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Abstract. We discuss the main mechanisms affecting the dynamical evolution of Near- 
Earth Asteroids (NEAs) by analyzing the results of three numerical integrations over 1 
Myr of the NEA (4179) Toutatis. In the first integration the only perturbing planet is 
the Earth. So the evolution is dominated by close encounters and looks like a random 
walk in semimajor axis and a correlated random walk in eccentricity, keeping almost 
constant the perihelion distance and the Tisserand invariant. In the second integration 
Jupiter and Saturn are present instead of the Earth, and the 3/l (mean motion) and 
vn (secular) resonances substantially change the eccentricity but not the semimajor axis. 
The third, most realistic, integration including all the three planets together shows a 
complex interplay of effects, with close encounters switching the orbit between different 
resonant states and no approximate conservation of the Tisserand invariant. This shows 
that simplified a-body or $-body models cannot be used to predict the typical evolution 
patterns and time scales of NEAs, and in particular that resonances provide some “fast- 
track” dynamical routes from low-eccentricity to very eccentric, planet-crossing orbits. 

Key words: Near-Earth asteroids, Resonances, Close encounters 

1. Introduction 

Near-Earth asteroids (NEAs) are widely believed to be continuously inject- 
cd into Earth-approaching orbits through a few different resonant channels, 
which collect fragments randomly ejected from main-belt asteroids as a con- 
sequence of energetic interasteroidal collisions (see e.g. Wetherill, 1985,1987; 
Farinella et al., 1993, 1994). Subsequently, these fragments undergo a fair- 
ly complex orbital evolution process, driven by (mean motion and secular) 
resonances, by non-resonant secular perturbations, and by a sequence of 
close encounters with the inner planets. This process has been and is being 
studied by numerical techniques (Milani et al., 1989; Farinella et al., 1994; 
Froeschlk et al., 1995; Valsecchi et al., 1995), with the integrations showing a 
puzzling variety of phenomena and behaviours. However, a basic qualitative 
understanding of the main mechanisms at work would also be important, 
both to interpret and classify the integration outputs, and to devise some 
simplified, statistical model of the dynamical evolution process to be applied 
not to single objects, but to entire populations. 
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So far, such statistical models have been developed (Wetherill 1985,1987; 
Melosh and Tonks, 1993; Bottke et al., 1994, private communication) under 
the following simplifying assumptions: (i) a Monte Carlo algorithm together 
with Gpik’s (1976) analytical theory is used to assess the occurrence of 
planetary encounters and predict their outcomes; (ii) secular perturbations 
are usually taken into account only by assuming uniformly precessing apses 
and nodes; and (iii) resonant effects are treated as occurring at fixed values 
of the semimajor axis (2.5 AU for the 3/l mean motion resonance with 
Jupiter, 2.05 AU for the Vs secular resonance, etc.) and causing essentially 
rapid jumps in eccentricity and/or inclination. Thus, whenever resonances 
are not at work, the orbital evolution is modelled basically as an encounter- 
driven random walk in the semimajor axis-eccentricity-inclination (a-e-1) 
space; if encounters with only one planet are possible (or if a planet plays 
a dominant role owing to its larger mass, e.g. the Earth vs. Mars), this 
random walk is constrained to occur near a T = constant surface, where 
T is the Tisserand invariant relative to the dominant planet (assumed to 
have a quasi-circular orbit). For a detailed discussion of the corresponding 
evolutionary patterns, we refer to the recent review by Greenberg and Nolan 
(1993). 

In this paper we are going to argue that these models, albeit providing 
useful qualitative insights, do not account for all the main features of the 
orbital evolution of NEAs. The main reason is that secular perturbations 
play a role at least as important as that of encounters in guiding the orbital 
evolution in the a-e-l space, and that resonances need to be modelled in a 
more complex way to obtain realistic predictions of their effects. An example 
of this is the recent finding that resonant effects can pump up the eccentricity 
to almost unity on a time scale < lo6 yr, thus causing a significant fraction 
of NEAs to end up hitting the Sun (Farinella et al., 1994; Froeschle et al., 
1995). 

