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Abstract. It is often thought that the exponential distance relations that can be found amongst the 
distances of the planets and of the satellites of Jupiter, Saturn, and Uranus, of the form a,, = o$“, with a, 
being the semi-major axis of the n th body can be similarly represented by sequences of sorted random , 
numbers generated with some constraints corresponding to certain physical processes. We give in this 
paper some indications showing that pure chance or random processes only cannot explain the planetary 
and satellite distance distributions, in particular the exponential spacings, by comparing the distance 
relations of the real systems to these of planetary-like systems generated at random. 

Exponential distance relations for the present planetary and satellites systems of Jupiter, Saturn and 
Uranus are described, considering the two cases without and with introduction of ‘holes’ for the large 
spacings observed in the sequences of bodies. 

Random systems are created by generating distances at random following uniform, normal and expo- 
nential distributions, with no consideration for other orbital elements or masses as we are only interested 
in distance relations. Random systems without constraints are first compared to the real systems. In a 
following step, random systems with a corresponding number of bodies to that of the real systems and with 
the constraint of having a number of large spacings equivalent to that of the real systems are investigated. 
In a later step, we impose on the generation process the additional constraint of the ‘closeness not too 
close’ condition, i.e. for the random systems to have distances between adjacent ‘bodies’ greater than 
critical attraction distances calculated by considering the present masses of the real main planets and 
satellites. 

Comparisons of the regression coefficients means of the exponential distance relations of random 
systems to the characteristics of the real systems show that there are significant differences, in particular 
the coefficients p of the random systems are on average smaller than for the corresponding real systems, 
except for some particular cases which are shown not to be significant. 

It is concluded that distance relations observed in the present real systems can not be compared to 
sequences of sorted random numbers. Furthermore, additional physical processes other than the ‘closeness 
not too close’, have to be considered to explain the observed distance relations and in particular the 
exponential spacings. 

1. Introduction 

The problem of distance distributions in planetary and satellites systems has al- 
ways been a matter of controversy among astronomers. Two major points of con- 
troversy exist: first, the way to represent the distribution of planetary and satellite 
distances, or how to find a simple mathematical relation between distances of natu- 
ral bodies revolving around a central body; secondly, is there any physical reason 
for a distance distribution or is such a distribution at random, subject to certain 
physIca constraints? 
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In 1766, Titius made the first attempt of representation of planetary distances with 
a relation giving empirically the semi-major axis a, in AU of the n-th planet 

a, = 0.4 +(0.3 x 2”) 

for the values of n: - co for Mercury, 0 for Venus, 1 for Earth and so on. Represent- 
ations of planetary distances are numerous. A description of most of them can be 
found elsewhere (Nieto, 1972, Melchior, 1947 and references therein). Relations 
similar to (1) can also be found for the satellite systems of Jupiter, Saturn, and 
Uranus (Nieto, 1970). It is striking that most of the distance representations have a 
semi-exponential form (a constant added to a pure exponential). It was shown 
(Basano and Hugues, 1979) that all planet distances accurately fit a pure exponential 
relation 

a, = a/P (2) 
with a = 0.2853AU and p = 1 S226 for successive integral values of n ( 1 for Mercury, 
2 for Venus, etc.) when considering three ‘holes’ or ‘missing planets’. Two ‘holes’ 
correspond to the asteroidal belt; Chiron is found at the third ‘hole’ location. In a 
previous paper (Pletser, 1986), we adapted the hypothesis of ‘missing bodies’ to the 
satellite systems of Jupiter, Saturn and Uranus. All the ‘holes’ in the internal part of 
the Jupiter and Saturn systems were filled by rings and small satellites. The new 
Uranian rings and small satellites discovered by Voyager 2 (Stone and Miner, 1986, 
Lane et al., 1986) fit well into the two remaining ‘holes’ of the Uranian system. The 
simplicity of the pure exponential form (2) has to be outlined as no arbitrary constant 
is needed in obtaining an accurate representation. These two factors, simplicity and 
accuracy of the representation, are of prime importance. 

