of the Moon α'_{α} , δ'_{α} . First, we find the projected coordinates

$$\overline{U}_{obs} = \frac{\cos \delta'_k \sin (\alpha'_k - \alpha'_{c})}{\sin \delta'_k \cos \delta'_{c} + \cos \delta'_k \sin \delta'_{c} \cos (\alpha'_k - \alpha'_{c})},$$

INDEPENDENT SELENOCENTRIC SYSTEM OF COORDINATES

$$\bar{V}_{obs} = \frac{\sin \delta'_k \cos \delta'_{\mathfrak{C}} - \cos \delta'_k \sin \delta'_{\mathfrak{C}} \cos \left(\alpha'_k - \alpha'_{\mathfrak{C}}\right)}{\sin \delta'_k \cos \delta'_{\mathfrak{C}} + \cos \delta'_k \sin \delta'_{\mathfrak{C}} \cos \left(\alpha'_k - \alpha'_{\mathfrak{C}}\right)}; \tag{6}$$

and then a transformation is carried out to their orthographic projections

$$U_{obs} = \bar{U}_{obs}(1 - W_c \sin R'_{\mathfrak{c}}),$$

$$V_{obs} = \bar{V}_{obs}(1 - W_c \sin R'_{\mathfrak{c}}),$$
(7)

where W_c is found from Equation (3); where $R'_{\mathbb{C}}$ stands for the topocentric ephemeris lunar radius.

The coordinates U_c , V_c , and W_c were computed by the formula (3) according to the ξ_c , η_c , and ζ_c coordinates values taken from "The Tucson Selenodetic Triangulation" (Arthur and Bates, 1968). The A_{ii} matrix elements are defined from expressions

$$\begin{pmatrix} A_{11} \\ A_{12} \\ A_{13} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -\sin C & \cos C \\ 0 & -\cos C & -\sin C \end{pmatrix} \begin{pmatrix} \cos b & \cos l \\ \sin b & \cos l \\ \sin b & \sin l \end{pmatrix},$$
$$\begin{pmatrix} A_{21} \\ A_{22} \\ A_{23} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -\sin C & -\cos C \\ 0 & -\cos C & \sin C \end{pmatrix} \begin{pmatrix} \cos b & \sin l \\ \sin b & \sin l \\ \cos l \end{pmatrix},$$
(8)
$$\begin{pmatrix} A_{31} \\ A_{32} \\ A_{33} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} \cos C & \cos b \\ \sin C & \cos b \\ \sin b \end{pmatrix},$$

where l, b, and C signify, respectively, the optical libration in longitude, latitude and position angle at the place of observations, and corrected for the physical librations.

The latter have been published in National Astronomical Ephemeris; but the lunar ephemeris for j = 2 does not correspond to the accuracy of the present methods of observation, as its errors can exceed 0".5. At present a number of new more precise lunar ephemerides has been created, which are based on the numerical as well as analytical theories of the Moon's motion. By reduction of the observations of the lunar coordinates we defined α'_{α} , δ'_{α} , and π'_{α} by the numerical LURE-2 theory. The physical libration components were computed by the analytic libration tables of Migus (1980). For the lunar photographs with positive declination the star coordinates were taken from the AGK3 Catalogue. For negative declination the positions of the reference stars were defined by observations of corresponding southern sky areas on the astrograph Zeiss 400/2000 of Zelentchuk high-altitude station of Kasan University in the system of the catalogue Perth, 1970 (Høg and van der Heide, 1976).

The solution of the equations of condition (5) has been carried out by the leastsquares method. We noted that, in our case, the terms on their right-hand sides depend functionally on the same arguments. Therefore, in the solution by least-squares method

5

the generalized weight matrix (Arthur, 1965) was used. As a result, the solution of normal equations furnished the corrections $\Delta \xi$, $\Delta \eta$, and $\Delta \zeta$ and its errors; and the desired coordinates values of the craters were computed from the formulae

$$\xi = \xi_c + \Delta \xi, \quad \eta = \eta_c + \Delta \eta, \quad \zeta = \zeta_c + \Delta \zeta. \tag{9}$$

These final coordinate values included in catalogue are barycentric ones, related to the principal axes of inertia.* The coordinates ξ and η refer to crater centres and the third coordinate ζ refers to the mean level of craters walls.

