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Abstract. The motion of Pluto is said to be chaotic in the sense that the 
maximum Lyapunov exponent is positive: the Lyapunov time (the inverse 
of the Lyapunov exponent) is about 20 million years. So far the longest 
integration up to now, over 845 million years (42 Lyapunov times), does 
not show any indication of a gross instability in the motion of Pluto. We 
carried out the numerical integration of Pluto over the age of the solar 
system (5.5 billion years FZ 280 Lyapunov times). This integration also did 
not give any indication of chaotic evolution of Pluto. The divergences of 
Keplerian elements of a nearby trajectory at first grow linearly with the 
time and then start to increase exponentially. The exponential divergences 
stop at about 420 million years. The divergences in the semi-major aAxis and 
the mean anomaly ( equivalently the longitude and the distance) saturate. 
The divergences of the other four elements, the eccentricity, the inclination, 
the argument of perihelion, and the longitude of node still grow slowly after 
the stop of the exponential increase and finally saturate. 

1. Introduction 

Sussman and Wisdom (1988) carried out the numerical integration of Pluto 
for 845 million years (Myr hereafter) with the Digital Orrery, a special pur- 
pose computer. This integration took about three months. In this compu- 
tation Pluto was a massless particle disturbed by other giant outer planets, 
Jupiter, Saturn, Uranus, and Neptune. Their integration indicates that the 
long-term motion of Pluto is chaotic and the largest Lyapunov exponent is 
about 10-7.3 year-l (the Lyapunov time is about 20 Myr). Laskar (1990) 
numerically integrated for 100 Myr the secular Hamiltonian system of the 
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whole solar system ( excluding Pluto) that is obtained after elimination of 
short periodic terms and is second-order with respect the disturbing masses. 
His integration showed that the solar system is chaotic with the Lyapunov 
time of only 4 Myr. Sussman and Wisdom (1992) carried out an integration 
of the whole solar system including Pluto with the Toolkit, another special 
purpose parallel computer, which took about 1000 hours. Their compu- 
tation confirmed Laskar’s results in direct integration instead of averaged 
equations. The evolution of Pluto in this 100 Myr integration is similar 
to that of Pluto found in 845 Myr integration of the outer planets system 
(Sussman and Wisdom 1988). Although the motion of Pluto is chaotic in 
the sense that the largest Lyapunov exponent is positive, the integration 
does not give any indication of a gross instability in the motion of Pluto. 
According to Wisdom (1992), “S ince the system is apparently chaotic, we 
cannot rule out the possibility of gross instability. Recall some chaotic as- 
teroid trajectories have been seen evolve chaotically for 100 Lyapunov times 
at low eccentricity and then suddenly jump to large eccentricity. It will be 
very interesting to see a number of integrations of the whole solar system 
for the age of the solar system and longer.” We carried out the integration 
of the outer planets system over 5.5 billion years which is about 280 Lya- 
punov times. In this computation Pluto is treated as a massless particle in 
order to compare our results with those of Sussman and Wisdom (1988). 
The integrator is a 12th-order linear symmetric multistep method (Quin- 
lan and Tremaine 1990). Th e error estimate of our integration is given in 
section 2 and preliminary results are then presented. 

2. Method of Numerical Integration and its Accuracy 

Pluto is integrated as a massless particle that is disturbed by four giants 
planets (Jupiter, Saturn, Uranus, and Neptune). The masses of the inner 
planets are added to the Sun. The planetary masses and their initial condi- 
tions are taken from DE245, which is the most recent planetary ephemerides 
developed at JPL. 

As an integration formula, we adopt a linear symmetric multistep inte- 
grator (LSMI), which is one of linear multistep integrators whose coefficient 
in the formula are symmetric (Quinlan and Tremaine 1990). One of the 
great merits of LSMI is that the truncation ( discretization) errors do not 
produce secular errors in the energy and the angular momentum, in other 
words no secular errors in the semi-major axis, eccentricity, and inclination. 

The numerical computation was carried out on an FMR70-HX3 with an 
accelerator board. FMR70-HX3 is a personal computer whose cpu is Intel’s 
i386 with clock speed of 25MHz and which does the job of input and output 
of data between FMR and the accelerator board. The accelerator board 
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uses Intel’s i860 cpu with clock speed of 40MHz and does only numerical 
integrations of equations of motion. 