The question concerning the physical or cosmogonic reasons to explain the ob- 
served distances distributions is more difficult to answer. Some authors do believe 
that there is no evidence for physical reasons. It was argued (Lecar, 1973) that the 
spacing ratio expressed in the Titius-Bode’s relation can be generated by a sequence 
of random numbers, subject to the constraint that adjacent values cannot be “too 
close to each other”. The physical reason for this constraint is that if two planets were 
too close to each other during the accretion process, they would coalesce or cease to 
grow because they were competing for the same accretion material. Although the 
physical reason of the ‘closeness not too close’ condition is perfectly correct, we feel 
that the conclusion drawn is too speculative. Nevertheless, several theories of the 
solar system formation have attempted to account for these distance relations; refer- 
ences can be found in (Nieto, 1972). Dermott (1972) showed that the orbit distribu- 
tions of the Jovian and Saturnian systems are non-random considering the 
resonances and the preference for near-commensurabilities among the satellites, 
while the planetary orbit distribution can be regarded as non-random. In the same 
respect, the Uranian system is dubious (Dermott, 1973). 

The purpose of this paper is to give some indications showing that pure chance or 
random processes can not be invoked to explain the planetary and satellite distance 



EXPONENTIAL DISTANCE RELATIONS IN PLANETARY-LIKE SYSTEMS GENERATED AT RANDOM 3 

distributions. It is intended to see if exponential distance relations of the form (2) can 
be found for distances generated at random following uniform, normal and exponen- 
tial distributions and to compare the random systems to the real systems with respect 
to the regression coefficient /$ the accuracy of the representation and the number of 
‘holes’ introduced in the systems. In Section 2, the distance relations for the real 
systems are described. An algorithm to generate random systems and to deduce 
relations (2) without and with ‘holes’ is given in Section 3. Random systems uncon- 
strained and constrained to have a certain number of large spacings between bodies 
and to have bodies ‘not too close to each other’ are searched for in Section 4. The 
results are discussed in Section 5. 

2. ‘Holes’ in Planetary and Satellite Systems 

We consider a system of m bodies revolving around a primary at distances a, with i 
being the integer body rank, 1 < i < m and i = 1 for the first body, closest to the 
primary. An exponential distance relation (2) for this system is found by a linearized 
exponential regression of the distances of classification integer numbers n, attributed 
to each revolving body of rank i. In attributing the ni to the bodies, particular 
attention must be paid to the comparison of distance ratios of two successive bodies 

ri = ai/ai- , (3) 

as the accuracy of the representation (2) depends on the value of /?, which can be 
approximated roughly by the geometrical mean of the ratios ri. If all the ratios ri are 
similar or at least of the same order of magnitude, the classification numbers ni are 
taken as being equal to the body ranks i. If some ratios ri in a given system are much 
larger than others, we can classify the system in two ways: either ignore the discrepan- 
cies and take the classification numbers ni equal to the ranks i with the possible 
consequence of obtaining a poor distance representation; or postulate that one or 
several gaps exist in the sequence of bodies and introduce a certain number of ‘holes’. 
The number of ‘holes’ is determined by comparing the order of magnitude of the m 
ratios ri. A magnitude order is defined as the number of time a small ratio or a 
geometrical mean of small ratios, has to be multiplied by itself to roughly equal a 
large ratio. A number k of ‘holes’ is introduced between two bodies having a large 
distance ratio, such as the (k + 1)th root of the large ratio becomes of the same 
magnitude order as the small ratios. When attributing a classification number to the 
body of rank 1, the ratio of its distance to the primary radius is compared to the other 
ratios of the system. A number h of ‘holes’ may be introduced between the body of 
rank 1 and the primary without affecting the coefficient fi and the linear correlation 
coefficient (LCC) of a regression, as linear transformations of distances, e.g. shift of 
all classification numbers affect only the distance coefficient a. 

The main objection against this empirical method is that the number of introduced 
‘holes’ influences the final value of B and the LCC; for increasing number k of ‘holes’ 
between the first and the last body, /I decreases and the LCC increases, both towards 
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unity. The right compromise is found, first, by keeping the number of ‘holes’ to a 
minimum; secondly, by comparing the value of p to the geometrical mean of the small 
ratios and if a too large discrepancy is found, the number k of ‘holes’ is modified and 
third, for real planetary and satellite systems, only the main bodies are considered as 
a first step. 

For the four real systems listed in Table I, two groupings are considered: systems-l 
consist of only the main bodies (terrestrial and giant planets, large and medium size 
satellites); systems-2 include the bodies of systems-l and the small bodies (Asteroids, 
small satellites and rings). 