4. Description of the Catalogue

To construct the catalogue we included 66 craters of the Moutsoulas' list (Moutsoulas, 1975) and the list of 200 craters proposed by Gurstein and Slovokhotova (1971). The choice of these craters as control points on the earthside is well-founded on the basis of a number of works (Weimer, 1973; Gurstein and Slovokhotova, 1971; Gavrilov, 1973) and it is confirmed by the resolution of the XV General Assembly of the IAU (Moutsoulas, 1975). In the west half of the visible lunar side – in zones investigated by space-craft Apollo 15 (Schimerman, 1976) – a number of smaller craters was chosen to establish agreement of the coordinates system of the visible and far side of the Moon. Furthermore, for an analysis of the accuracy of heliometric observations 32 more craters of the Mamakov (1979) catalogue were included. 264 objects were chosen as result of the examination of these lists – 263 craters and one mountain. The three craters have diameters of more than 15 km, 26 craters are smaller than 5 km; the other are between 5 and 15 km. The number of selected craters defines the mean density of distribution on the lunar surface – not less than one crater per area $10^{\circ} \times 10^{\circ}$.

Table II gives the independent barycentric coordinates of 264 objects on the lunar surface. The structure of the Catalogue is as follows: in the first and second columns the ordinal numbers and object numbers by Blagg and Muller (1935) are given. In the next three columns we give the rectangular selenocentric coordinates of the objects expressed in terms of the adopted mean lunar radius of 1738.1 km. The next three columns give the selenographic coordinates – λ , β and ΔH – the absolute altitude of the respective object above the sphere radius, 1730 km. In the last column we indicate the list from which the object is taken. Thus the Moutsoulas list is denoted by M; the Gurstein and Slovokhotova one, by G; the Mamakov catalogue, by K, and the smaller 30 craters which we selected are designed by A. In the second line the errors of rectangular coordinates are given, which are expressed by the lunar radius quota 10^{-5} , also the absolute altitude, in km. When an object is absent in the B and M list, it has been assigned a number from the "Consolidated Catalogue of Selenographic Positions" (Arthur, 1962). In the latter case the numbers are given to five digits. The objects N 76, B and M 1404 is a separate mountain (Mons Undest), the object N 91, 24425A is a crater of 0.9 km diameter, but not a light spot as indicated in Arthur's Consolidated Catalogue.

* When one speaks of the principal axes of inertia, the model of the rigid Moon, based on the physical libration theory, is implied.

								Cata
N	B and M	ξ	η	<u>š</u>	λ	β	ΔH	logue
1	987	0.05514 ± 16	0.90643 ± 16	0.41622 ± 156	7°.546	65°.122	4.69 ±1.12	М
2	895	07143	40028	91323 117	4 .472	23 .604	7.51 1.84	G
3	897A	07279 20	46558 20	87963 177	4.730	27.811	4.45 2.71	G
4	834	08917 18	03055 17	99550 63	5.119	1 751	8.01 1.09	М
5	966	09766 15	77217 15	62379 136	8.878	50 .696	3.66 1.44	G
6	932	09982 25	66631 25	73635 229	7.720	41882	4.76 2.97	G
7	965	11245 12	78160 12	60923 119	10.458	51.598	3.52 1.25	М
8	606	18873 10	33563 11	92104 89	11.580	19.646	5.12 1.40	М
9	689A	20016 22	92334 22	32173 189	31 .888	67 .688	4.73 1.17	G
10	685A	21039 32	90527 31	36377 261	30.043	65 .099	4.71 2.16	G
11	689B	21973 30	92464 29	30472 262	35.795	67.888	4.23 1.50	G
12	792	22010 23	84443 27	48303 251	24 .497	57.847	3.60 1.93	G
13	727	23856 17	71708 18	65326 158	20.061	45.877	6.24 1.78	К
14	561	25837 9	06901 8	96327 74	15.015	3.958	7.61 1.24	М
15	619	28407 10	36962 9	88279 88	17.837	21.730	5.20 1.35	М
16	672A	29165 19	85217 19	42798 168	34 .273	58.711	4.25 1.30	G
17	573	31252 14	13547	93921	18.405	7.793	6.48 2.19	G
18	552	32023 12	01686	94659 111	18.690	0 .966	7.11	G
19	622	32447 14	41799 13	84665 131	20 .969	24.750	5.33 1.95	G
20	645A	32777	66517 14	66793 138	26.138	41.798	4.64	G
21	645	33325 31	67847 32	65264 305	27 .050	42.795	5.78 3.53	G
22	491	34100 10	54707 9	76186 87	24 .112	33.242	4.61 1.16	М