We shall discuss some of these problems by using as a typical example of 
NEA evolution the numerically integrated orbit of asteroid (4179) Toutatis. 
Our integrations have spanned a time scale of 1 Myr (such as required to 
detect and interpret most secular effects), and used several different dynam- 
ical models to point out the main mechanisms at work. As discussed by 
Whipple and Shelus (1993) and by Benest et aE. (1994), who integrated the 
same orbit over shorter time spans (up to M lo5 yr), the orbit of Toutatis 
is extremely chaotic, with a Lyapounov characteristic time of the order of 
100 yr due to frequent encounters with the inner planets, and with the 3/l 
Jovian resonance affecting the orbit on a longer time scale. Here we shall 
extend the afore-mentioned studies with a particular emphasis on the aspects 
important not just for Toutatis itself, but rather for the long-term evolution 
of the entire NEA population. In Sec. 2 we shall describe our integrations 
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and discuss the most interesting results, whereas in Sec. 3 we shall elaborate 
on the significance and implications of these results. 

2. Numerical Experiments on Toutatis 

2.1. INTEGRATION METHOD AND INITIAL CONDITIONS 

Given that close approaches with planets cause fast variations of the orbital 
elements of NEAs, it is necessary to use an accurate method to integrate the 
equations of motion. However, whereas a small time step is required when 
the integrated object is close to a planet (or the Sun) and moves very fast 
relative to it, a much longer time step can be used when the NEA is far 
from the planets. Therefore, an integration method using a variable stepsize 
turns out to be the optimal choice. We adopted the Bulirsch-Stoer extrap- 
olation method ((Stoer and Bulirsch, 1980)) which, through a controlled 
variable stepsize, allows to handle close approaches with planets much more 
accurately than with a fixed stepsize. After a number of tests, we chose a 
restrictive value (lo-l2 instead of the usual 10w8) of the convergence param- 
eter t, which determines the difference between two successive estimates in 
the iteration. 

It is important to emphasize that, even if the integration method is very 
accurate, for such strongly chaotic orbits the results cannot be determinis- 
tic over a time span much longer than the Lyapounov time, and the inte- 
grations can provide only qualitative information on the long-term orbital 
evolution. The reasons are the following. First, the assumed dynamical mod- 
el always neglects some real small perturbations, whose effects get ampli- 
fied in a stochastic fashion. Second, owing to the exponential increase of 
small numerical errors, two different integration methods applied to the 
same dynamical model and the same initial conditions will give two dif- 
ferent orbital evolutions (with similar qualitative behaviors). Likewise, the 
same integration method used on two different computers will yield quan- 
titatively different results, due to different round-off errors. Thus, while for 
the sake of simplicity we will talk about the real NEA Toutatis, the orbital 
evolutions computed with even the most accurate method and the most 
realistic dynamical model are not necessarily predictive of the behavior of 
the real asteroid. 

Initial conditions for the planets and Toutatis, for the epoch 1993 January 
13.0 (JD = 244900.5) , were kindly provided to us by G. Hahn (1994, personal 
communication). The orbital angles are referred to the J2000 equator and 
equinox. Table I contains the initial conditions of Toutatis and Table II gives 
the masses of the planets taken from the JPL ephemeris DE200. Note that 
we combined the Earth and the Moon into a single body located at the 
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E a r t h - M o o n  b a r y c e n t e r ,  a n d  a d d e d  t h e  m a s s  o f  M e r c u r y  t o  t h a t  o f  t h e  Sun .  

T o u t a t i s  is a s s u m e d  t o  b e  m a s s l e s s .  