For the systems-l, the first distance ratio r, , is the ratio of the first body semi-major 
axis and the primary equatorial radius. For the planetary systems, the’proto-Sun 
radius, assumed to be 0.25 AU, is considered. For the large ratios ril, the exponent 
(k + 1) or (h + 1) determines the number k or h of ‘holes’ to be introduced between 
two successive bodies or between the primary and the first body. In the systems-2, 
among the small bodies having close semi-major axis, the largest is chosen as these 
can not be considered separately (being too numerous). Though it is always possible 
to find two asteroids in the asteroidal belt matching closely the two ‘holes’ location 
suggested by the large distance ratio between Mars and Jupiter, we select Vesta and 
Hygiea among the four largest asteroids having diameters greater than 400 km (dis- 
tance ratios: rc’eres,Vesta = 1.17 1; rPallas,Ceres = 1 .OO 1; rnygiea,paiias = 1.135; data from 
Bowel1 et al., 1982, Williams, 1982). We consider Himalia and Pasiphae, the largest 
amongst each external groups of four satellites of Jupiter (data from Morrison et al., 
1977) and 1986U1, the largest amongst the inner small satellites of Uranus (data 
from Stone and Miner, 1986). Mean distances for the rings grouped with their 
shepherd satellites were calculated (Pletser, 1986). The distance ratios ri2 are listed in 
Table I with the corresponding classification numbers ni. The small bodies and rings 
fit very well into all the ‘hole’ locations of the planetary and Uranus systems and in 
the inner part of the Jupiter and Saturn systems. The empty ‘holes’ are located in the 
outer part of the Jupiter system, between Callisto and the two groups of irregular 
satellites, and in the outer part of the Saturn system, between Rhea and Titan and 
between Hyperion and the irregular Iapetus and Phoebe. 
The following characteristics of the real systems are given in Table II: 
- the &,, and LCC, of exponential regressions of semi-major axis on integer ranks i, 

without ‘holes’; 
- the numbers h and k of ‘holes’ between primary and first body and between first and 

last body; 
- the /Irk and LCCk of regressions of semi-major axis on classification numbers nb 

with k ‘holes’. 
All the Brk are close to the systems small ratios of Table 1 and, as expected, the relation 
/I,.,, > prk holds for all the real systems. The hypothesis of introducing ‘holes’ in the 
distance relations is justified first, by the discrepancies observed between the flfi of 
systems- 1 (main bodies only, without ‘holes’) and the &.,, of systems-2 (main and small 
bodies, without ‘holes’), as for the planetary and Saturnian systems, or when the 
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TABLE11 
Characteristics of the real systems 

System m Pa LCC, h k B Ik LCC, 

Sun-l 9 1.866 0.9906 
Sun-2 12 1.525 0.9984 
Jupiter-l 5 1.752 0.9927 
Jupiter-2 10 1.793 0.9608 
Saturn- 1 10 1.570 0.9527 
Saturn-2 14 1.412 0.9459 
Uranus- 1 6 I .472 0.9986 
Uranus-2 8 1.456 0.9988 

0 3 1.523 0.9988 
0 0 = 
2 1 1.590 0.99=84 
0 4 1.547 0.9984 
4 11 1.251 0.9995 
0 11 1.247 0.9995 
2 0 = = 
0 0 = zzz 

=: repeat of previous values for k = 0. 
System: as listed in Table I. 
m: number of bodies considered in the real system. 
j?&, LCC,: coefficient p and linear correlation coefficient of exponential regression without 
‘holes’. 
h, k: numbers of ‘holes’ introduced between primary and first body and between first and 
last body. 
Plk, LCC,: coefficient p and linear correlation coefficient of exponential regression with k 
‘holes’. 

p,,,‘s are similar, by the discrepancy between the LCC,‘s, as for the Jupiter systems, 
and second, by the closeness of the Brk and LCC, for the systems-l and systems-2. 
The closeness of the flrk shows also that the number k of introduced ‘holes’ is ade- 
quately chosen. 

3. Generation of Random Systems 

3.1. ALGORITHMFORGENERATIONOFRANDOMSYSTEMS 

Random systems of m bodies are created with orbit radii generated at random. No 
concern is made for other orbital elements or masses as we are only interested in 
distance relations. Sequence of m + 1 random variables are generated and sorted in 

ascending order. The m last variables are divided by the smallest, in order to obtain 
m random orbit radii a, in units similar to primary radius units. 