TABLE II

, ,	7	abl	e II	(continu	ed)
-----	---	-----	------	----------	-----

N	B and M	ξ	η	ζ	λ	β	ΔH	Cata- logue
23	661	0.36083 ± 23	0.77596 ± 23	0.51256 ± 251	35°.144	51°.068	3.78 ± 2.25	G
24	534A	38489 12	21773 12	89524 117	23.264	12.595	5.49 1.81	G
25	519	42223 7	29550 6	85550 57	26.269	17.210	5.90 0.86	М
26	458	43442 15	72344 16	53297 146	39.183	46.456	4.75 1.37	М
27	457	45247 24	70373 24	54405 227	39.750	44 .842	4.59 2.19	G
28	409	45558 30	83187 29	30744 280	55 .987	56.548	3.00 1.56	G
29	498	45639 16	58064 17	67111 153	34.218	35 .581	4.47 1.78	G
30	270A	46188 11	31923 11	82566 106	29.223	18.646	5.45 1.52	G
31	244A	48210 13	03485 13	87386 128	28.885	2 .000	5.73 1.95	G
32	385	50827 10	60261 10	61301 95	39 .664	37.116	5.72 1.02	М
33	495A	50993 15	52387 14	67984 144	36 .872	31 .652	5.18 1.86	G
34	260	51604 10	15388 11	84147 88	31.519	8.864	$\begin{array}{c} 6.41 \\ 1.88 \end{array}$	М
35	308	53556 14	38374 14	74913 132	35 .561	22.622	3.98 1.71	G
36	391	54572 26	65576 26	51815 224	46 .485	41 .069	4.89 2.00	G
37	275A	57882 14	24744 14	77586 137	36.724	14.340	6.56 1.85	G
38	397	58420 29	75509 29	29452 275	63.248	49 .092	6.56 1.37	G
39	312	60362 12	54193 11	58220 115	46 .035	32.871	5.49 1.16	М
40	182	60932 19	33465 20	71723 183	40.349	19.575	6.09 2.28	K
41	204	62477 23	29949 23	71930 211	40.977	17.450	5.86 2.67	K
42	325A	64245 21	51161 21	50852 205	48.494	30.811	6.11 2.02	G
43	178	68652 10	45747 9	56352 89	50 .620	27 .251	6.49 0.88	М
44	187	69104 25	38138 25	61214 252	48.465	22.446	6.10 2.05	G

Table II (continue	ed)
--------------------	-----

 N	B and M	Ę	η	ζ	λ	β	ΔH	Cata- logue
45	206	0.69593 ± 13	0.24525 ± 14	0.67315 ± 124	45°.953	14°.214	6.01 ± 1.49	G
46	122	73501 35	45503 35	49862 322	55.848	27.127	4.55 2.86	G
47	165	74231 21	58410 21	32383 202	66.431	35.800	5.55 1.20	G
48	216	75709 11	12594 11	63879 107	49 .844	7.246	$\begin{array}{c} 5.58\\ 1.18\end{array}$	М
49	106	78767 14	25116 14	55790 127	54.690	14 .586	3.55 1.23	М
50	142	81442 26	49444 26	29804 252	69 .900	29 .689	5.13 1.41	G
51	69	83591 29	05723 28	54354 304	56.967	3.285	5.89 2.90	G
52	19032	93236 37	02442 30	35720 306	69.037	1.401	5.91 2.38	G
53	1073	-02069 20	81960 20	56739 172	-2.088	55.288	2.97 1.68	G
54	1214	-02139 13	15650 13	98679 120	-1.242	9.010	6.98 2.06	M
55	1147	-02326 14	52362 14	84810 128	-1.571	31 .682	2.87 1.87	G
56	1125	-04287 19	66681 20	183	-3.311	41.934	4.29 2.31	G
57	1215	-05409 10	15200	98645	-3.139	8./4/	1.49	ĸ
58	1217	-08157 11	21195	97204 105	-4./9/	12.259	5.00 1.76	G
59	1204	-08534 9	24222 9	96499	-5.054	14.038	5.64 1.28	G
60	1145	-09948	47000	87560	-0.481	28.073	5.92 1.75	M
61	1250	13561	12	98637 94	-7.828	4.//1	6.55 1.33	G
62	1069	-16285	76086 35	62535 318	-14.596	49.658	5.04 3.15	G
63	1302	-16471 15	63844 16	74845	-12.411	39.797	3.68	G
64	1070	-18020 20	76158 23	61861 206	-16.241	49.768	3.88 2.09	G
05	1200	-1830/ 13	12404	132	-13.434	40.303	4.84	IVI
66	1298	-18685 14	46664 15	86206 129	-12.229	27.880	4.45 1.92	А

Table II (continued	ntinued)	(Π	le	ab	7
---------------------	----------	---	---	----	----	---

