
Machine Learning, 24, 65-85 (1996) 
© 1996 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands. 

On Learning Visual Concepts and DNF Formulae* 

EYAL KUSHILEVITZ** eyalk @ das.harvard.edu 

DAN ROTH danr@das.harvard.edu 

Aiken Computation Laboratory, Harvard University, Cambridge, MA 02138. 

Editor: Leonard Pitt 

Abstract. We consider the problem of learning DNF formulae in the mistake-bound and the PAC models. We 
develop a new approach, which is calledpolynomial explainability, that is shown to be useful for learning some new 
subclasses of DNF (and CNF) formulae that were not known to be learnable before. Unlike previous learnability 
results for DNF (and CNF) formulae, these subclasses are not limited in the number of terms or in the number of 
variables per term; yet, they contain the subclasses of k-DNF and k-term-DNF (and the corresponding classes of 
CNF) as special cases. We apply our DNF results to the problem of learning visual concepts and obtain learning 
algorithms for several natural subclasses of  visual concepts that appear to have no natural boolean counterpart. 
On the other hand, we show that learning some other natural subclasses of visual concepts is as hard as learning 
the class of all DNF formulae. We also consider the robustness of these results under various types of noise. 
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1. Introduction 

A central question in computational learning theory is deciding which subclasses of boolean 
formulae are learnable under the standard learning models. One of the main open problems, 
which has remained open since proposed by Valiant (Valiant, 1984, Valiant, 1985) is the 
question of the PAC-learnability of disjunction-normal-form (DNF) formulae. 

Despite the efforts devoted to resolving this problem, success was obtained only for 
relatively simple subclasses, such as k-DNF (DNF formulae in which each term con- 
sists of at most k literals) and k-term-DNF (DNF formulae with k terms). The widest 
subclass of boolean formulae known to be PAC-learnable is that of k-decision lists (k- 
DL) (Rivest, 1987) which contains the above two subclasses as special cases. Instead, 
work has been focused recently on other models where, with the added ability of the 
learner to make various kinds of queries, a wider collection of subclasses are known to 
be learnable; these include, for example, monotone DNF (Valiant, 1984), read-twice DNF 
(Hancock, 1991, Aizenstein & Pitt, 1991, Pillapakkamnatt & Raghavan, 1993), Horn for- 
mulae (Angluin, Frazier, & Pitt, 1992), log n-term DNF (Blum & Rudich, 1992), Read-k- 
Satisfy-j DNF (Aizenstein & Pitt, 1992, Blum et al., 1994), and Decision Trees (Bshouty, 
1993). Most recently, Jackson (Jackson, 1994) shows (using the Fourier algorithm of 
(Kushilevitz & Mansour, 1993)) how to learn the class of DNF formulae with respect to 
the uniform distribution using membership queries. However, for the DNF problem in the 
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PAC model, simple reductions (Kearns et al., 1987) show that the restrictions suggested by 
researchers to tackle the problem when queries are available, e.g., limiting the number of 
occurrences of a variable, considering monotone formulae etc., are not useful in the query- 
less models. Thus the PAC-learnability of DNF formulae (beyond the above mentioned 
subclasses) is still a mystery. 

One reason for the attraction of the class of DNF, aside from its being a theoretical 
puzzle, is that people appear to like it for representing knowledge (Valiant, 1985). Indeed, 
in (Shvaytser, 1990) the observation is made, that learnability results on learning DNF 
and CNF formulae are useful for the task of learning to recognize visual concepts in digital 
pictures. By mapping boolean variables to pixels in an n x n digital picture, the equivalence 
to learning DNF is shown 1. Then, known DNF and CNF learning algorithms are used to 
learn the corresponding visual concepts. 

We present a new approach to the problem of learning DNF formulae. As a result, 
we are able to learn any subclass of DNF which is polynomially explainable. Informally 
speaking, we show that, when learning DNF it is not necessary for the set of candidate 
monomials to be of polynomial size (as is the case, for example, with k-DNF formulae); 
we can handle DNF formulae defined over a super-polynomial set of monomials, as long as 
it is possible, given a (positive) example, to output a list of monomials (the explanations) 
such that one of them is satisfied by the example. Negative examples are then used to 
eliminate "false" explanations 2. (Similar ideas were developed in different contexts, e.g. 
in (Blum, 1992, Blum & Rudich, 1992, Aizenstein & Pitt, 1992).) The same approach is 
used for learning subclasses of CNF formulae. DNF formulae in the subclasses shown to be 
learnable are not limited in the number of terms or in the number of variables per terms, and 
they contain the subclasses of k-DNF and k-term-DNF (and the corresponding subclasses 
of CNF) as special cases. 

We then apply our approach (and results) to the PAC-learnability of visual concepts (in fact, 
most of our results hold in the mistake-bound model as well). By a visual concept we mean 
a collection of patterns (e.g., rectangles, chairs), that are defined by certain characteristics 
(e.g., shape, texture). In the learning scenario, examples of pictures ('scenes') are given to 
a learning algorithm, labeled as positive or negative according to whether they contain at 
least one member of an unknown collection of patterns or not. The goal is to acquire the 
skill of labeling future pictures accordingly. 

We consider two versions of the problem: (1) A static version, in which each pattern in 
the visual concept has afixed location in the picture and only pictures containing the pattern 
in that location are labeled positive; (2) A dynamic version, in which a pattern might appear 
anywhere in the picture, i.e., it might be translated or even rotated and scaled in certain 
ways. The dynamic version seems more suitable for possible applications. However, it 
is more convenient to consider the static version for demonstrating the correspondence to 
the DNF problem. Fortunately, all the algorithms we present for the static version of the 
problem can be easily modified to work in the dynamic case 3. We hereafter discuss only 
the static version of the problem. 

We show that structural information on the concept classes, (e.g., all concepts are polygons 
with k edges) can be used to devise efficient learning algorithms. This gives some learning 
algorithms for several "natural" subclasses of visual concepts. We also exhibit some of the 
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limitations of this method: we use reductions to prove that learning various other visual 
concept subclasses is as hard as learning general DNF formulae, although these concept 
classes have seemingly helpful structure. 

It is a natural question whether the ideas presented here (along with some "engineering") 
can be used to solve some "real-world" problems. We believe that they do; indeed, some 
experiments that use these idea to solve problems concerning the recognition of human 
motion (Bender & Roth, 1994) and character recognition (Basri, 1994) seem to be encour- 
aging. A major problem from the engineering side of the problem is how to generate the 
"explanations" in an efficient and compact way. 