The ‘holes’ are introduced after comparison of the ratios ri to a mean ratio F 
of small ratios, as in Section 2. A criterion to select ? is chosen as follows. First, for 
1 d i, j Q m, we compute the ratios 

eij = ((ri - Yj)/YiJ 

with vertical bars denoting the absolute value. We select the ratio rj for which appears 

the largest occurrence of eij smaller than a certain limit L, _ If several rj have the same 
occurrence of eii < L,, the smallest r- is selected. Secondly, for the selected ratio rj, all 
the ratios r” such as eg is smaller than a second limit L,, are determined. If no such 
ratios r: can be found for the selected ratio rj, we take the next rj for which appears 
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the second largest occurrence of eij < L1 and another set of r” is calculated. If no 
ratios rT can be determined at all, the smallest ratio ri is taken as the mean ratio ?. 
Otherwise, the mean ratio J is the geometrical mean of all the ratios r:. The values 
of L, and L2 are found by applying this criterion to the four real systems-l of Table 
I in order to obtain the characteristics of Table II, giving L, = 0.2 and L, = 0.091. 

The numbers h and ki of ‘holes’ to be introduced between the primary and the first 
body and between two successive bodies of rank i - 1 and i are computed as in 
Section 2 using the mean ratio F. Some of the ki or h may obviously be nil. The 
classification numbers are attributed to each body: nl = h + 1 to the first body and 
the following, ni = yliP 1 + ki + 1, to the bodies of rank i for 1 < i < m - 1 and with 
k = X ki. An exponential regression of the distances ai on the body ranks i give the 
exponential distance relation without ‘holes’ and a second regression on the classifica- 
tion numbers ni give the distance relation with ‘holes’. 

3.2. RANDOMVARIABLEGENERATORS 

The random variables are generated from three distributions: uniform, normal and 
exponential. Uniform random integer variables Xi are generated by the linear mixed- 
congruential method 

Xi = (pXi- 1 + q) modulo A4 (5) 

where p, q, and M are integers, with p, q < A4 (Knuth, 1969, Kennedy and Gentle, 
1980). Normal random variables are generated by the method of acceptance-rejection 
of uniform random variables (Kinderman and Ramage, 1976, Marsaglia, 1964, 
Ahrens and Dieter, 1972). Exponential random variables Ei are generated by the 
inversion method Ei = - log(XJM) (Ahrens and Dieter, 1972). 

The randomness of a sequence of numbers can be tested but it must be outlined 
that a sequence may exhibit a global randomness and local non-randomnesses. 
Therefore subsequences extracted from a main sequence may not be guaranteed 
perfect randomness, if this ever exists. One of the most efficient tests to detect depar- 
ture from non-randomness in a sequence is the run test (Levene and Wolfowitz, 1944, 
Knuth, 1969). The three random generators were successfully run tested with the 
following two sets of parameters: 

p = 5” = 30517578125; q = 1; M = 235 = 34359738368 (6) 

p = (212 - 3) = 4093; q = 1; M = 224 = 16777216. (7) 

The first set can be considered as “good” values as they pass other efficient tests 
(Knuth, 1969). 

4. Random Systems 

4.1. UNCONSTRAINEDRANDOMSYSTEMS 

Random systems without constraints are first investigated. 500 systems of m bodies 
(with m = 4, 6,8, 10, 12, and 14) are generated by the three random generators, with 
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2.4- b’ - 

2.2 - 
0 Uniform 
l Normal 
* Exponential 

2 4 6 8 10 12 14 16 

Fig. 1. The mean regression coefficients PO and LCC, of sets of 500 unconstrained random systems of 
4,6,8, 10, 12, and 14 bodies for the uniform, normal and exponential generators (the error bars represent 

the standard deviations). 

the parameters (6). For each system, the regression coefficients and the numbers of 
‘holes’ are computed. The means fl,,, KC,, /& and 5 for each set of 500 random 
systems are shown in Figures 1 and 2, where the error bars represent the standard 
deviations o. For the three generators, the means /? and the G decrease for increasing 
number m of bodies and, for each value of m, the inequality 

&, E ' i&l, N ' PO, Cl ' I%, E ' itk, N ' hc, U (8) 