In order to reduce round-off errors, we evaluated the 12 th-order LSMI 
(Quinlan and Tremaine 1990) in the following form: 

k-l 

%+lc = --&k--l @ &Sk-l 6 * ’ .0cu0@~,@h2CPjf,+j, (1) 
j=o 

where CY; = ak-i, /?i = pk-i, i = 0, * *. , b = 12, and ~~12 = 1. 

The @, $, 8 symbols mean multiplications, additions, and subtractions 
in quadruple precision. The quadruple arithmetic operations are carried out 
by software which is written in assembler. Other operations (the evaluation 
of the force and the last part of the right-hand side of (1)) are done with 
double precision. 

Because of the symmetry in the coefficients of LSMI, the result by LSMI 
has a time-reversal nature. Therefore the time reversal test (integra#ting for- 
ward and then backward) does not give any information on the accumula- 
tion of the truncation errors. For checking the accuracy of orbits obtained 
by the 12 th-order LSMI, we made reference orbits of one Myr integrated by 
the extrapolation method developed by Gragg(1965), which are computed 
in quadruple precision. The accuracy of the reference orbits themselves are 
examined by the time reversal test. Assuming that the longitude error in- 
creases proportional to square of time, the longitude error of Jupiter is 
about 0.016 arcsecond after 5.5 x 10’ years, which is precise enough to test 
the accuracy of orbits computed in lower precision. The difference in the 
longitude of Jupiter after one Myr between the orbits obtained with 12-th 
LSMI and the reference orbits is 1.“6 x 10m5. Since the longitude error due 
to the truncation grows linearly for the LSMI and the longitude error due 
to round-off errors increases with the power of 3/2 of the time, the round- 
off errors become dominant soon. Extrapolation by the power of 3/2 of the 
longitude error of Jupiter over 5.5 billion years is about 6O.5. Similarly the 
longitude error of Pluto is about 0.“3 after 5.5 billion years. 

The timespan of one run of our integration was 4 x lOlo days M 110 Myr, 
and one run took 53 hours using the FMR with the accelerator board. We 
carried out 50 runs of this computation whose total time was 110 days. We 
made output of the positions and velocities of the 5 outer planets and a 
nearby orbit of Pluto in double precision for every 2 million days z 5500 
years, whose total amount is 296 mega bytes. These data are available on 
request. 
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3. Results 

Figure 1 shows four Keplerian elements of Pluto (the eccentricity, the ar- 
gument of perihelion, the inclination, and the longitude of node referred to 
the longitude of Neptune’s node) for the first 100 Myr of 5.5 billion years 
integration, and Figure 2 exhibits those over the last 100 Myr. There is no 
indication of global instability of Pluto’s motion. 
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Figure 1. Keplerian elements of Pluto (the first 100 million years). 

In the motion of Pluto three resonances are found in the past works. 
1) Pluto is in the mean motion resonance with Neptune. The critical ar- 
gument 81 = 3xp - 2xN - wp of the 3:2 mean motion resonance Iibrates 
around 180 degrees with the amplitude 81.2 degrees and the libration pe- 
riod is 2.0 x lo4 years. The dominant periodic component in the variation 
of the semi-major axis is the hbration of the critical argument Or. The am- 
plitude in the semi-major axis is 0.15AU 
2) The argument of perihelion 02 = wp -tip librates around 90 degrees and 
its period is 3.8 Myr. The dominant periodic variations of the eccentricity 
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Figure 2. Keplerian elements of Pluto (the last 100 million years). 

and the inclination are synchronized with the libration of the argument of 
perihelion, which is expected from the secular perturbation theory (Kozai 
1962). The variations of 02, the eccentricity, the argument of perihelion, 
and the inclination are modulated with 34 Myr periodicity. 
3) Moreover the longitude of Pluto’s node referred to the longitude of Nep- 
tune’s node, ds = Op - fiN, circulates and the period of this circulation 
is equal to the period of the libration of 82. When 0s becomes zero, the 
inclination of Pluto referred to the invariable plane takes a maximum, the 
eccentricity reaches a minimum, and the argument of perihelion is 90 de- 
grees. When 0s becomes 180 degrees, the inclination takes a minimum, the 
eccentricity reaches a maximum, and the argument of perihelion is again 
90 degrees. 