A more intrinsic difficulty is that our model is very "clean" while "real-world" data (both 
the examples and their classifications) is often noisy. Therefore, we discuss the problem 
of learning polynomially explainable classes in the presence of various kinds of noise. We 
consider classification noise, malicious noise, and a certain type of attribute noise that occurs 
in visual concepts (when the target object may be obstructed by other objects). We show 
how these kinds of noise can be tolerated in learning polynomially explainable classes. 

In the next section we formally define the learning models considered. In Section 3 we 
prove the main theorem in terms of DNF (and CNF) formulae. In Section 4 we present the 
visual learning problem and some of the results in terms of visual concepts. In section 5 
we discuss learning in the presence of noise, and in Section 6 we discuss the results and 
briefly describe some other applications of our technique. 

2. Preliminaries 

We begin by formally defining the learning models discussed in this work - the standard 
PAC model (Valiant, 1984) and the mistake-bound model (Littlestone, 1988). 

The instance space X is {0, !} n, the set of all possible assignments to n boolean variables. 
A concept f is a boolean function on X. Positive (respectively, negative) examples of f 
are examples (instances) on which f is 1 (respectively, 0). A concept class is a collection 
of concepts. 

In the learning scenario, we are given a concept class C and there is some unknown target 
concept fT E C that we are trying to learn. In the mistake-bound model, at each learning 
stage, an example z E X is presented; the learning algorithm is asked to predict fT(z) and 
is then told whether the prediction was correct. Each time the learning algorithm makes an 
incorrect prediction, we charge it one mistake. We say that C is mistake-bound learnable 
if there exists a polynomial-time prediction algorithm .A (possibly randomized) that for all 
f y  E C and any sequence of examples is guaranteed to make at most polynomially many 
(in n) mistakes. We say that C is expected mistake-bound learnable if there exists ,4, as 
above, such that the expected number of mistakes it makes for all fT E C and any sequence 
of examples is at most polynomially many (in r~). Note that the expectation is taken over 
the random choices made by A; there is no probability distribution associated with the 
sequences !. 

In learning an unknown target function fT E G in the PAC model, we assume that 
there is a fixed but arbitrary and unknown distribution D over the instance space X. The 
learning algorithm sees examples drawn independently according to D together with their 
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labeling (positive/negative). Then it is required to predict the value of fT on another 
example drawn according to D. Denote by h(x) the prediction of the algorithm on the 
example x E X. The error of the algorithm with respect to fT and D is measured by 
error(h) = PrxeD{fT(x) ¢ h(x)}. 

We say that C is PAC-learnable if there exists a polynomial-time learning algorithm .4 
and a polynomial p(,  , ) such that for all n > 1, all target concepts fT C C, all distribution 
D over X, and all e > 0 and 0 < (5 < 1, such that if the algorithm A is given p(n, l /e ,  1/5) 
examples, then with probability at least 1 - (5, A's hypothesis, h, is such that error(h) < e. 

It can be shown that if a concept class 0 is learnable in the expected mistake-bound model 
(and thus in the mistake bound model) then it is PAC-learnable (Haussler et al., 1991). 

3. The DNF Problem 

In this section we present a mistake-bound algorithm for subclasses of DNF formulae satis- 
fying certain properties. This, in particular, implies the PAC-learnability of these subclasses 
(Littlestone, 1989). The main idea is the following: Consider, for example, Valiant's algo- 
rithm for learning k-DNF (Valiant, 1984) (many other algorithms share the same structure). 
Before seeing any example, the algorithm enumerates the set of all (polynomially many) 
monomials of size at most k. Then, it uses the examples to "eliminate" those monomials 
which are not consistent with the examples. This method clearly cannot work for sub- 
classes whose underlying set of monomials is super-polynomial. In our approach, we do 
not enumerate all possible monomials ahead of time, but rather enumerate monomials that 
"explain" the classification of the particular examples that we see (and as before, examples 
are also used to eliminate "wrong explanations"). For certain classes in which each example 
has only polynomially many explanations this gives a learning algorithm with the desired 
behavior. More formally: 

Definition. Let x l ,x2 , . . .  , x ,  be a set of n boolean variables, 3,l be any collection of 
monomials on the literals xl, ~1 , . . . ,  xn, Xn and p(n), q(n) and 9(n) be polynomials. Let 
CM be the class of all functions which are disjunctions of at mostp(n) monomials in 34. We 
call CM polynomially explainable if there exists an efficient (polynomial-time) algorithm 
A such that for every function f E Cz4, and every positive example of f as input, .4 outputs 
at most q(n) monomials (not necessarily all of them are in Ad) such that with probability 
at least 1/9(n) at least one of them appears in f (where the probability is taken over the 
coin-flips of the algorithm .4, in case that .4 is a probabilistic algorithm). 

We emphasize that f itself is not given to the algorithm A. Also note that a function 
f in the class Cn4 may have few logically-equivalent representations as a disjunction of 
monomials in .M. The definition requires the output of the algorithm A to satisfy the 
above property, independently of which of these representations of f is considered. The 
importance of this will become clear when we analyze the learning algorithm below. 

THEOREM 1 IFC34 is polynomially explainable then C~ is expected mistake-bound learn- 
able. Furthermore, ifC ~ is polynomially explainable by an algorithm,4 that always outputs 
at least one term o f f  (i.e., 9(n) - 1) then CM is mistake-bound learnable. 
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Proof: We present an expected mistake-bound algorithm that learns the class CM (with 
expected number of mistakes which is O(p(n)  • q(r~) • 9(r~))). The algorithm is similar to 
an algorithm presented in (Blum, 1992). The algorithm maintains an hypothesis h which is 
a disjunction of monomials. Initially h contains no monomials (i.e., h =- F A L S E ) .  Upon 
receiving an example e, the algorithm predicts h(e); if the prediction is correct, h is not 
updated. Otherwise, upon a mistaken prediction, it proceeds as follows: 

If e is positive: execute A (the algorithm guaranteed by the assumption that C• is 
polynomially explainable) on the example e and add the monomials it outputs to h. 

If e is negative: remove from the hypothesis h all the monomials that are satisfied by e 
(there must be at least one). 