N	B and M	ţ	η	۶	λ	β	ΔH	Cata- logue
67	1328A	-0.20469 ± 26	0.89995 ± 27	0.37750 ± 169	-28°.467	64°.491	3.15 1.03	G
68	1500	-20560 15	05804 .16	97584 141	-11 .898	3.331	6.28 2.38	G
69	1328	-21791 20	89204 21	38963 175	-29.217	63.414	3.77 1.22	G
70	1298A	-22286 10	41876 10	87842 92	-14.236	24.801	5.19 1.40	Α
71	1394	-23145 17	54382 18	80432 160	-16 .054	33.014	4.82 2.18	G
72	1292	-24067 13	41949 14	87324 118	-15.408	24.850	5.01 1.74	G
73	22749A	-24683 14	79365 15	55244 134	-24 .074	52.678	4.62 1.28	М
74	1381	-26505 19	77332 20	57211 176	-24 .883	50.802	4.40 1.68	K
75	1367	-27113 25	85440 27	43666 222	-31.837	58.970	3.03	G
76	1404	-28401 9	44559 9	84751 84	-18.527	26.497	5.92 1.27	Α
77	1366	-29284 18	81392 19	49790 171	-30.462	54 .637	4.73 1.44	K
78	1679	-29808 23	88412 26	35455 289	-40 .055	62.349	4.82 1.22	G
79	1368B	-30753 24	79185 25	52327 218	-30.443	52.530	4.12 1.90	G
80	1392	-30767 13	50489 14	80465 125	-20 .924	30.374	5.54 1.72	G
81	1498	-32240 11	01677 11	94552 104	-18.828	0.962	6.56 1.72	М
82	1315	-32711 17	69105 18	64069 153	-27.047	43 .850	3.78 1.64	G
83	1390	-33970 17	55505 18	76105 158	-24.171	33.784	4.94 2.02	М
84	1 399A	- 34636 12	46401 14	81330 120	-23.068	27 .695	5.26 1.64	Α
85	1407	34735 10	34880 10	86881 97	-21.792	20.444	5.62 1.00	Α
86	1399	34951 12	47687 14	80439 120	-23.504	28.539	5.14 1.64	Α
87	1412	-35072 14	29338 15	88744 131	-21 .564	17 .090	5.17 2.00	М
88	23454	$-35828 \\ 10$	44487 14	81882 121	-23.632	26.462	5.28 1.55	Α

N	B and M	ŧ	η	\$	λ	β	ΔH	Cata- logue
89	1391	-0.36579 ± 11	0.57866 ± 11	0.72682 ± 104	-26°.715	35°.419	5.42 ± 1.37	G
90	1666	-40085 26	82446 28	39299 244	-45 .567	55.750	3.62 1.57	G
91	24425A	-42471 19	45553 23	78038 159	-28.556	27.145	5.39 2.15	Α
92	1418	-42907 13	21143 13	87713 118	-26 .067	12.218	6.50 1.79	G
93	1604	-42939 12	60446 14	66810 122	-32.729	37.275	4.72 1.36	G
94	24346	-45122 7	36459 8	81133 66	-29 .081	21.441	5.56 0.90	A
95	1635	-45660 13	73762 14	49353 126	-42.733	47.650	4.76 1.09	М
96	1522	-46742 17	11237 18	87549 164	- 28 .097	6.460	6.01 2.50	G
97	1591	-47005 9	48555 10	73489 76	-32 .604	29 .100	5.29 0.94	Α
98	24395	-49393 9	35344 11	79284 76	-31 .922	20.725	5.91 1.02	Α
99	1529	-49620 13	17370 14	84879 121	-30.311	10.019	5.35 1.79	К
100	1589	-49924 13	46292 13	73066 123	-34.344	27.615	5.85 1.56	М
101	1591A	-50658 15	45815 16	72866 137	-34.808	27.305	5.90 1.70	Α
102	1584	$-50892 \\ 10$	41696 11	75109 97	-34 .120	24 .682	5.48 1.25	A
103	1606	-50900 14	58304 15	63077 126	-38.902	35.729	5.39 1.33	G
104	1520	-51003 12	07609 13	85529 110	-30.809	4 .369	5.87 1.63	G
105	1581B	-5228514	35962 15	77113 136	-34 .139	21 .106	5.79 1.82	A
106	1539	$-52410\\11$	16081 12	83465 103	-32 .126	9.267	5.64 1.46	G
107	1590	-52849 13	46267 16	71033 142	-36 .649	27 .590	6.30 1.66	Α
108	1613	-53915 21	65596 22	52514 182	-45.754	41 .074	5.27 1.60	G
109	25732A	-53921 15	72663 18	42109 162	-52 .012	46.724	4.67 1.05	G
110	1725	-54936 25	77183 30	31222 247	-60.389	50.694	3.75 1.20	G