2.0 
. PK 

1.8- 

1.6 - 

60 : 
30 1 0 4 q ** n4 q 4+ 0.4 044 

0 o&a 4lm ed oh 415m ohm 
4 6 8’ IO 12 14 

Fig. 2. The mean regression coefficients flk and means of number Iiof ‘holes’ between the first and the last 
body of sets of 500 unconstrained random systems (same notations as Figure 1). 
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holds among the six means 8, where the indexes E, N, and U refer to the generator 
type. For increasing m, there is a slight decrease of the means LCC, u and a slight 
increase of ]T;CC,,, ,,, and ICC,,, p The means Eof number of ‘holes’ introduced between 
the first and last body vary between 19 and 27, except in two cases (84 and 91) 
corresponding to extremely high values of k in two random systems; recall that k is 
calculated for each random system in the same way as for the real systems. All the 
means LCC, are greater than 0.995. If we compare these means to the values of the 
real systems with corresponding number of bodies, the means Do, ICC0 are smaller 
than the corresponding real fir0 and LCC,, except for systems having a small number 
of bodies: Jupiter-l and Uranus-l (m = 5 and 6). For all corresponding systems, the 
means p, and LCCk are smaller than the Brk and LCC& while the means E-of ‘holes’ 
are much larger than for the real systems. 

4.2. CONSTRAINED RANDOM SYSTEMS WITH CONSTRAINT ON NUMBEROF LARGE 

SPACINGS 

In Table II, the large ratios between some bodies of systems-l or between first bodies 
and primaries suggest that large spacings between main bodies can be chosen as a first 
constraint in generating random systems corresponding to real systems. We generate 
constrained random systems of m bodies having predetermined numbers Hand K of 
large spacings, without imposing their locations, with m, H and K corresponding to 
the real systems m, h, and k. A number N of unconstrained random systems are 
generated with the parameters (7), until 500 systems are found with H and K large 
spacings. More than 4 million random systems are investigated in this way. The Figure 
3 shows the means Band LCC for sets of 500 constrained random systems, designated 
by the corresponding real system name between quotes. Comparing these means to 
the real systems values, the means Do and Bk are smaller than the PI’s for all systems, 
except for the (Uranus- 1-2)systems, while the means ICC, and LCCk are smaller than 
the real LCC’s, except the LCC, for the (Jupiter-2)and( Saturn- 1-2)systems. 

4.3. RANDOMSYSTEMSWITHTHE‘CLOSENESSNOTTOOCLOSE'CONDITION 

In a remarkable Monte-Carlo computer simulation, Dole (1970) generated coplanar 
planetary systems by injecting into a Laplace-type nebula of gas and dust small nuclei, 
one at a time, with orbits semi-major axis and eccentricities determined by random 
numbers. The nuclei would grow into protoplanets by accreting dust and gas, if their 
mass were large enough and their temperature low enough. The condition of ‘closeness 
but not too close’ was expressed by allowing the coalescence of bodies on crossing orbits 
or coming within a certain gravitational interaction distance x, function of the nucleus 
semi-major axis a and instantaneous mass h4, relative to the primary unit mass: i.e., 

x = a[M/( 1 + M)] “4 = ap i’4. (9) 

We consider upper limit cases where the nuclei masses are replaced by the present 
planets mass (Levy, 1979, except Pluto-Charon: Reinsch and Pakull, 1986) and 
present satellites mass (Jupiter and Saturn satellites: Morrison et al., 1977, except 
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. 

1.8- . - 1.8 

PO PK po=pK 
1.6- -1.6 

1.0 I I I 1.0 
. q *o n q ** q +* 

l * 
LCCo=LCCk q .* LCCk q *o q +* 
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l . 

n n* n q n n n* “.J* ~ u.34 

Fig. 3. The mean regression coefficients fl and WC of sets of 500 random (systems-l-2) constrained to 
have numbers of large spacings equivalent to that of corresponding real systems, compared to regression 

coefficients /3 and LCC of real systems (same notations as in Figure 1; real systems: W). 