To analyze the algorithm we first fix a representation for f as a disjunction of monomials 
in M (in case f has more than one possible representation, choose one arbitrarily; The 
above definition guarantees that we can work with any representation of f that uses only 
monomials in .AA). Now, note that a 'true' monomial, i.e., a monomial that appears in 
this representation of the target function f ,  is never removed from h. Therefore, since 
on a positive example e, the algorithm .,4 is guaranteed to output at least one monomial 
that appears in f ,  with probability at least 1/9(n ), then the expected number of mistakes 
made on positive examples is at most p(r~) • 9(n).  This also implies that the expected total 
number of monomials included in h during the execution of the algorithm is not more than 
p(n)  . q(r~) - 9(n). 4 Each mistake on a negative example results in removing at least one 
of those monomials that were included in h but do not appear in f .  The expected number 
of these monomials is therefore at most p(r~) • q(n) . 9(r~). We get that the expected total 
number of mistakes made by the algorithm is O(p(r~). q (n ) .  9(~)).  

Finally, note that in the case 9(r~) - 1 we get a truly mistake-bound algorithm, whose 
number of mistakes is bounded by p(r~) • q(n). • 

A special case of the above theorem is learning k-DNF formulae. It is obtained by taking 
.A4 to be the set of all monomials of size k. In this case .A4 itself is of polynomial size. 
The following corollary gives another important special case of the theorem, in which A4 
might be of exponential size but CM is still learnable. 

COROLLARY 1 Let $1, ..., St be subsets o f { z 1 , . . . ,  :c~}, where t is poIynomial in n. Let 
13 be an efficient algorithm that on input n enumerates these sets (and possibly some more). 
Let 3,4 be any collection o f  monomials with the property that for  every m E .Ad the set o f  
variables in m is S i for  some 1 < i < t (i.e., any set Si may correspond to at most 21s~l 
monomials in .A4, by choosingfor each z j  C Si whether z j  or ~2j appears in the monomiaI). 
Then, C M is mistake-bound learnable. 

Proof: We use the algorithm/3 to construct an algorithm ..4, as required in the conditions 
of Theorem 1. The algorithm ,,4 works as follows: given a positive example e, it first uses 
/3 to produce the sets $ 1 , . . . ,  St (and possibly others). Then, for each such set Si there is 
exactly one monomial rn~ which contains all the variables of Si and is satisfied by e (for 
each z j  E Si the monomial contains xj if the j-th bit of e is 1 and 2j if the j-th bit is 
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0) . . 4  outputs m ~ , . . . ,  me. Notice that for each positive example e, at least one of these 
monomial must be in 34 (but some may not). • 

The following examples are all special cases of the this Corollary. Other examples can 
be obtained by "translating" the examples of visual concept subclasses, that are given in 
Section 4 below, to the terminology of DNF formulae; however, the resulted subclasses of 
DNF seem to be somewhat artificial. 

Example: Consider the class of all DNF formulae in which each term contains at least n -  k 
literals (for some constant k). This class was previously considered in (Li & Vitanyi, 1989). 
In spite of its similarity to the class of k-DNF formulae (where each term contains at most 
k literals) its learnability seems to be more difficult. This is because in this case there are 
exponentially many possible monomials to choose from (as opposed to the case of k-DNF 
where there are only polynomially many possible monomials). Nevertheless, Corollary 1 
implies that this class is learnable 5. [] 

Example: Consider the class of all DNF formulae in which the variables in each monomial 
have consecutive indices; e.g., xl~2x3x4 V :~4-~5x6 V xsxg. The above corollary shows that 
this class of functions can be efficiently learned since the (~) < n 2 sets S~,j (1 < i _< j _< n) 
defined by Si,j = {xi, x i + l , . . . ,  x j}  satisfy the above condition. [] 

3.1. The CNF Problem 

The polynomial explainability approach can be easily extended to deal with CNF formulae. 
To show that, we prove the following theorem, which is an analog of Corollary 1. This 
result includes as special case the learnability of k-CNF formulae (and therefore also the 
learnability of k-term-DNF formulae). 

THEOREM 2 Let p(n) be a polynomiat. Let $ 1 , . . . ,  St be subsets o f { x 1 , . . . ,  Xn }, where 
t is polynomial in n. Let 13 be an efficient algorithm that on input n enumerates these sets 
(and possibly some more). Let 73 be any collection of disjunctions with the property that for 
every d E 79 the set of variables in d is Si for some 1 < i < t. Then, the concept class C7~ 
of all functions which are conjunctions of at most p( n ) disjunctions in 73, is mistake-bound 
learnable. 

Proof: We present a learning algorithm which is dual to the algorithm in the proof of 
Theorem 1. The algorithm maintains an hypothesis h which is a conjunction of disjunctions 
(i.e., a CNF formula). Initially h contains no disjunctions (i.e., h = TRUE). Upon receiving 
an example e, the algorithm predicts h(e); if the prediction is correct, h is not updated. 
Otherwise, upon a mistaken prediction, it proceeds as follows: 

If e is negative: this means that the hypothesis is still missing at least one disjunction that 
is not satisfied by the example e. For each Si there is exactly one candidate disjunction 
like that. We add all these disjunctions to h. 
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• If  e is positive: this means that h contains at least one disjunction that does not appear 

in the target function. We remove from h all the disjunctions that are not satisfied by e. 

With an argument similar to the one used in the proof of Theorem 1 it can be shown that 
the number of mistakes made is at most p(n ) .  t. • 

Example: Consider the class of  all CNF formulae in which the variables in each disjunction 
have consecutive indices; e.g., (x3 V :24 V x5 V x6) A ( ~  V :~6 V x7 V xs V Xg). The above 
theorem shows that this class of  functions is efficiently learnable. []  

i 
Figure 1. Shape Pattern 

4. Learning Visual Concepts 

In this section we discuss the learnability of  classes of visual concepts. We give positive and 
negative results in terms of some properties of these classes. We start with some definitions. 

Given an n x n array, a shape of size k is a collection of  k points of  the array, 

s = {(ie, Je); 1 < ie,je <_ ~, 1 < e < k}. 

A binary pattern, associated with a shape S, is defined by giving a boolean value to every 
point in S. Formally, 

P = {{(ie,je),be}; (ie,je) E S, be E {0,1}}.  

In this way, any shape of  size k can be associated with up to 2 ~ different patterns. An n x n 
picture is a pattern whose shape is of  size n 2, that is, every point of the n x n array is given 
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Figure 2. A Visual concept 

a boolean value. Throughout the paper we consider shapes and patterns embedded in n x n 
pictures, without mentioning the dependence on n explicitly. 

Figure 1 gives examples of a shape and a pattern associated with it. (We associate the 
boolean value 1 with, say, black squares and 0 with white squares.) 

Given a collection 7 9 of patterns and a polynomial p(n), the class of all visual concepts 
over 7 9 is defined by 

Cp = {T C_ 79: 7> is a set of patterns and IT[ _< p(n)}. 