Table II (cont	inued)
----------------	--------

Ν	B and M	Ę	η	Ś	λ	β	ΔH	Cata- logue
111	25656	-0.55699 ± 9	0.66462 ± 10	0.49370 ± 87	-48°.446	41°.763	4.37 ± 0.71	G
112	1578	-56189 11	35603 11	74524 103	-37.015	20.922	6.24 1.33	М
113	1737	-57557 14	49783 17	64599 109	-41.701	29.916	4.99 1.33	G
114	1555	-58581 11	12392 12	79964 104	-36.226	7.126	6.32 1.42	М
115	25592	-59208 15	52530 18	60864 149	-44.210	31.742	5.44 1.52	А
116	1580	-59258 17	36467 18	71684 170	-39.579	21.410	6.36 2.15	А
117	1581A	-59690 16	36219 16	71409 145	- 39 .892	21 .264	5.84 1.83	Α
118	1576	$\begin{array}{r}-62669\\18\end{array}$	33797 19	70033 167	-41 .824	19.780	5.86 2.00	G
119	1736	-62944 15	50859 17	58477 147	-47.107	30.624	5.33 1.47	А
120	1728	-64121 26	71802 27	26474 238	-67.567	45.986	5.33 1.48	G
121	1540	-64548 13	00585 14	76184 119	-40.274	0.336	5.56 1.59	G
122	1758	-65191 18	46833 19	59362 180	-47 .679	27.976	5.23 1.84	Α
123	26457	$\begin{array}{r}-65564\\18\end{array}$	47383 17	58608 156	-48.206	28.316	6.24 1.66	А
124	1557	$\begin{array}{r}-65700\\13\end{array}$	17400 14	73089 121	-41 .952	10.040	4.74 1.52	G
125	1739	-66656 15	52622 17	52476 146	-51.788	31 .811	5.12 1.25	G
126	1877	-69094 24	60739 27	38631 225	-60.790	37.499	4.23 1.41	G
127	1814	$-70182 \\ 10$	21761 11	67596 97	-46 .074	12.589	5.36 1.13	М
128	1816	-71702 13	24126 14	65196 126	-47 .721	13.979	5.81 1.42	G
129	1806	-73361 15	36652 16	56966 134	-52.170	21 .555	5.52 1.29	М
130	1868	-7573316	48365 18	43421 166	-60.172	28 .988	4.62 1.29	Α
131	27466	-76438 12	46521 14	44103 125	-60.016	27.796	3.93 0.97	Α
132	1833	-77917 13	08933 14	61841 126	-51 .562	5.132	5.95 1.36	М

Table	e II	(contin	ued)
		•	

N	B and M	ξ	η	ζ	λ	β	ΔH	Cata- logue
133	27485	-0.78491 ± 17	0.45530 ± 18	0.41682 ± 1 54	-62°.030	27°.126	5.60 1.12	A
134	27297	-79386 13	27315 15	54029 129	-55.761	15.879	5.26 1.15	G
135	27493	-79523 13	43488 15	41858 127	-62.239	25.823	5.24 0.90	A
136	1812	-81289 10	38967 11	42912 94	-62.170	22.973	5.30 0.69	G
137	1844	-87223 12	20248 14	44144 118	-63.156	11.702	5.20 0.91	М
138	1959	- 92694 28	04892 30	37009 238	-68.235	2.806	6.87 1.48	G
139	1960	-93273 24	02247 25	35854 249	-68 .973	1.288	7.28 0.93	G
140	3268	-00609 23	-90088 24	43122 224	-0.809	-64.419	5.98 1.52	G
141	2963	$-01535\\18$	-14766 18	98787 163	-0.890	-8.500	6.30 2.81	G
142	3086	$\begin{array}{r}-02556\\18\end{array}$	-38870 18	92100 141	-1.590	-22 .874	8.08 2.26	G
143	3204	-05112 20	-75220 20	65484 171	-4 .464	-48 .872	5.71 2.13	G
144	3102	-05797 17	-48575 18	87134 140	-3.806	- 29 .085	6.84 2.42	G
145	3294	-07999 17	-92126 17	37939 129	-11 .906	-67.175	7.28 2.28	G
146	3154	-08445 13	-63440 14	76799 121	-6.275	-39.389	7.60 1.66	М
147	2933	-09120 9	-05570 8	99371 74	-5.244	-3.195	7.12 1.27	М
148	3251D	-10417 15	-81779 15	56415 191	-10.462	-54.950	6.27 1.50	G
149	3212	-10722 15	-79345 16	59769 138	-10.170	-52.573	6.62 1.50	K
150	3028	-11633 21	-26033 21	95720 190	-6.929	-15.108	5.96 2.18	М
151	3063	$-13875 \\ 15$	-37981 15	91263 136	-8.645	-22.365	4.98 2.18	G
152	3292	-15354 26	-95154 30	26379 267	-30.201	-72.215	6.87 1.53	G
153	2748	-16284 15	-57517 14	80080 129	-11 .494	-35.139	6.90 1.80	М
154	3237	-16429 14	-84792 15	49914 138	-18 .219	-58.212	3.84 1.29	М

anoro in (contrinuou)