This new type of resonance was conjectured by Williams and Benson 
(1971) and was confirmed by Milani et al. (1989) who called this kind of 
resonance the 1:l super resonance. This type of resonance is also called 
a secondary resonance. All these three resonances are well kept over 5.5 
billion years. 
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Williams and Benson (1971) d iscussed the behavior of the argument 
84 = ‘z3p - ZJN + 3(Qp - G2,). In the Longstop 100-Myr integration (Nob% 
et al. 1989) the argument 04 seems to circulate with a period of about 
246 Myr and in the Digital Orrery (Sussman and Wisdom 1988) 04 seems 
to librate, from the consideration that !34 is consistent with zero. Milani 
et al. (1989) suggested the possibility that the argument 194 alternately 
librates and circulates and this may be the origin of the positive Lyapunov 
exponent. Figure 3 shows the variation of 194 over 5.5 billion years. 0, clearly 
and stationary librates around 180 degrees with 570 Myr period. There is 
no indication of interchange of libration and circulation. 

Figure 3. Argument 04 = wp - WN + 3(fip - 0,) over 5.5 billion years. 

Figure 4 shows the deviations of the Keplerian elements between Pluto 
and its nearby orbit whose initial conditions are slightly different (the rel- 
ative distance in the phase space is lo-r2). The deviations first increase 
proportionately with time and then from about 150 Myr start to increase 
exponentially. The time scale of the exponential increase is about 20 Myr, 
is in good agreement with the Lyapunov time (the inverse of Lyapunov 
exponent) of 20 Myr (Wisdom et al. 1998 and Nakai et al. 1992). The de- 
viations of the semi-major axis and the mean anomaly saturate after 420 
Myr and after do not increase. This saturation is related to the mean mo- 
tion resonance. In fact the deviation of the critical argument 01 of the two 
orbits saturates at 162.4 degrees which is twice of the amplitude of the li- 
bration of the critical argument, and the deviations of the mean longitudes 
and the mutual distance of two orbits saturate at 70 degrees and 44 AU, 
respectively. 

The exponential increase of the deviations of the eccentricity, inclina- 
tion, argument of perihelion, and longitude of node stops after 420 Myr 
and then increases slowly and seems to finally saturate (see Figure 4). The 
final saturation after 5.5 billion years in these four elements is related to 
other two resonance lockings, the libration of the argument of perihelion 
and the secondary resonance between 02 and 0s. Figure 5 shows the in- 
clination of Pluto referred to the invariable plane versus the argument 0s. 
Due to the secondary resonance, the inclination oscillates as a stationary 
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Figure 4 . Deviations of the Keplerian elements between Pluto and its nearby orbit .

wave, which goes up and down with the period of 34 Myr.Ihe width of
this stationary wave is about 1 .2 degree, which is equal to the saturated
deviation of the inclination of two orbits . Similar discussions can be applied
to the eccentricity and the argument of perihelion .
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Figure 5. The inclination of Pluto referred to the invariable plane versus the argument 
03 = np - 0,. 

4. Concluding Remarks 

One peculiar fact on Pluto’s motion for us is that the duration of the 
linear deviation of nearby orbits with time is too long, 150 Myr M 600,000 
revolutions of Pluto. The duration of the linear growth and the exponential 
divergence do depend on the initial distance (Nakai et al. 1992). 

As mentioned at the beginning of Section 3, Pluto is locked in three 
resonances. Moreover the argument 6, librates around 180 degrees with a 
570 Myr period. The behavior of 04 depends on the initial conditions. We 
carried out several numerical integrations with different initial values of 81 
(the critical argument of the mean motion resonance) keeping other ele- 
ments unchanged (Nakai and Kinoshita 1994). When the initial value of 
f?r is small, 64 circulates with prograde direction. As the initial value of 81 
increases, the behavior of 04 changes from prograde circulation to libration 
around 180 degrees, and then to retrograde circulation, and other orbital 
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elements do not show any irregular variations. From these experiments, the 
behavior of 84 does not seem to relate to the global stability of Pluto’s 
motion. When the libration amplitude of 81 reaches about 90 degrees, the 
secondary resonance is destroyed, but orbital elements do not show any ir- 
regularities. However when the amplitude of 81 becomes larger than about 
110 degrees, the second resonance (the libration of the argument of peri- 
helion) is destroyed and all orbital elements show irregular changes. Even 
though from a very limited number of experiments we cannot derive a gen- 
eral conclusion of Pluto’s motion, we do think the secondary resonance does 
not have an important role in the stabilization of Pluto’s motion. 

In this paper we integrated Pluto’s motion towards the future. From 
the time reversibility of equations of motion, we do think 5.5 billion years 
integration of Pluto towards the past do not show any essential difference 
from the results of this paper. In this sense, in order to investigate how 
Pluto evolves to the present state of three resonance lockings, we have to 
take account of a non-conservative mechanism in the early stage of the solar 
system. 
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