A visual concept T is thus a collection of at most p(n) many patterns from 79. 
We consider the following problem: given n x n pictures, labeled as positive or negative 

according to whether they contain a pattern from an unknown collection T E C~ or not, we 
try to "learn" T. In Figure 3 positive and negative examples are labeled with respect to the 
concept defined in Figure 2. 

A set T C 7) as above defines a boolean concept m a natural way; moreover, it has a 
simple translation to the terminology of DNF formulae: the n 2 pixels can be viewed as 
a set of n 2 boolean variables, each shape is just a subset of these variables, each pattern 
in T corresponds to a monomial over the set of variables defined by its shape, and the 
boolean visual concept is the disjunction of those monomials (i.e., it is a DNF formulae). 
The concept class C7~ is the collection of all those concepts. 

When no restrictions are made on the patterns collection 79 (i.e., 79 is the set of all 
possible patterns), the problem of learning the concept class C~ is clearly equivalent to that 
of learning the class of all DNF formulae on n 2 variables. The following theorem shows 
that some non-trivial pattern collections can still be learned. (We consider learning in the 
mistake-bound model, which implies, as mentioned, PAC-learnability.) 

We say that a collection Sn of shapes on the n x n array is polynomially enumerable if 
there exists an algorithm that enumerates all the shapes in Sn in time polynomial in n. In 
particular, this implies that the set of shapes is of polynomial size. 

THEOREM 3 Let 79 be a collection of patterns on the n x n array, whose corresponding 
set of shapes is polynomially enumerable. (Notice that 7 9 may be of super-polynomial size). 
Then, C9 is mistake-bound learnable. 
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Proof: For the proof, it is convenient to consider the subclass of DNF formulae corre- 
sponding to C7~ (by the correspondence described above). In this terminology, restricting 
the set of shapes to be polynomially enumerable means that we can enumerate the sets of 
variables over which the monomials (in the corresponding subclass of DNF formulae) are 
defined. Hence, we can apply Corollary 1 to get the result. • 
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Figure 3. Positive Example Negative Example 

To present concrete examples of interesting classes of patterns that are learnable, it will 
be convenient to think of the picture as embedded in the real plane, where the point (i, j )  
of the picture corresponds to the square defined by the real points (i - 1 , j  - 1), (i - 
1, j ) ,  (i, j - 1), (i, j ) .  Thus, a shape corresponds to a set of polygons with integer vertices 
and edges which are axis-paralM (see Figure 1). An edge of a shape is any of the edges of 
the associated polygons. The perimeter of a shape is the total perimeter of the associated 
polygons. 

COROLLARY 2 Cp is learnable for the following collections of patterns: 

• 7 9 is a collection of patterns whose shapes have a constant number of edges (e.g., 
rectangles). 

• 7 9 is a collection of patterns whose shapes consist of a constant number of polygons, 
each with perimeter O(log n). 

Proof: Using Theorem 3, it is enough to show that the set of shapes corresponding to each 
of these collections is polynomially enumerable (actually, we only argue that these sets are 
of polynomial size; the computation involved with enumerating them is very easy): 
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The number of shapes with constant number (c) of edges is polynomial since each of 
them can be specified by a list of c integer points, and there are (n ÷ 1) 2 such points 
(so there are at most (n + 1) 2c such shapes6). Hence, this set of shapes is polynomially 
enumerable. 

The number of shapes with constant number of polygons with perimeter O(log n) is 
polynomial since each of these polygons can be specified by specifying an integer 
starting point and then O(log n) times specifying one of the directions: up, down, left, 
right (so there are at most 4 O(l°gn) = poly(n) such shapes). Hence, this set of shapes 
is polynomially enumerable. 

In fact, the result above can be extended in many ways. One can consider, for example, 
polygons with integer vertices and constant number of edges which are not necessarily 
axis-parallel, and define the shape corresponding to this polygon to be, say, the set of all 
unit squares (i.e, ( i -  1 , j  - 1), ( i -  1, j) ,  (i , j  - 1), (i,j))contained in the polygon 7. The 
number of such shapes is polynomial (using the same proof as we used above for the case 
of axis-parallel edges) and only the computation of which pixels are in the shape is a bit 
different. Other families can be defined, for example, by the set of all circles, ellipses etc. 
(where the corresponding shapes are defined in a similar way). In this way, for example, 
scaling does not affect the actual number of edges of a polygonal shapes, and thus their 
learnability. 

As remarked before, the problem of learning Cp, where 7 9 is not restricted, is equivalent 
to learning general DNF formulae. Next we show that the problem remains difficult even if 
we are restricted to a family of patterns with a fairly simple shape; in particular, we prove 
it for the case where the shape is a single (simple) polygon. 

THEOREM 4 Let ~ be the family of patterns whose shape is a simple polygon. Then, 
learning Cp is equivalent to learning DNE 

Proof: We show, using a reduction, that given an algorithm for learning C;D we can learn 
the class of DNF formulae. The result holds in both the PAC and the mistake-bound models. 
For simplicity we present it in the mistake-bound model. 

Let q~(xl, . . . ,  xn) = ml V m2 V . . .  V mt be the target DNF function, where each of 
the mi's is a monomial. With each mi we associate a pattern Pi as follows: the pattern 
Pi includes all the points (1, j )  with the value 1. In addition, the point (2, j )  is included 
in the pattern if and only if xj  or 5:j appear in mi: it is included with the value '1' if 
xj appears in mi and with the value '0' if ~j appears in rnl. Note that the construction 
immediately implies Pi E 7:' (including the points (1, j ) ,  for all j ,  in the pattern guarantees 
that the corresponding shape is a simple polygon). Let T = {Pl, - - •, Pt} and let fT be the 
corresponding boolean function. 

Using the above definitions, we now show how to construct a mistake-bound algorithm 
..4 for learning DNF, given a mistake-bound algorithm B, for learning the concept class Cp 
defined above. Given an example x = ( x l , . . . ,  xn), the algorithm ,4 constructs a picture 
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by letting all its points contain '1'  except for each of the points (2, j )  whose value is the value 
of the corresponding variable xj. The main observation is that for all x, ¢(x) = fT(:?). 
Algorithm .A feeds :~ as an input to B, and uses the prediction of B on :~ as its prediction on 
x. When it receives the label of x it feeds it to B as the label of 5. Clearly, A has the same 
running-time as/3. Also, as/3 is guaranteed to make at most polynomially many mistake 
on any fT C C7~ and any sequence of examples, then in particular this is true for fT and 
the examples as defined above. By the observation, A makes at most polynomialty many 
mistakes as well. • 

Our positive result shows, in particular, that patterns whose shapes are bounded by k 
edges are learnable (even though these patterns might correspond to monomials of O(n) 
variables). On the other hand we have: 

COROLLARY 3 Let 79 be a collection of patterns whose shape is bounded by k(n) edges. 
Learning 79 is as hard as learning 4(k(n) - 1)-DNF. 