N	B and M	ξ	n	Ś	λ	β	ΔH	Cata- logue
155	2856	0.19743 ± 14	-0.20003 ± 14	0.95852 ± 120	-11°.639	-11°.552	6.14 ± 2.02	М
156	2699A	-21906 20	-88812 22	40185 181	-28 .596	-62.736	6.55 1.45	G
157	2726	-22256 20	-69730 20	68059 182	-18.108	-44 .240	7.20 1 96	G
158	2922	-22966 13	-02430 13	97206 118	-13.293	-1.394	6.57 2.00	G
159	2694	-23373 18	-86877 19	43164 185	-28 .435	-60.534	4.36 1.53	М
160	2716	-26226 36	-75463 35	59955 277	-23 .626	-49 .069	6.10 2.92	G
161	2778	26854 16	-4557018	84684 160	-17.594	-27 .155	5.41 2.41	М
162	2677	$-28808 \\ 22$	-90763 27	30505 201	-43 .362	-65 .190	7.97 1.58	G
163	2818	-29447 12	-29264 13	90894 114	-17.951	-17 .029	6.82 1.82	G
164	2763	-31114 20	-55325 20	77219 186	-21 .946	-33.606	7.38 2.56	G
165	2629	-33782 25	-86169 28	37274 237	-42 .187	-59 .724	4.24 1.53	G
166	2898	-35675	-09508 8	92820 71	-21 .024	-5.462	6.25 1.15	М
167	2589	-36613 13	-68418 13	62825 124	-30.232	-43 .255	5.37 1.41	М
168	2614A	-37508 29	$-73742\\30$	56022 258	-33.803	-47.565	6.63 2.63	G
169	2831	-38716	-25181 15	88609 138	-23.602	-14 .596	6.75 2.14	G
170	2832	-42598 13	-24409 13	86955 119	-26.100	-14 .149	5.63 1.82	М
171	2566	-42855 16	-57813 17	69245 144	-31.753	-35.372	5.82 1.81	G
172	2526	-43180 22	-43784 23	78695 211	-28.754	-26.002	5.87 2.96	G
173	2594	-43586 13	68631 15	58071 133	-36.890	-43 .386	6.57 1.43	М
174	34734	-43927 24	74589 29	49975 241	-41.315	-48.266	7.28 2.31	G
175	2277A	-48665 27	-77999 32	39361 200	-51 .034	-51.255	8.22 2.50	G
176	2462	-49464 14	-20400 15	84370 131	-30.382	-11.782	6.46 1.94	G

Table II	(continu	ed)
----------	----------	-----

Ν	B and M	ξ	η	٢	λ	β	ΔH	Cata- logue
177	2355	-0.49652 ± 11	-0.51816 ± 12	0.69634 ± 101	-35°.490	-31°.210	7.02 ± 1.28	G
178	2483	-50944 14	-05242 15	85767 135	-30.710	-3.008	6.26 2.04	G
179	35629	-52250 30	-69583 31	49119 313	-46 .770	-44.136	6.77 2.79	G
180	2425	-54427 11	-23030 10	80456 96	-34 .077	-13.337	5.14 1.35	М
181	2419	-56048 12	-36815 14	74028 118	-37.130	-21.628	6.08 1.57	G
182	2338	-59897 12	-61492 13	51116 112	-49 .522	-37.987	6.51 1.03	М
183	2457	-61180 16	-13105 18	77838 157	-38.167	-7.540	5.79 2.16	М
184	36535	-63238	-55439 29	54055 260	-49 .476	-33.679	7.62 2.44	G
185	2306A	-64255 24	-68907	33406	-62.531	-43 .576	7.48 1.40	G
186	2318	-64548	-65623 15	38918 124	-58.913	-41 .044	7.01 0.92	G
187	2154	-65154 14	-41674 14	63245 117	-45 .852	-24 .653	6.50 1.28	G
188	2325A	-66139	-62498	41413	-57 .947	-38.692	7.70	G
189	2444	-67558 19	-13561 22	72242	-43 .089	-7.806	5.44 2.38	М
190	2151	-67710	-33814	65234 101	-46 .044	-19 .773	7.27	G
191	2445	-68807	-10322	71648	-43 .841	-5.932	5.86 1.81	G
192	2157B	-69141	-32938	64156 272	-47 .142	-19.250	6.48 3.21	G
193	37405	-70806 20	-45482 23	53873 193	-52.734	-27.077	6.74 1.95	G
194	2230	-70921	-63605	30355 233	-66 .829	-39.501	7.83 1.74	G
195	2446	71940 15	-09591 17	68616 144	-46 .355	-5.510	$5.96 \\ 1.73$	G
196	2138A	-72191 13	-25579 14	64083 126	-48 .405	-14.841	5.71 1.43	М
197	37359	-75412 24	39515 26	52331 226	-55 .242	-23.292	6.97 2.06	G
198	2222B	-79806 12	-49238 14	34657 120	-66 .526	-29.506	7.62 0.82	G