TABLE I 

Osculating Orbital Elements 
of Toutatis, Referred to the J2000 Ecliptic and 
Equinox 

Epoch 1993 January 13.0 
M =  15°.05349 
e = 0.6398550 

= 276°.28112 

(JD= 244900.5) 
a = 2.5054645AU 
i = 00.46674 

= 126°.48206 

2.2. THE THREE DYNAMICAL MODELS 

In order to discriminate and assess the significance of each of the mecha- 
nisms which affect the orbit of Toutatis, we used three different dynamical 
models: 

(1) In the first model (Sun-Earth-asteroid), the perturbations are main- 
ly due to close approaches with the Earth, located between the Sun and 
Toutatis, almost in the same plane. 

(2) In the second model (Sun-Jupiter-Saturn-asteroid), the orbit of Tou- 
tatis is mainly affected by resonance mechanisms with the outer planets, as 
no close approaches occur. 

(3) The third model (Sun-Earth-Jupiter-Saturn-asteroid) takes into accoun 
all the main perturbation forces that affect the orbit of the reM Toutatis, 
and is therefore the most realistic (and complex) one. 

TABLE tI 

Masses of Planets 

Planets Masses (M e = 1) 

Sun+Mercury 
Earth+Moon 
Jupiter 
Saturn 

1.000000166013679527193 
0.00000304043273871084 
0.000954786104043042 
0.000285877644368210 
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For all the three models, we numerically integrated the Newtonian equa- 
tions of motion of the planets along with Toutatis over a time span of 
1 Myr. 

2.3. RESULTS 

2.3.1. The Sun-Earth-asteroid model 
The evolution of Toutatis in this model is characterized by a random walk 
of the semimajor axis a and of the eccentricity e of its orbit due to close 
approaches with the Earth ( see Fig. 1). Actually, the small inclination of 
Toutatis increases significantly the frequency of these encounters, as they 
can occur also relatively far from the mutual nodes. As a consequence, the 
random walk is fairly effective, with the semimajor axis changing by about 
1 AU over the integration time span. Thus for this type of orbits, Earth 
encounters are sufficient to cause a comparatively fast evolution in the orbital 
element space and in particular (as we shall see later on) to jump frequently 
between different resonant states. 

In Fig. 1 a strong correlation is also apparent between the semimajor 
axis and the eccentricity of the asteroid, with the perihelion distance stay- 
ing almost constant. This fact can be explained in a simple way by using 
Gauss’ perturbation formulae (see e.g. Bertotti and Farinella, 1990, Ch. 11). 
If we treat close approaches as causing fast, quasi-impulsive changes of the 
osculating Keplerian elements, these changes can be expressed as a function 
of the impulsional velocity increment SV. We have: 

Sa = nd&[6K t e(Wi ~0s f + W2 sin f)] 

Se = - na [&Vi sin f t Ct(cos f t leJec~~s~] 
where f is the asteroid’s true anomaly at the time of the encounter and TX is 
its mean motion. SV, and SVz are the transverse and radial components of 
the impulsional velocity increment. Assuming that the geometry of Toutatis’ 
orbit is such that the approaches with the Earth always occur near perihelion 
(a good approximation, as the perihelion distance keeps close to 1 AU), one 
can approximate those equations by taking f x 0. Then, from Eq. (l), we 
have: 

SVl M 
nSaJCS 

2(1+e) ’ 

and substituting this expression in Eq. (a), we obtain: 

(3) 

Se M F(l -e). 
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Fig. 1. Evolution of the semimajor axis (in AU), the inclination (degrees) and the 
eccentricity of Toutatis’ orbit over 1 Myr in the Sun-Earth-asteroid model. 