Proof: We use the same reduction as in the proof of Theorem 4. The result follows since a 
monomial ml of length k(n) is mapped to a pattern Pi whose shape has at most 4(k(n) + 1) 
edges. • 

5. Noisy Data 

In this section we consider the robustness of learning polynomiatty explainable classes. 
First we consider a type of noise that is relevant for the class of visual concepts. We define 
obstruction noise, a type of noise that occurs in pictures, and give a learning algorithm that 
can tolerate this type of noise. Then we consider more general types of noise that have been 
considered previously in learning, namely, classification noise (Angluin & Laird, 1988) 
and malicious noise (Valiant, 1985, Keams & Li, 1993). We show that any polynomially 
explainable class can be learned using statistical queries (Kearns, 1993), and therefore can 
be learned in the presence of classification noise with error rate of up to 1/2, and in the 
presence of a certain amount of malicious error. 

5.1. Obstruction Noise 

In this section we consider the problem of learning a pattern in the presence of "noise" in 
the pictures (but not on their labeling). The type of noise we allow is the one that usually 
occurs when other objects appear in the picture, behind or in front of the target object (see 
Figure 4). We also restrict ourselves to the case where the concept consists of a single 
pattern. We first define formally the type of noise considered: 

Let Pl, P2 be two patterns. We say that Pl k (n)-dominates P2 if P l can be obtained from 
P2 by changing at most k(n) of the 'O's ofp~ to ' l ' s .  Formally, (a) both patterns have the 
same shape, (b) all the 'O's of pl are also '0'  in Pz, and (c) all but at most k(n) of the ' l ' s  
of pl are ' l ' s  inp2. 
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Figure 4. Noise 

Let 7 ) be a collection of patterns, whose corresponding set of shapes is polynomially 
enumerable. We associate with 7) a concept class C~,k(n) = {fp,k(,~)lP E 7 )} where 
fp,k(n) is defined to be positive if and only if the input picture contains a pattern p~ (not 
necessarily in 7)) that k(n)-dominates p. 

THEOREM 5 Let 7) be a collection of patterns, whose corresponding set of shapes is 
polynomially enumerable. Then the concept class CT~,k(n) is PAC-learnable. 

Proof: Let {$1 , . . . ,  St} be the polynomial-size set of shapes guaranteed by the assump- 
tion that 7 ) is polynomially enumerable. We give an "Occam" algorithm that learns C~,k(~) 
using CT~,,k,(n) as the hypothesis space, where 7)r is the collection of all patterns whose 
shapes are in {$1 , . . . ,  S~}, and U(n) <_ n 2. Given a sample of m labeled examples, we 
show how to construct in polynomial time a consistent hypothesis of size that is independent 
of m. Blumer et al. (Blumer et al., 1987) show that this is sufficient for PAC-learnability. 

Given a sample of size m, the learner starts by enumerating all the shapes. For each shape 
Si, assuming it is the true shape, the learner identifies a target pattern pi and a threshold 
ki, and construct a hypothesis f i  = fp~,k~ E CT~,,k,(n). The algorithm finally returns the 
lowest indexed fi that is consistent with all the examples in the sample. 

For a particular shape S,~ (i = 1 , . . . ,  t), a pair (p~, k~) is identified as follows: 

• Finding the pattern: The learner considers only the positive examples in the sample. 
The set Ti C_ Si is defined to be the set of all the points in Si with value '1' in all the 
positive examples. The pattern Pi is defined to be 1 on points of Ti and 0 on points of 
S,~ \ Ti. 



ON LEARNING VISUAL CONCEPTS AND DNF FORMULAE 77 

Finding a threshold: The learner considers the negative examples in the sample that 
have l 's  in all the points of Ti. For each such example, it computes the number of 
points in Si \ Ti which are ' 1' in the example. It takes k~ to be minimum of these values 
minus 1. If no such example exists it chooses ki arbitrarily. 

The correctness of the algorithms relies on the observation that if S = Sr is the correct 
shape then the hypothesis f~ = fv~,k~ found in the r-th round of the algorithm is consistent 
with all the examples in the sample. Notice that a hypothesis determined based on a wrong 
shape is not necessarily consistent with all the examples. 

Denote by Ts the set of l ' s  of the true pattern in the true shape S, and by ks the 
true threshold. To see that f r  is indeed consistent with the examples, notice that by the 
construction ofT~, Ts C_ Tr, but [Trl < ITsl + ks. Let e be a picture in the sample, that is 
labeled positive by the hypothesis fr:  either the set of l 's  in S is the set %,  in which case 
e is indeed a positive example by the above inequality, or that the number of l 's  in S \ T~ 
is less than k~ (by the definition of kr 'and since e is labeled positive by f~), and again, it 
must be a positive example by the way k~ was determined. Similarly, given a picture e that 
is labeled negative by the hypothesis.f~, it either has a 0 inside T~, which implies, by the 
way T~ was constructed, that e is indeed a negative example, or, there are more than k~ l 's  
in S \ %,  which again implies, by the way k~ was determined, that it must be a negative 
example. 

Thus, the algorithm above produces, in polynomial time, a hypothesis in CT~,,k,(~) that 
is consistent with the sample. To represent this hypothesis we need O(n 2) bits (n 2 bits to 
specify the shape, n 2 bits to specify values for the bits of the shape, and 2 log n to specify the 
threshold) which is independent of the sample size, m. As shown in (Blumer et al., 1987), 
using a sample size that is proportional to log ]CT,,,k,(~) I is sufficient for PAC-learnability. 

Note that we do not use any "structure" of the patterns in 79, except the fact that the 
corresponding shapes are polynomially enumerable. 

A dual type of noise, in which the target concept is "over-exposed to the light" rather 
than obstructed, can also be defined. Formally, if Pl, p2 be two patterns, we say that Pl is 
k(n)-dominated by P2 if pl can be obtained from P2 by changing at most k(n) of the ' l ' s  
ofF2 to 'O's (that is, t)2 k(n)-dominates Pl). Similarly, given a collection P of patterns, 
whose corresponding set of shapes is polynomially enumerable, we can associate with it a 
concept class C' • p,k(n), in this case an input picture is defined to be positive if and only if it 

contains a pattern p~ (not necessarily in 7 9) that is k(n)-dominated by p E 7 9. It is not hard 
to see that the same algorithm used in the proof of Theorem 5, when exchanging the roles 
of 0 and 1 there, leads to the analogous result with respect to this type of noise. 