Table II (continued)
---------------------	---

N	B and M	Ę	η	Ś	λ	β	ΔH	Cata- logue
199	2047	-0.81640 ± 13	-0.41544 ± 14	0.40029 ± 123	-63°.881	-24°.556	7.52 ±0.93	K
200	2062	-83052 12	-35269 13	43277 109	-62.477	-20.636	9.36 0.85	М
201	2088	-84378 14	-23456 18	48092 167	-60.318	-13 .578	6.60 1.42	G
202	1992	-84788 15	09108 17	52035 142	-58.462	-5.231	6.32 1.32	М
203	1977	-88836 13	$\begin{array}{r}-01313\\15\end{array}$	45544 120	-62.857	-0.754	5.31 0.97	G
204	3466	+00748 27	-59371 30	80437 276	+0.533	-36.430	7.71 2.48	G
205	3467	01044 14	-53729 13	84221 143	0.710	-32.534	6.46 2.09	G
206	3356	01619 24	-93104 22	36340 195	2.550	-68.659	7.38 1.34	G
207	3535	03450 17	- 40067 17	91549 147	2.158	-23.622	7.96 2.38	G
208	3386B	04362 18	-84179 18	53647 153	4 .648	-57.405	6.64 1.42	G
209	3570	07282 15	-30277 15	94998 137	4.383	-17.629	7.61 2.26	G
210	3532A	07850 21	-41936 21	90322 186	4 .967	-24 .823	6.22 1.59	G
211	3366A	09165 18	-88368 18	45728 139	11 .333	-62.177	6.71 0.83	G
212	3550	12622 15	-29263 15	94772 139	7.586	-17.018	7.87 2.30	М
213	3609	12734 16	$\begin{array}{r}-08728\\16\end{array}$	98804 146	7.344	-5 .007	8.14 2.50	G
214	3463	13383 26	-59484 27	79192 237	9 .592	-36.525	7.13 2.42	G
215	3377	13893 21	-81396 22	56227 190	13.880	-54 .566	6.34 2.02	М
216	3606	14105 6	-12849 8	98243 78	8.170	-7.376	9.49 1.35	М
217	3848	15406 19	-64710 18	74570 135	11 .672	-40.359	6.83 1.76	G
218	3815	17690 15	-46753 16	86548 137	11 .552	-27.890	7.20 2.10	М
219	3736	17785 19	-28242 19	94244 178	10.687	-16.408	7.74 2.91	G
220	3809A	19635 18	-50103 18	84209 158	13.125	-30.090	6.98 2.31	G

Table II (d	continued)
-------------	------------

N	B and M	پړ	η	٤	λ	β	ΔH	Cata- logue
221	3722	0.24411 ± 24	-0.18134 ± 24	0.95342 ± 218	14°.361	-10°.440	9.38 ± 2.61	G
222	3791	25036 19	-39059 19	88598 179	15.779	-22 .989	8.27 2.76	G
223	3865B	25238 31	-72745 30	63574 279	21 .652	-46 .763	5.53 3.30	G
224	3790	26433 22	-40658 22	87299 201	16.846	-24 .025	5.75 2.71	G
225	3986	26491 20	$-85701\\20$	43876 193	31 .122	-59.119	5.63 1.47	G
226	4004	29466 12	-67 469 10	67558 98	23.565	-42 .470	$6.76 \\ 1.18$	М
227	3683	30786 13	$-10636\\13$	94563 114	18.033	-6.105	8.36 1.88	М
228	4098	30966 11	$-48112\\12$	81988 105	20.691	-28.766	7.72 1.51	М
229	4033A	32020 18	-56945 19	75517 169	22.978	-34.770	5.57 2.30	G
230	3936B	32400 25	$-90228\\28$	28371 283	48.792	-64.485	7.73 2.25	G
231	3992	32615 19	-76966 19	54571 150	30.865	-50.443	5.09 1.43	G
232	4480	37558 26	-70709 26	59834 236	32.116	-45 .026	7.26 2.68	G
233	4109	38751 17	-43133 17	81413 160	25.454	-25 .566	7.25 2.32	G
234	3667	40841 9	-00978 9	91109 78	24 .145	-0.561	5.48 1.24	K
235	3965B	41519 26	-81874 25	39516 209	46.416	-55 .005	7.11 1.56	G
236	4220	41772 20	$-18325\\20$	88818 185	25.188	-10.575	5.43 2.96	G
237	4158	42093 13	-29329 13	85832 125	26.124	-17.056	8.03 1.86	G
238	4156	42542 15	-32033 16	84611 153	26 .693	-18.688	7.67 2.25	G
239	4227	43597 15	-04677 15	89731 140	25.913	-2.684	5.86 2.17	G
240	4064	46399 19	-60677 20	64521 202	35.721	-37.362	7.88 1.74	G
241	4488	46439 16	-72017 19	51204 152	42.206	-46 .173	5.05 1.39	М
242	4083B	49787 23	-44007 23	74590 219	33 .722	-26.138	6.27 2.82	G