Janus: Aksnes, 1985; Uranus satellites: Stone and Miner, 1986, except satellite 
1985U1, approximated by the mass of a sphere of 85 km radius and density of 1.2). 
Random systems are generated with bodies not ‘too close to each other’. This condi- 
tion is introduced in the above algorithm by constraining the orbits radii of two 
successive bodies, such as 

aj-uj_, >xi*, (10) 

where x: is the largest of the critical distances xi- , and xi, giving the condition on 
the distance ratios 

ri>l+(x”/aj_,)=R (11) 

with R being (1 + p!!! ,) or ( 1 - pi’“) -’ if the largest critical distance corresponds to 
the inner or to the outer body. Constrained random systems corresponding to real 
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0.95 
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PK 
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q 44- q 44= 1.0 
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m 
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1.6- . - 1.6 

1.4- 

PO 
po=plc - 1.2 

1.0 

0.95 

-1.0 

LCCk n l 4 

LCCO 
LCCo = LCCk 

4O 
0 

n 
0.9 

Fig. 4. Means of regression coefficients Band LCC of sets of 500 random (systems-l) with the constraints 
of ‘large spacings’ and of ‘closeness not too close’, compared to regression coefficients b and LCC of real 

systems (same notation as in Figure 3). 

systems-l are generated with the parameters (7) with the large spacings constraint 
and the additional constraint (11). More than eleven million random systems are 
investigated in this way. The Figure 4 shows the means a and f;CC for sets of 500 
such constrained random systems. Comparing these to the real systems values, the 
means &, and pk are smaller than the &‘s for all cases, except for the (Uranus-l) 
systems with the three generators and the (Jupiter-l) systems with the exponential 
generator, while the means LCC, and tCCk are smaller than the real LCC, except for 
the ECC, of the (Saturn-l) systems. 

5. Discussion 

Although the random systems characteristics means differ from the real systems ones, 
their range includes values similar to the real systems characteristics. The difference 
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between real systems and random systems becomes more apparent for systems hav- 
ing a large number of bodies and for increasing number of constraints in the gener- 
ating process. It is important to note that the differences between real and random 
systems are not’ related to the introduction of ‘holes’ in the computation of the 
distance distributions, as it can be seen by comparing the fllo and LCC, to the 
means PO and LCCO (Figures 3 and 4). Another difference is the discrepancy, even in 
first approximation, between the means f10 and pk of constrained random systems, 
while the real systems-l flrk are similar to the systems-2 pro (see Table II), due to the 
fact that all the ‘holes’ of the real systems-l are filled by small bodies of systems-2 
(see Table I), except for the outer part of the Jupiter and Saturn systems. A further 
difference, except for the (Saturn-l) systems with the ‘large spacings’ and ‘closeness 
but not too close’ constraints, is a poor representation of constrained random sys- 
tems distance distributions with ‘holes’, less good on the average than for the real 
systems despite using the same criterion for the introduction of ‘holes’. 

To compare the spacing ratios of random and real systems, a constrained random 
system is defined to be similar to a real system for the same numbers of bodies, if its 
coefficient 6 (PO or fik) is in the arbitrarily chosen range around 6, (pfi or prk) 

Br - KPr - l)/lOl G B d S? + KP, - l)/lOl. (12) 

Among the N random systems generated for each case, N* = 500 systems are found 
compliant with the specified constraints and N,, Nk, and NOk are the numbers of 
systems having their j?,,, fik and simultaneously j$, and Pk in the ranges (12) respec- 
tively. One defines the following probabilities of generating a random system com- 
pliant to the specified constraints: 
-P,=N*IN; 
- or similar to a real system without ‘holes’ in the distance relation (& in range ( 12)) : 

P,=N,/N; 
- or similar to a real system with k ‘holes’ in the distance relation (Pk in range (12)): 

- or similar to a real system simultaneously with and without ‘holes’ in the distance 
relation (&, and Pk simultaneously in the ranges ( 12)): Pok = N,,/N. 

For the three generators, the indicative magnitude orders of these four probabilities 
are shown in the Figure 5 for the (systems-l) and (systems-2) with the ‘large 
spacings’ constraints and for (systems-l) with the ‘large spacings’ and ‘closeness 
not too close’ constraints. The probabilities P, are of the order of lop2 or less. The 
probabilities P,, Pk, and POk are around 10e3 for systems with small numbers of 
bodies ((Jupiter-l) and (Uranus) systems) and between several lop4 and 10e7 for 
systems with large numbers of bodies ((Planetary), (Jupiter-2) and (Saturn) 
systems). 