It is worth noticing why the results above are restricted to the case where the concept 
consists of a single pattern. The problem is a "credit assignment" type problem: the 
technique we use in order to find the minimal "1"-part of the pattern does not work even if 
there are two possible patterns that can make a picture positive. 
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5.2. Classification Noise 

In this section we discuss PAC learning with classification noise (Angluin & Laird, 1988). 
In this case, whenever we get an example, there is some probability r/ < 1/2 (usually 
referred to as the error rate) that the label of this example is flipped (from 0 to 1 or vice 
versa). Before proving that polynomially explainable concept classes can be learned in the 
presence of classification noise, we show a robustness property of these classes that will be 
useful for the proof. 

LEMMA 1 l f  CM is poIynomially explainable, then there exists an efficient (polynomial 
time) algorithm 13 such that for every function f E CA,t, given any positive example z of 
f as input, 13 outputs a list of at most q(n) monomials such that with probability at least 
1/2 all the terms in f that satisfy z appear in the list. (As before, this is independent of the 
representation o f f . )  

Proof: Since C ~  is polynomially explainable, then there exists an efficient algorithm A 
such that for every function f E CM, given any positive example z of f as input, .A outputs 
a list of at most q'(n) monomials such that with probability at least 1/9(n ) there exists a 
term of f that satisfies z and appears in the list. We define B to be as follows: on a positive 
example z it executes A for n • 9(n) times and outputs all terms produced by A in those 
executions (i.e, at most q(n) = n . 9(n) " q'(n) terms). 

Our first claim is that for every function f E CM and every positive example z of f ,  

1 
Prob[13 fails to output a term of f that satisfies z] _< e---y. (1) 

This is because the probability that A fails to output such term in a single execution is at 
most 1 - 1/9(n ). Therefore the probability that .,4 fails in all n.  9(n) executions is at most 
(1 - 1 / g ( n ) ?  g ( n / <  e 

We now show that B has the property required in the lemma. Otherwise, there exists a 
function f E C~4 and a positive example z, such that the probability that/3 outputs all the 
terms in f that satisfy z is less than 1/2. Let t l , . . . ,  td be all the terms in f that satisfy 
z. Since with probability greater than 1/2 the algorithm B fails to output one of the terms 
t l , . . . ,  td, then there exists a term ~i (1 < i < d) such that the probability that/3 "misses" 
it is greater than 1/2d. Consider now the function f~ =- ti. Clearly, f~ c CM and z is a 
positive example for it as well. However, 

1 
Prob[/3 fails to output a term of f '  that satisfies z] >_ ~ ,  (2) 

where d is bounded by a polynomial in n. This contradicts Eq. (1) above, and proves the 

lemma. • 

For the main theorem of this section we use a the "statistical queries" (SQ) model recently 
introduced by Kearns (Kearns, 1993). The SQ learning model can be viewed as a tool for 
demonstrating that a PAC learning algorithm is noise-tolerant. We first introduce the SQ 
learning model and state Kearns result, and in the next theorem give a statistical queries 
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algorithm for the class CM. In the SQ model, the example oracle E X ( f ,  D) of the standard 
PAC model, which provides examples of the function f drawn randomly according to the 
distribution D, is replaced by a statistics oracle STAT( f ,  D). An SQ algorithm queries 
the S T A T  oracle for the values of various statistics on the distribution of labeled examples 
(e.g., "What is the probability that a randomly chosen labeled example (e, l) has variable 
xi = 1 and l = 0 ?"), and the S T A T  oracle returns the requested statistics to within some 
specified additive error. Formally, a statistical query is of the form [X, 7-]. Here X is a 
mapping from labeled examples to {0, 1} corresponding to an indicator function for those 
labeled examples about which the statistics are to be gathered, while 7- is an additive error 
parameter, the tolerance of the query. A call [X, 7] to STAT( f ,  D) returns an est imate/~ 

^ 

o f P  x = PrD[x(x, f(x))]  which satisfies ]P× - P~I -< 7-. An SQ algorithm is said to be 
efficient if 1/'r, the time required to evaluate X and the running time of the algorithm are 
all polynomial. 

In addition to the oracle STAT( f ,  D) we will provide the learner access to a source of 
unlabeled examples drawn randomly according to the distribution D. To summarize, we 
formally define learnability in the SQ model: 

We say that a class C of concepts over X is efficiently learnable from statistical queries 
if there exists a learning algorithm A and polynomials p(., . ,  .), q(., .) and r( . , . ,  .) such that 
for any f E C over input of length n, for any distribution D over X, and for any 0 < ¢ _ 1 
and 0 < (5 < i the following holds: i r a  is given inputs 5, 5, n and size(f), and A is given 
access to STAT( f ,  D) and a source E X ( f ,  D) of unlabeled examples, then (1) for every 
query IX, 7-] made by A, X can be evaluated in time q(n, size(f)) and 1/T is bounded by 
r(1/¢, n, size(f)), and (2) ..4 halts in time bounded by p(1/e, 1/5, n, size(f)) and with 
probability at least I - (5 outputs a hypothesis h that satisfies error(h) <_ ¢. 

Notice that this variation of the SQ model, that allows the learner to obtain unlabeled 
examples, does not give the learner any advantage towards tolerating classification noise 
over the "pure" SQ model. This is clear from the fact that when learning with noise, the 
learner also has access to this oracle (simply by ignoring the (possibly noisy) labels). The 
access to the source of random examples, though, reintroduces the confidence parameter 
into this model, since the learning algorithm is allowed a small probability of error, due to 
an unrepresentative sample from E X ( f ,  D). We now state the result we use later in this 
section: 

THEOREM 6 ((KEARNS, 1993)) Let C be a class of concepts over X and suppose that 
C is efficiently learnable from statistical queries using an algorithm .A. Then, for any noise 
rate 0 < r/ < 1/2, C is learnable with classification noise. The running time of the noise 
tolerant algorithm is proportional to the running time of the SQ algorithm and to lIT and 
1/(1 - 27/) 2. (Here 7- is a lower bound on the tolerance of the statistical queries used in 
A) 

THEOREM 7 If CM is polynomially explainable then CM is PAC learnable with classifi- 
cation noise of rate 0 _< z /<  1/2. 