Table II	(continued)
----------	------------	---

N	B and M	Ę	η	ζ	λ	β	ΔH	Cata- logue
243	4292	0.54063 ± 23	-0.13952 ± 23	0.82772 ± 215	33°.151	-8°.033	5.38 ± 2.08	G
244	4143	54363 14	-30704 15	77941 136	34 .896	-17.906	5.75 1.85	М
245	4442A	55177 20	-61445 20	56302 183	44 .422	-37 .935	7.22 1.83	М
246	4286	55742 13	-07 4 10 13	82646 118	33 .999	-4.251	7.44 1.70	М
247	4503A	57601 29	-75771 32	30658 288	61.975	-49 .266	8.02 1.53	G
248	45685	58560 24	-65759 26	47331 135	51.053	-41 .132	7.56 1.17	G
249	4417A	58945 18	-48294 18	64731 164	42 .321	-28.883	7.84 1.87	М
250	4385	60209 14	-41831 13	67904 134	41 .563	-24 .747	6.88 1.05	G
251	4241	60490 11	-05560 11	79233 96	37.360	-3.192	5.29 0.70	G
252	4417	60795 15	-54483 16	57744 111	46.474	-33.015	7.99 0.74	G
253	4320	61724 10	-19334 11	76055 95	39 .062	-11 .166	5.32 0.91	М
254	4363	63861 20	-29940 20	70739 191	42 .075	-1-7.441	6.25 2.61	G
255	4607	66552 13	-52780	52452 130	51.757	-31 918	5.15 1.28	K
256	4576	71423	-55292 22	42789 180	59 .075	-33.588	7.17 1.38	G
257	4396	71672	-38521 20	57946 193	51 .045	22 683	6.24 1.94	М
258	4255	72860 15	-03500 16	68249 153	46 .872	-2.008	6.26 2.02	М
259	4326	76284 18	-12081 19	63267 170	50.329	-6.950	5.32 1.87	G
260	4691	81155 17	-18001 19	55315 195	55.722	-10.386	5.48 1.87	G
261	48331	83707 19	-31703 20	44275 196	62.124	-18.510	5.69 1.51	G
262	4688	86160 13	-09788 13	49578 130	60.082	-5.623	6.14 1.10	М
263	4699B	88131 22	-27272 22	38138 215	66 .600	-15 .854	5.09 1.43	G
264	4706	88226 12	-21389 12	41586 119	64 .763	-12.369	5.55 0.86	K

Acknowledgements

The authors are very much obliged to all persons who rendered assistance in this work; in particular, to F. A. Garaev, L. I. Rahimov, Z. K. Tutischkina, M. I. Kibardina, and E. M. Schukin. The authors gratefully acknowledge V. K. Abalakin and M. A. Fursenko who helped during the reduction of measurements.

References

- Arthur, D. W. G.: 1962, Commun. Lunar Planet. Lab. 1.
- Arthur, D. W. G.: 1965, Commun. Lunar Planet. Lab. 4, N62.
- Arthur, D. W. G. and Bates, P.: 1968, Commun. Lunar Planet. Lab. 7, N131.
- Blagg, M. A. and Müller, K.: 1935, Named Lunar Formations 1, 2. IAU, London.
- Bistrov, N. F. and Risvanov, N. G.: 1973, Trudi Kasanskoy Gorodskoy Astronomitsheskoy Observatorii 39, 156.
- Gavrilov, I. V.: 1973, The Moon 8, 511.
- Gurstein, A. A. and Slovokhotova, N. P.: 1971, The Moon 3, 266.
- Habibullin, S. T., Risvanov, N. G., and Bistrov, N. F.: 1974, The Moon 11, 12.
- Høg, E. and van der Heide, J.: 1976, Abhandl. aus der Hamb. Sternwarte, p. 9.
- Mamakov, A. S.: 1979, The Moon and the Planets 21, 17.
- Migus, A.: 1980, The Moon and the Planets 23, 391.
- Moutsoulas, M.: 1975, in Space Research XV, p. 65. Akad.-Verlag, Berlin.
- Schimerman, L. A.: 1976, 'The Expanding Apollo Control System'. Appendix. Apollo 15 Crater Coordinates Relatable to Earth-based Telescopic System'. Defense Mapping Agency Aerospace Center. St. Lous, Missouri, U.S.A.
- Schimerman, L. A., Cannel, W. D., and Meyer, D.: 1973, 'Relationship of Spacecraft and Earth-based Selenodetic System'. Defense Mapping Agency Aerospace Center, St. Louis, Missouri, U.S.A.
- Weimer, Th.: 1973, 'Note sur l'elaboration et la structure de la Liste de Cratères Fondamentaux adoptés par l'U.A.I. à Sydney', Commission 17.