Generating with specified constraints a random system having its coefficient p of 
distance relation with or without the introduction of ‘holes’, close to the coefficient 
b, of a corresponding real system has therefore little chance to occur. Generating with 
specified constraints simultaneously four random systems of the same numbers of 
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Fig. 5. Semi-logarithmic diagrams of four probabilities (in each diagram, columns from left to right: Ps, 
PO, Pk, POk) defined in text, of generating random (systems-l-2) having their coefficients p close to that 
of corresponding real systems for different constraints (L.S.: ‘Large spacings’, C.N.T.C.: ‘Closeness but 
not too close’) on the random generation process and for the uniform, normal and exponential generators. 

The values not appearing could not be found, the corresponding number of systems being nil. 

bodies as the four real systems and having their coefficients fi close to the four real 
systems /3, has an even smaller probability of occurring, given by 

P a, 4syst = Pa, Sun-b X Pa, Jupiter-b X Pa, Saturn-b X Pa, Uranus-b (13) 

with a = (0) (k) or (Ok), b = 1 or 2 and where it is assumed that there is no causal 
relation between the distance relations of the four generated systems, i.e. the proba- 
bilities are independent. These are of the order of lo-l3 to lo-l7 for the ‘large spacings’ 
constraints and of lOPI4 to lo-l9 for the ‘large spacings’ and ‘closeness but not too 
close’ constraints. 

One can argue that, instead of comparing the real systems 8, to the random systems 
means p, it would have been better to compare the pr to the modes of the frequency 
distributions of the random systems /I. As the frequency distributions of the random 
systems fro and Pk have positive skewness, the modes and medians are smaller than the 
alithmetical means. The real systems 8, are greater than most of the corresponding 
random systems means Qand the comparison with the modes would have been worse. 
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For cases where the random systems means flare close to the fl,, statistical decision 
tests are useful. Supposing that a real system distance relation can be found by a 
random process, its B, should be representative of the p’s of the population of all 
systems of the same number of bodies generated by the same random process, i.e. the 
fir should be an estimate of this population mean (p). Considering that each set of 
N* = 500 random systems is large enough to assume normality with mean p and 
standard deviation ran and taking these as estimates of the population mean (p) and 
standard deviation 0, a two-tailed test on the Z-score zN give the significance level Q, 
of rejecting the null hypothesis: p, is respresentative of the population mean (/?) 

ffo: @> = 8,; ff,: (P> f B, with zN = @ - ~r)i(~si~~~ (14) 

Only the systems of a small number of bodies are worth examining: (Jupiter-l) and 
(Uranus-l-2) with random generators and constraints as indicated in Table III with 
the Z-scores zN and the significance levels CI~. These are nil or too small to be 
significative, leading to the rejection of the hypothesis H, in all cases, except for the 
(Uranus-l) system one with the ‘large spacings’ and ‘closeness not too close’ con- 
straints and the normal generator. All other systems have higher zN values. As the 
normal assumption of the /? distributions is not exactly correct, two non-parametric 
distribution-free tests are additionally performed. For the sign test (Bailey, 1983), the 
differences (p - PI) are computed. If the hypothesis H,, is founded, we should expect 
a similar number D of positive and negative differences, i.e. the difference distribution 
should be binomial with p = 0.5. Using the large-sample normal approximation to 
the binomial, the normal test variable is 

zs = (D - N*p) [N*p( 1 -p)] -“2. (15) 

A more powerful test is the Wilcoxon’s signed rank sum test (Bailey, 1983). The sums 
T of the ranks of the positive and negative differences are computed. The normal test 
variable is 

Z w = [IT - N*(N* + 1)/4] - l/2] [N*(N* + l)( 2N* + 1)/24] ~ l”. (16) 

The levels of significance for both tests, shown in Table III, are nil or two small to 
be significative, leading again to the rejection of the null hypothesis, except with the 
Wilcoxon test for the same case as with the normal test. For this latter case, its 
tendency toward a possible random-like generation can be considered as marginal for 
the following reasons: first, only two of the three tests show agreement; second, it is 
not reflected in any other Uranus-like system configurations, only for the particular 
configuration of 6 bodies with two large spacings between the primary and first body, 
no large spacings between the first and the last body and the ‘closeness but not too 
close’ constraint; third, it is only valid for this particular kind of generation from a 
normal random distribution. Note also that the corresponding mean LCC for the 
normal generator (0.986) is well below the real Uranus LCC (0.9986) and that, 
among the four real systems, it would be surprising that only the Uranus system 
exhibits this tendency of a possible random-like generation. 
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Therefore, the real systems /Ir are not representative of the /I’s of the corresponding 
random systems population for all systems considered except for the above possibly 
dubious Uranus-l case. 