Proof: Using Kearns results stated in Theorem 6 it is sufficient to prove that such a concept 
class can be learned using a "statistical queries" algorithm. 
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Let/3 be the algorithm guaranteed by Lemma 1 and q(n) an upper bound on the number 
of monomials B outputs given an example. Let p(n) be an upper bound on the size of  
functions in Cz4. We now describe a "statistical queries" algorithm for the class CM. 

• Collecting terms: The learner draws N = 4p2(n) . In ~ examples. For each of 
E 

them it executes the algorithm B to get at most q(n) terms. (We assume, without loss 
of generality, that /3 halts in polynomial time even if the example is negative). Let 
N t <_ N • q(n) be the number of  terms generated in this step. Denote these terms by 

t l ,  • . .  , tNJ .  

• Eliminating terms: For each term ti (1 < i < N I) the learner asks for an estimation, 

within tolerance ~- = e/4N' ,  of Pi ~= Prxeo  [ti(x) = 1 A f ( x )  = 0]. If  the answer is 
greater than e /4N  I then it eliminates the term ti. 

• The hypothesis h is the disjunction of all remaining terms. 

Clearly, the estimation of the probabilities Pi'S falls into the statistical queries model by 
setting Xi (x, l) = I if and only if ti (x) = i and l = 0. The evaluation of Xi is polynomial, 
and therefore all the algorithm runs in polynomial time. 

To evaluate the probability that h(x) ¢ f ( x )  we consider two types of  mistakes. Either 
h(x) = I and I (x)  = 0 or h(x) = 0 and f(x) = 1. For each x of the first type there exists 
(at least one) bad term ti, for which ti(x) = 1, that we added in the first step and failed 
to eliminate in the second step. For every bad ti we have Pi > O. Moreover, if ti is not 
eliminated it must be the case that Pi < e /4N '  + ~- = e /4N '  + e /4N '  = e /2N'  (otherwise 
the answer that we get to the query about pi must be greater than e / 4 N  t and the term will 
be eliminated). Therefore, since N t terms are generated in "collecting terms", there can be 
at most N p bad terms, and 

PrxeD[(h(x) = 1) A ( f (x)  = 0)l < Z e /2N'  < el2. 
bad t~ 

Each x of the second type is caused by a term ti which appears in the function but is not 
found in the "collecting terms" step. We call a term t~ important if PrieD [ti(x) = 1] > 
~ 4 ,  (note that once a term which appears in the function is found, it cannot be eliminated 
Pthe corresponding probability Pi equals 0). First, we claim that if we find all the important 

terms in the "collecting terms" step (and therefore they all appear in h) then the total error 
of  the second type is bounded by c/2.  This is because in this case 

Pr~cD[(h(x) = O)/~ ( f (x)  = 1)] 

<- Z 
non-important t~ 

-< Z 
non-important t~ 

< p(n). 
2p(n) 

PrxcD[(h(x) = O) A (ti(x) = 1)] 

2 
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Therefore, it is enough to show that the probability that all important terms are found is at 
least 1 - & Consider an important term ti and a single example drawn in the "collecting 
terms" step. The probability that ti is found by this example is at least the probability that 
this example is satisfied by t~, times the probability that 13 will output all the terms satisfied 

1 e . Therefore, the probability by the example, which is therefore at least 2p-~-n) " 2 - 4p-On) 

that t~ will not be found using ---7--4v(~). In ~ examples is at most 

I 4p(n)-In P(@ s ~ 6 

p(n) " 1 4 ='p(n) < 

Thus, after drawing p(n) • 4p(n)~ . In ~ examples the probability that we fail to find an 
important term is at most 6. Hence choosing N as in the algorithm suffices. 

All together, we get that with probability at least 1 - 6 the algorithm finds a hypothesis 
h such that Pr[h(x) # f(x)]  _< e. This completes the proof of the theorem. • 

We note that in the proof we have used "statistical-queries" with tolerance 
¢:2 

T =  16p2(nlq(n) In P(-~" 

5.3. Malicious Noise 

In the model of PAC learning with malicious error ((Valiant, 1985, Kearns & Li, 1993)), 
when a learner sees an example, only with probability 1 - / 3  it is drawn from the probability 
distribution D, and is labeled correctly according to the target concept. With probability 
/3 a malicious adversary may select any example and label it either positive or negative. 
Let q(n) be an upper bound on the number of monomials produced by the algorithm B in 
Lemma 1 and p(n) be an upper bound on the size of functions in CM. We show: 

THEOREM 8 If CA~ is poIynomially explainable then C~4 is PAC learnable in the presence 
( 

of malicious error of rate less than/3 = In ½.16p2(n)q(n).In P(-~)" 

Proof" By a result of Decatur (Decatur, 1993), the existence of a "statistical-queries" 
learning algorithm with tolerance 7 for C implies that there exists a PAC learning algorithm 
for C that can tolerate malicious error rate ft(T). 

In the proof of Theorem 7 we present a statistical queries algorithm for CM with tolerance 
g2 

T = 16p2(n)q(n) In P~)" It is shown in (Aslam & Decatur, 1993) that by using hypothesis 

boosting techniques, this tolerance can be made smaller. In particular, the c 2 factor can be 
reduced to z--~;" Putting those together yields the desirable error rate. 

We have considered above classification noise, malicious noise and a type of attribute 
noise that is relevant to visual concepts. The known technique for handling (unrestricted) 
attribute noise in learning DNF formulae (Shackelford & Volper, 1988) works in cases 
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where the noise-free algorithm uses at any point only a small number of attributes to update 
its hypothesis. In this way, with non-negligible probability, the noise-tolerant algorithm 
will get examples in which this small set of attributes is noise-free, and will learn using the 
noise-free algorithm. This technique was used to learn k-DNF in the presence of attribute 
noise (with a fixed error rate) (Shackelford & Volper, 1988). It is not hard to see that the 
same technique, coupled with the SQ algorithm presented in Section 5.2, can be used to learn 
a wider class of functions. In particular, we could learn the class of all functions which are 
disjunctions of polynomially many monomials from A4 N/2, where Cz4 is a polynomially 
explainable class corresponding to A.,I and/2 is the set of all monomials of size at most log n. 
This restriction guarantees that, when allowing attribute noise of up to 1/2, by seeing n 
times more examples in the collection step, the algorithm receives, for every term, a noise- 
free example. Hence, the collection succeeds with high probability in spite of the attribute 
noise. Then, the elimination step uses the algorithm of (Shackelford & Volper, 1988). 