Thus Se is proportional to Sa and the evolutions of e and a are well corre- 
lated. Note that Eq. (4) implies that the perihelion distance Q of the orbit of 
Toutatis is almost constant. This is consistent with the (approximate) con- 
servation of the Tisserand invariant of this problem. Indeed, if we neglect 
the Earth’s orbital eccentricity, the model provides just a restricted three- 
body problem, for which the Jacobi constant is conserved and the Tisserand 
parameter 

T = l/u + 2[a(l - e2)]li2 cos I (5) 

(a being expressed in units of the perturbing planet’s semimajor axis, name- 
ly, in our case, AU) is not modified by the encounters. Thus the orbit must 
remain close to a surface 2’ = constant in the orbital element space. Actually, 
Fig. 2 shows the contour lines for different values of the Tisserand invariant 
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Fig. 2. The black dots show the evolution in the semimajor axis a (in AU) vs. eccen- 
tricity e plane for the numerically integrated orbit of Toutatis over 1 Myr, with the 
Sun-Earth-asteroid model. The two solid lines correspond to the perihelion q and aphelion 
Q distances equal to 1 UA. The dotted lines are the contours of the Tisserand constant T 
at zero inclination and correspond (from left to right) to T = 3, 2.88, 2.83 and 2.80. 

for I = 0, and shows that the integrated orbit of Toutatis always stays close 
to the contour line T = 2.83, corresponding to its initial osculating elements. 
Note also that as Q = a(1 - e), another expression for T is: 

T = + + 2[q(l+ e)11i2 cos I. 

Then, if q = 1 and e is small, we can expand T into a series of e: 

T = 1 - e + 2 [I + ie + o(e2)] cos I, 

(6) 

which, for I = 0, becomes: 

T = 3 f O(e2). (8) 

Therefore, the orbit of a body with small inclination and for which T M 3 
will evolve near the line q = 1, thus causing frequent Earth approaches, 

2.3.2. The Sun-Jupiter-Saturn-asteroid model 
The evolution of the orbital elements of Toutatis (see Fig. 3) shows that 
the asteroid is locked in the 3/l mean motion resonance with Jupiter, near 
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Fig. 3. Evolution of the orbital elements of Toutatis over 1 Myr in the 
Sun-Jupiter-Saturn-asteroid model. Besides semimajor axis, eccentricity and inclination, 
the figure shows also three critical arguments: ga:i of the 3/l mean motion resonance with 
Jupiter [see Eq. (9)]; w - w3 and w - w, of the ~5 and r& secular resonances (wj and a, 
being the perihelion longitudes of Jupiter and Saturn, respectively). 

a = 2.5 AU, during the whole integration span. This is confirmed by the 
fact that the critical argument (~3~1, defined by: 

(ri:k = kX - iXj + (i - k)W) (9) 

with i = 3, k = 1, always librates (with a large amplitude) around 180”. Here 
X is the mean longitude and w is the longitude of perihelion of Toutatis, while 
Xj is the mean longitude of Jupiter. It is worth noting that Toutatis’ orbit 
is also inside the secular resonance vs with Saturn (perturbed by Jupiter) 
during the first 6 x lo5 yr of the integration, as shown by the libration of 
the secular critical argument w - a, around 0”. When the orbit is locked 
in the vs resonance, wide oscillations of the eccentricity occur. This is con- 
sistent with the findings of Morbidelli and Moons (1993) and Moons and 
Morbidelli (1995) on the behavior of secular resonances inside mean motion 
resonances. 



DYNAMICAL EVOLUTION OF NEA’S 159 

OrHal Osmmts of TOUTAlE ( 4 pdiee Model ) 

Orbiiol Eccentricity a 

Fig. 4. A plot of the semi-major axis a vs. eccentricity e for the numerically integrated 
orbit of Toutatis over 1 Myr with the Sun-Jupiter-Saturn-asteroid model. The lines q = 1 
AU and Q = 1 AU are also shown. 

As the Earth is not present in this model, however, there are no close 
approaches and no random walk of the semimajor axis during the integration 
time. This confirms that the stochasticity of the evolution is mostly due to 
encounters with the inner planets (Whipple and Shelus, 1993; Benest et al., 
1994). In the a vs. e plane (see Fig. 4), the motion occurs along a narrow 
horizontal strip, which crosses the q = 1 AU line. 