For the planetary system, one can argue that, instead of the present planets mass 
reflecting the present planetary system state, the proto-planets higher mass at the end 
of the accretion phase should be used in Dole’s critical distance expression in the 
‘closeness but not too close’ constraint. This was performed (Pletser, 1987) by consid- 
ering the present planets mass increased up to the solar abundance and similar 
conclusions were found for the planetary system. 

Other additional constraints could have been used on the random. generation 
process. These can be deduced from the particularities of the real systems distribu- 
tions and distance ratios (see Table I). Considering three groups of bodies in each real 
system (inner, giant and outer groups), first, the large spacings occur more often 
among the bodies of the outer groups or between the outer and the giant groups; 
second, no large spacings occur in the inner groups of the real systems-2 while for the 
real systems- 1, large spacings are observed in the inner groups or between the giant 
and the inner groups or the primary; third, no large spacings occur in the giant 
groups, except for the pairs Saturn-Uranus and Rhea-Titan (Titan seams to be a 
special case as it has so many different features in respect of the other Saturn satel- 
lites; see e.g. Prentice, 1984). The sequences 10 to Ganymede and Janus to Dione have 
to be outlined as, inside a sequence, the distance ratios are all nearly equal (this can 
be easily explained in first approximation by Kepler’s third law and the existing 
resonances or near-commensurabilities amongst their mean motions). As large spac- 
ings and repetitive similar ratios seem to occur somehow at particular locations in the 
real systems, additional constraints could be deduced for generating random systems 
resembling more closely to the real systems. These new constraints are not investi- 
gated as it seems obvious that they would reduce even more the probabilities of 
generating random systems similar to real systems. Also, increasing the number of 
constraints would eventually lead to random systems increasingly similar to real 
systems, but with the consequence of losing totally the random aspect of the genera- 
tion process. 

Random generators other than from uniform, normal and exponential distribu- 
tions could also have been used, but these three main distributions have the advan- 
tage of natural simplicity. Other random distributions would tend to loose this 
natural simplicity and transform the random aspect of generation into an ad hoc 
generation kind. 

6. Conclusions 

Although the arrangements of the real systems as in Table I can be discussed, they 
can be regarded as representative of the present real systems. Their distance relations 
without and with introduction of ‘holes’ are compared to these of unconstrained 
random systems and of constrained random systems having more specific similarities 
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with the real systems. The characteristics of the unconstrained random systems are on 
average different to that of the corresponding real systems, in particular the co- 
efficients p are smaller on average to that of the real systems. 

In a following step, we imposed on the random generation process two constraints 
corresponding to features existing in the distance distributions of the real systems, 
namely an equivalent number of large spacings and the ‘closeness not too close’ 
condition, i.e. for the random systems to have distances between adjacent bodies 
greater than critical attraction distances calculated by considering the present masses 
of main planets and satellites. More than 16 million constrained random systems 
were analysed. Very few are similar to the real systems, specially for systems with a 
large number of bodies. Magnitude orders of probabilities of generating constrained 
random systems with distance relations having their coefficients /I in the range (12) 
around the /I, values of real systems were deduced. These showed that the chances of 
obtaining a random system similar to a real system are very small. The means D of 
the (Jupiter-l), (Uranus-l-2) random systems, with small numbers of bodies, were 
found roughly close to the corresponding real systems pr. Three statisical tests 
showed that we can reject, with very low significance levels, the hypothesis that the 
real system /I, is representative of the population of random systems generated with 
the same number of bodies and constraints, except for one dubious case. 

Therefore, the distance distributions, and in particular the exponential spacings, 
observed in the real systems can not be compared to distributions of sorted random 
numbers sequences and the distance relations of the real systems can not be explained 
by a random generation process, in particular with the simultaneous constraints of 
having an equivalent number of large spacings and of ‘closeness not too close’. This 
last condition is certainly necessary but not sufficient to explain the observed expo- 
nential spacings. Other physical and dynamical processes, for example drag in a 
gaseous nebula, resonances or tides for satellites, have to be considered to account for 
the observed distance distributions of the planets and satellites. Random processes 
are believed to be important for planetesimals accretion but these would act only 
locally and not for the overall distance distributions. 
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