6. Discussion 

We present a new approach, polynomial explainability, to the problem of learning DNF 
formulae from examples and use it to learn some subclasses of DNF (and CNF) which were 
not known to be learnable before. As mentioned, polynomial-explainable classes discussed 
here contain the subclasses of h-DNF and k-term-DNF as special eases. It is natural to 
ask how these results relate to the learnability of k-DL (Rivest, 1987) (for some constant 
k), which was the widest subclass of boolean formulae known to be PAC-learnable from 
examples. We show that the results are incomparable: To see that polynomially explainable 
subclasses may contain functions which are not expressible by any k-DL (of any size), it is 
convenient to use the terminology of visual concepts. Let m be a parameter (say, m = x/-~)- 
Consider the function f which is 1 if and only if the picture contains an m × m square 
all of its pixels are 1 (this can be expressed as a DNF with n 2 terms each of size m2). 
Suppose that there exists a k-DL for this function f and consider its first node. In this 
node, k literals are examined and if they are all satisfied by the assignment (the picture) the 
function is evaluated to have some value cr c {0, 1}. However, since k (< m, no matter 
what k literals are examined, the picture can always be extended in two ways, one which 
contains an m × m square as required and one which does net. Hence, no matter what the 
value of cr is the decision list must err on some of the inputs. 

On the other hand, to see that k-DL (even for k = 1) may sometimes be stronger than 
polynomially explainable classes, we look at the set of all monomials. This set is in 1-DL but 
is not learnable by the algorithm of Theorem 1, as each positive example can be "explained" 
by exponentially many monomials. This class is learnable however in terms of CNF (i.e., 
by Theorem 2). Similarly, the dual example, of all disjunctions, is also in 1-DL and is not 
learnable by Theorem 2 (but is learnable by Theorem 1). By combining these two examples 
(e.g., by considering the set of all functions of the type x~ 1 V . . .  V xi.~ V (Yjl A . . .  A yjp)) 
we get a family of functions which is in 1-DL and is not learnable neither by the algorithm 
of Theorem 1 nor by the algorithm of Theorem 2 (as by fixing all the x 's  to 0 we can get all 
the monomials on the y's, and on the other hand, by fixing all the y's to 0 we can get all the 
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disjunctions on the x's). It may be the case, however, that these functions are still in some 
"polynomially explainable" class, using another representation (other than DNF or CNF). 

We believe that the approach used in this paper will be found useful in tackling other 
problems as well. For example, Angluin (Angluin, 1980) considered the problem of learning 
pattern languages s, where a pattern p is a string consists of bits ({0, 1}) and variables, and 
its language, L(p), is the set of all strings that can be obtained from p by substituting a 
string (in {0, 1}*) for each of the variables (for example, L(xOOxy) contains the string 
1100110 which is obtained by substituting x = 11, y = 0). (Schapire, 1990) showed the 
hardness of learning pattern languages. (Kearns & Pitt, 1989) showed how to PAC-learn 
such languages, assuming that the number of variables is constant (though each variable may 
appear many times in the pattern) and with some limitations on the underlying distribution. 
Using the technique presented in this paper we can show how to learn (in the mistake- 
bound and also in the "statistical-queries" model) the language L = L(pl, P2, . - - ,  Pt) = 
U~= 1 L(pi) (i.e., L is the language of all strings that can be obtained from any of the patterns), 
where ~ is polynomial in n, and the total number of occurrences of variables in each pattern 
p~ is constant (note that the patterns here are more restricted than those considered in 
(Kearns & Pitt, 1989); however, we are not restricted to a single pattern but rather allow a 
collection of patterns). Loosely speaking, this is possible since given a positive example, we 
can enumerate the polynomially-many (in the length of the example) patterns of the above 
form from which the example can be obtained. To do so, given a length n string which is 
a positive example, we go over all the O(n 2~) possibilities to choose c (non-overlapping) 
substrings of it (we choose a substring by choosing a starting point and an end point). For 
each of these choices there are c c possibilities to choose a variable name for each substring. 
Then, we enumerate only the patterns in which all the substrings that correspond to the 
same variable are the same (i.e., the substitution is consistent). As long as c is fixed, this 
gives a polynomial algorithm. 

Jerrum (Jerrum, 1991) showed that learning translation-invariant DNF (when the learner 
is required to use the same representation as the output representation) is NP-hard. Note that 
the notion of a translation-invariant term and our notion of dynamic pattern are closely re- 
lated; that is, the dynamic version of our visual learning problem is a subclass of translation- 
invariant DNE In contrast to the general translation-invariant DNF, this subclass is still 
PAC-learnable. 

In (Valiant, 1985) a hierarchical approach for learning DNF was discussed in which one 
learns a collection of monomials, in a supervised or unsupervised manner, and only then 
learns a DNF formula as a disjunction over this set of monomials. The method developed in 
this paper can be described as an instance of this approach, in which the set of "interesting" 
monomials, explaining the data seen, can be generated efficiently. It is interesting to note that 
in particular, all classes learnable within this framework (e.g. in the context of membership 
queries, (Blum, 1992, Blum & Rudich, 1992, Aizenstein & Pitt, 1992, Blum et al., 1994).) 
are shown here to be learnable even in the presence of noise. 
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Notes 

1. We assume that each pixel can be either black or white. The results can be extended to hanffle more values in 
a straightforward way. 

2. Thissh•u•dn•tbec•nfusedwiththeappr•ach•fexplanati•nbasedlearning(EBL)(see•e.g.•(Mitche•l•Ke••er• 
& Kedar-Cabelli, 1986)). In the EBL framework, a learner receives a single example, and tries to generalize 
it in a way that can be justified by deduction from the prior knowledge the learner has about the domain. 

3. with a polynomial penalty in the complexity of the algorithms; This is because a pattern in the dynamic case 
can be replaced by a polynomial number (in the size of the picture) of patterns in the static case (e.g., O ( n  2) 
if only translations are considered and the size of the picture is n x n). 

4. Note that if ,,4 was guaranteed only to give a monomial that appears in some representation of f then this 
bound is false (as it could be the case that the "true" monomials in different executions of,A belong to different 
representations of f ) .  This explains the seemingly too strong requirement of  the definition. 

5. This class can be learned also in a different way, using the observation that every function in this class has a 
polynomial number of satisfying assignments. 

6. This bound can be slightly improved to (2n) c using the axis-parallel property. 

7. Alternatively, the shape can be the set of all those squares for which at least 50% of the area is contained 
in the polygon or any other way, consistent with the way digitization is made, namely, the method by which 
real-world pictures are converted to n x n pictures. 

8. There is no relation between this notion of pattern and the notion of pattern used in our work. 
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