2.3.3. The Sun-Earth-Jupiter-Saturn-asteroid model 
This model is the most realistic one. As many dynamical mechanisms are 
at work at the same time, Toutatis has a complex behavior (see Fig. 5), 
switching between several mean motion and secular resonances. During the 
first 9 x lo4 yr, the orbit is locked in the 3/l resonance with Jupiter, with 
the semimajor axis staying around 2.5 AU. Then, due to a close approach 
with the Earth, it is ejected from this resonance, with the semi-major axis 
jumping to lower values. But soon it enters in vs secular resonance (as shown 
by the Iibrations of the corresponding critical argument). Subsequently, for a 
fairly long time (between about 4 x lo5 and 7.5 x lo5 yr), the semimajor axis 
stays around 2.06 AU, corresponding to the 4/l mean motion resonance with 
Jupiter. Actually, during this interval the corresponding critical argument 
04~1 alternates between libration around 0” and circulation (see Fig. 6). In 
the libration intervals, the orbit also gets locked in the vg secular resonance 
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Fig. 5. The same as Fig. 3 but for the Sun-Earth-Jupiter-Saturn-asteroid model and 
with the critical argument ~4~1 instead of 6~~1. 

and the eccentricity undergoes significant changes (Moons and Morbidelli, 
1995, and Yoshikawa, 1989). 

Fig. 7 shows that when the outer planets are taken into account in the 
integration, the orbit of Toutatis does not random walk any more along 
the contour lines of the Tisserand invariant relative to the Earth. The cor- 
responding path is quite complex, with vertical (semimajor axis) changes 
caused by encounters and large horizontal strips due to both mean motion 
and secular resonance effects, with superimposed oscillations due to non- 
resonant secular perturbations. The inclination also grows up to almost 
10". Therefore, even if the orbit’s stochasticity is still dominated by close 
approaches with the Earth, any dynamical model considering only the effects 
of the encounters (i.e., conserving approximately the Tisserand invariant) 
cannot reproduce the trends and time scales of the real evolution. There- 
fore, using such models to predict the evolution of the NEA population is 
likely to yield misleading results. 



DYNAMICAL EVOLUTION OF NEA’S 161 

4179 toutatie iz :I;z 
=I;: . . ‘.“: ‘.’ ‘.’ - I.7 ‘.‘.* 

&$.jilp1t$r + . . .* . : :’ . 1:. 
m . ‘.*. . . . :.) 1. . :. a* . 

y.:, _. : . ‘;. . %‘: 
\:.* 1: :t. . . : f. ..: 

. . . . . . . .;:. ‘.... .-, . . 

0.6 

Fig. 6. The same as Fig. 5 but with the horizontal scale enlarged to better show the time 
interval between 4 x lo5 and 8 x lo5 yr. 

3. Conclusions 

The main conclusions of the work described above can be summarized as 
follows: 

(1) When only the Earth is included in the dynamical model, the evo- 
lution of Toutatis is dominated by close encounters with it. The orbit is 
strongly chaotic and the changes of a and e have the typical features of a 
random walk (albeit with a strong correlation between the two elements). 
However, the perihelion distance and the Tisserand parameter stay almost 
constant, as predicted by simple analytical arguments based on the restrict- 
ed three-body problem. 

(2) On the other hand, the presence of the outer planets in the dynamical 
model causes Toutatis’ orbit to get locked into resonances, in particular 
the 3/l mean motion resonance with Jupiter and the vs secular resonance 
with Saturn’s longitude of perihelion (perturbed by Jupiter). In order to get 
the latter resonance, both outer planets have to be present in the model. 
Resonances cause significant variations of e but keep a almost constant. 
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Fig. 7. The same as Fig. 4 but for the Sun-Earth-Jupiter-Saturn-asteroid model. 

(3) The 5-body model including the Earth, Jupiter and Saturn together 
results in a very complex interplay of dynamical effects. In summary, Earth 
encounters switch Toutatis’ orbit between several different resonant states, 
including the 3/l and 4/l mean motion and the v5 and vs secular resonances. 
The eccentricity changes are dominated by resonance effects, whereas in a 
mainly encounter-related variations are apparent. None of the previous two 
models has even a qualitative resemblance to the evolution pattern resulting 
in this case. In particular, the Tisserand invariant relative to the Earth is 
not conserved at all, as the evolution of the eccentricity is mainly controlled 
by the outer planets. Indeed, strong and fast eccentricity changes appear to 
provide a “fast-track” dynamical route between low- and high-eccentricity 
asteroid orbits. 

We stress tha,t even the third, most realistic dynamical model does not 
provide a quantitatively predictive description of the behavior of the real 
asteroid, for at least two reasons: (i) the strong stochasticity of the orbit, 
mainly related to Earth encounters; (ii) and the fact that the model is still 
an approximate one, with a number of missing perturbation effects. For 
instance, another numerical integration of Toutatis with a model including 
all the planets from Venus to Neptune (Farinella et al., 1994; Valsecchi et al., 
1995) shows a variety of dynamical mechanisms at work as in our third mod- 
el, but the evolution of the orbital elements is markedly different. Actually, 
in this integration, Toutatis gets ejected from the solar system on a comet- 
like hyperbolic orbit some 6 x lo5 yr in the future, after an encounter with 
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Jupiter! Of course, this just shows that for such strongly chaotic, fast-track 
evolving orbits, very different final fates are possible, including a hyperbolic 
ejection, a collision with the Sun or with a planet. 

Another important point to be stressed is that not all NEAs are currently 
evolving along the fast-track resonant routes of the type we have discussed 
for Toutatis. The evidence from the recent numerical work quoted above 
is that probably only a minor fraction (possibly some 20%) of the existing 
NEAs at any given time is on fast-track orbits. Other orbits (in particular 
those classified in the Geographos class by Milani et al. (1989)) actually 
evolve in a slower, random-walk fashion, with Earth encounters playing the 
dominant role, in a way qualitatively similar to that shown in Fig. 1. This 
is also the case for many Amor objects, including the largest NEAs, (1033) 
Ganymed and,(433) E ros: in these cases, the evolution is still slower, as only 
Mars encounters are possible and the Martian mass is an order of magni- 
tude smaller than that of the Earth. However, from the point of view of 
the “demography” of NEAs, it is likely that the slow-track objects repre- 
sent more the exception than the rule, and that they are over-represented 
in the existing population just because of their much slower evolution and 
longer lifetime. Also, since all NEAs probably start their independent life 
(after collisional ejection from main-belt parent asteroids) inside Toutatis- 
like resonant channels, slow-track nonresonant bodies probably are the out- 
come of “lucky” encounters with Mars or the Earth, removing them from 
the resonances and putting them into long-lived “parking zones”. Thus, the 
conclusion appears likely that there is no typical dynamical evolution or even 
lifetime for all NEAs, but that the transfer of bodies from the main aster- 
oid belt to the Earth-crossing zone is a complex process, with a variety of 
time scales, dynamical mechanisms, and exchanges between different classes 
of objects. This scenario is further discussed by Froeschle et ~2. (1995) and 
Menichella et al. (1995). 

Much more numerical and modelling work appears needed to understand 
the remaining open problems. For instance: how many different “dynamical 
classes” are required to correctly classify the orbital evolution patterns over 
time spans of lo7 to lo8 yr? How frequently do exchanges occur among 
different classes, and more in general between fast-track and slow-track 
orbits? What are the locations of secular resonances in the little-known 
region with a < 2 AU, where the secular perturbations of the terrestrial 
planets need to be taken into account? And how effective are the mean 
motion resonances with the inner planets to protect NEAs from encounters, 
as in the case of the Toro-class objects of Milani et al. (1989)? We plan to 
deal with these problems in the future to obtain a plausible, self-consistent 
evolutionary scenario for this important and intriguing population of near- 
Earth interplanetary bodies. 
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